
Optimization
Nando de Freitas



Outline of the lecture

Many machine learning problems can be cast as optimization problems.
This lecture introduces optimization. The objective is for you to learn:

 The definitions of gradient and Hessian.
 The gradient descent algorithm.
 Newton’s algorithm.
 Stochastic gradient descent (SGD) for online learning.
 Popular variants, such as AdaGrad and Asynchronous SGD.
 Improvements such as momentum and Polyak averaging.
 How to apply all these algorithms to linear regression.



Calculus background: Partial derivatives and gradient



Necessary calculus background: Hessian



Necessary calculus background: Chain rule



Necessary calculus background: Linear regression



Gradient vector
Let µ be an d-dimensional vector and f(µ) a scalar-valued function. The
gradient vector of f(¢) with respect to µ is:

rµf(µ) =

2

6
6
6
6
4

@f(µ)
@µ1
@f(µ)
@µ2
...

@f(µ)
@µn

3

7
7
7
7
5



The Hessian matrix of f(¢) with respect to µ, written r2
µf(µ) or simply

as H, is the d£ d matrix of partial derivatives,

r2
µf(µ) =

2

6
6
6
6
6
4

@2f(µ)
@µ21

@2f(µ)
@µ1@µ2

¢ ¢ ¢ @2f(µ)
@µ1@µn

@2f(µ)
@µ2@µ1

@2f(µ)
@µ22

¢ ¢ ¢ @2f(µ)
@µ2@µd

...
...

. . .
...

@2f(µ)
@µd@µ1

@2f(µ)
@µd@µ2

¢ ¢ ¢ @2f(µ)
@µ2d

3

7
7
7
7
7
5

Hessian matrix



In o²ine learning, we have a batch of data x1:n = fx1;x2; : : : ;xng. We
typically optimize cost functions of the form

f(µ) = f(µ;x1:n) =
1

n

nX

i=1

f(µ; xi)

The corresponding gradient is

g(µ) = rµf(µ) =
1

n

nX

i=1

rµf(µ;xi)

For linear regression with training data fxi; yig
n
i=1, we have have the

quadratic cost

f(µ) = f(µ;X;y) = (y ¡Xµ)T (y ¡Xµ) =
nX

i=1

(yi ¡ xiµ)2



f(µ) = f(µ;X;y) = (y ¡Xµ)T (y ¡Xµ) =

nX

i=1

(yi ¡ xiµ)2

Gradient vector and Hessian matrix



Steepest gradient descent algorithm
One of the simplest optimization algorithms is called gradient descent
or steepest descent. This can be written as follows:

µk+1 = µk ¡ ´kgk = µk ¡ ´krf(µ)

where k indexes steps of the algorithm, gk = g(µk) is the gradient at step
k, and ´k > 0 is called the learning rate or step size.



Steepest gradient descent algorithm
for least squares

f(µ) = f(µ; X;y) = (y ¡Xµ)T (y ¡Xµ) =

n

i=1

(yi ¡ xiµ)2



How to choose the step size ?



Newton’s algorithm
The most basic second-order optimization algorithm is Newton's algo-
rithm, which consists of updates of the form

µk+1 = µk ¡H¡1
K gk

This algorithm is derived by making a second-order Taylor series approx-
imation of f(µ) around µk:

fquad(µ) = f(µk) + gTk (µ ¡ µk) +
1

2
(µ ¡ µk)

THk(µ ¡ µk)

di®erentiating and equating to zero to solve for µk+1.



Newton as bound optimization



Newton’s algorithm for linear regression

f(µ) = f(µ; X; y) = (y ¡Xµ)T (y ¡Xµ) =

n

i=1

(yi ¡ xiµ)2



Advanced: Newton CG algorithm
Rather than computing dk = ¡H¡1

k gk directly, we can solve the linear
system of equations Hkdk = ¡gk for dk.

One e±cient and popular way to do this, especially if H is sparse, is to
use a conjugate gradient method to solve the linear system.



SGD



Online learning with mini-batches



The online learning algorithm



Downpour – Asynchronous SGD

[Jeff Dean et al.]



Polyak averaging

Polyak averaging (see papers of Mark Schmidt / Francis Bach)

See also predictive variance reduction (Tong Zhang, NIPS 2013)



Momentum



Adagrad: Put more weight on rare features

[Duchi et al.]



Other useful optimization

• BFGS and limited-BFGS (Take e.g. Nick Trefethen’s course)
• Nesterov’s method (See Nesterov’s book)
• Proximal methods (See Bertsekas book)
• Natural gradient (Yoshua Bengio et al – ICLR)
• Hessian-vector updates and automatic differentiation (Bishop’s

book and Nocedal & Wright)
• Convex optimization / constrained optimization (See Boy’s book)



Next lecture

In the next lecture, we apply these ideas to learn a neural network
with a single neuron (logistic regression).


