Optimization



Outline of the lecture

Many machine learning problems can be cast as optimization problems.
This lecture introduces optimization. The objectiveisfor you to learn:

1 The definitions of gradient and Hessian.

1 The gradient descent algorithm.

1 Newton's algorithm.

1 Stochastic gradient descent (SGD) for online learning.

1 Popular variants, such as AdaGrad and Asynchronous SGD.
 Improvements such as momentum and Polyak averaging.

1 How to apply all these algorithms to linear regression.



Calculus background: Partial derivatives an@
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Necessary calculus background: Hessian
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Necessary calculus background: Chain rule
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Necessary calculus background: Linear regression




Gradient vector

Let 8 be an d-dimensional vector and f(@) a scalar-valued function. The
gradient vector of f(-) with respect to 0 is:
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Hessian matrix

The Hessian matrix of f(-) with respect to 6, written V3 f(0) or simply
as H, is the d x d matrix of partial derivatives,
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In offline learning, we have a batch of data x1., = {x1,X2,...,X,}. We
typically optimize cost functions of the form
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The corresponding gradient is

g(0) = Ve f(0) =
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For linear regression with training data {x;,y;};~,;, we have have the
quadratic cost
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Gradient vector and Hessian matrix
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Stegpest gradient descent algorithm

One of the simplest optimization algorithms is called gradient descent
or steepest descent. This can be written as follows:

K b
Ori1 =0k — M8k = 0 — nka(Q)

where k indexes steps of the algorithm, g, = g(Bkﬁé the gradient at step
k, and n; > 0 is called the learning rate or step size.
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Steepest gradient descent algorithm
for least squares




How to choose the step size ?
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Newton’s algorithm

The most basic second-order optimization algorithm is Newton’s algo-
rithm, which consists of updates of the formak‘(

0r1 =0, — H g
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This algorithm is derived by making a second-order Taylor series approx-
imation of f(@) around O:
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differentiating and equating to zero to solve for O 1.
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Newton as bound optimization




Newton’'s algorithm for linear regression
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Advanced: Newton CG algorithm

AN

Rather than computing d; = —H,;lgk directly, we can solve the linear
system of equations (Iﬁd;C = _gkl for dg.

One efficient and popular way to do this, especially if H is sparse, is to
use a conjugate gradient method to solve the linear system.
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Online learning with mini-batches
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The online learning algorithm
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Downpour — Asynchronous SGD
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[Jeff Dean et al ]



Polyak averaging
Polyak averaging (see papers of Mark Schmidt / Francis Bach)
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See also predictive variance reductl on (Tong Zhang, NIPS 2013)




Momentum




Adagrad: Put more weight on rare features
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Other useful optimization
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BFGS and limited-BFGS (Take e.g. Nick Trefethen’s course)
Nesterov’'s method (See Nesterov’s book) -—
Proximal methods (See Bertsekas book) ., — L
Natural gradient (YoshuaBengio et a —ICLR)
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Hessian-vector updates and automatic differentiation (Bishop’s
T\

book and Nocedal & Wright)
Convex optimization / constrained optimization (See Boy’s booﬂ



Next lecture

In the next lecture, we apply these ideas to learn a neural network
with a single neuron (logistic regression).



