
Optimization
Nando de Freitas



Outline of the lecture

Many machine learning problems can be cast as optimization problems.
This lecture introduces optimization. The objective is for you to learn:

 The definitions of gradient and Hessian.
 The gradient descent algorithm.
 Newton’s algorithm.
 Stochastic gradient descent (SGD) for online learning.
 Popular variants, such as AdaGrad and Asynchronous SGD.
 Improvements such as momentum and Polyak averaging.
 How to apply all these algorithms to linear regression.



Calculus background: Partial derivatives and gradient



Necessary calculus background: Hessian



Necessary calculus background: Chain rule



Necessary calculus background: Linear regression



Gradient vector
Let µ be an d-dimensional vector and f(µ) a scalar-valued function. The
gradient vector of f(¢) with respect to µ is:

rµf(µ) =

2

6
6
6
6
4

@f(µ)
@µ1
@f(µ)
@µ2
...

@f(µ)
@µn

3

7
7
7
7
5



The Hessian matrix of f(¢) with respect to µ, written r2
µf(µ) or simply

as H, is the d£ d matrix of partial derivatives,

r2
µf(µ) =

2

6
6
6
6
6
4

@2f(µ)
@µ21

@2f(µ)
@µ1@µ2

¢ ¢ ¢ @2f(µ)
@µ1@µn

@2f(µ)
@µ2@µ1

@2f(µ)
@µ22

¢ ¢ ¢ @2f(µ)
@µ2@µd

...
...

. . .
...

@2f(µ)
@µd@µ1

@2f(µ)
@µd@µ2

¢ ¢ ¢ @2f(µ)
@µ2d

3

7
7
7
7
7
5

Hessian matrix



In o²ine learning, we have a batch of data x1:n = fx1;x2; : : : ;xng. We
typically optimize cost functions of the form

f(µ) = f(µ;x1:n) =
1

n

nX

i=1

f(µ; xi)

The corresponding gradient is

g(µ) = rµf(µ) =
1

n

nX

i=1

rµf(µ;xi)

For linear regression with training data fxi; yig
n
i=1, we have have the

quadratic cost

f(µ) = f(µ;X;y) = (y ¡Xµ)T (y ¡Xµ) =
nX

i=1

(yi ¡ xiµ)2



f(µ) = f(µ;X;y) = (y ¡Xµ)T (y ¡Xµ) =

nX

i=1

(yi ¡ xiµ)2

Gradient vector and Hessian matrix



Steepest gradient descent algorithm
One of the simplest optimization algorithms is called gradient descent
or steepest descent. This can be written as follows:

µk+1 = µk ¡ ´kgk = µk ¡ ´krf(µ)

where k indexes steps of the algorithm, gk = g(µk) is the gradient at step
k, and ´k > 0 is called the learning rate or step size.



Steepest gradient descent algorithm
for least squares

f(µ) = f(µ; X;y) = (y ¡Xµ)T (y ¡Xµ) =

n

i=1

(yi ¡ xiµ)2



How to choose the step size ?



Newton’s algorithm
The most basic second-order optimization algorithm is Newton's algo-
rithm, which consists of updates of the form

µk+1 = µk ¡H¡1
K gk

This algorithm is derived by making a second-order Taylor series approx-
imation of f(µ) around µk:

fquad(µ) = f(µk) + gTk (µ ¡ µk) +
1

2
(µ ¡ µk)

THk(µ ¡ µk)

di®erentiating and equating to zero to solve for µk+1.



Newton as bound optimization



Newton’s algorithm for linear regression

f(µ) = f(µ; X; y) = (y ¡Xµ)T (y ¡Xµ) =

n

i=1

(yi ¡ xiµ)2



Advanced: Newton CG algorithm
Rather than computing dk = ¡H¡1

k gk directly, we can solve the linear
system of equations Hkdk = ¡gk for dk.

One e±cient and popular way to do this, especially if H is sparse, is to
use a conjugate gradient method to solve the linear system.



SGD



Online learning with mini-batches



The online learning algorithm



Downpour – Asynchronous SGD

[Jeff Dean et al.]



Polyak averaging

Polyak averaging (see papers of Mark Schmidt / Francis Bach)

See also predictive variance reduction (Tong Zhang, NIPS 2013)



Momentum



Adagrad: Put more weight on rare features

[Duchi et al.]



Other useful optimization

• BFGS and limited-BFGS (Take e.g. Nick Trefethen’s course)
• Nesterov’s method (See Nesterov’s book)
• Proximal methods (See Bertsekas book)
• Natural gradient (Yoshua Bengio et al – ICLR)
• Hessian-vector updates and automatic differentiation (Bishop’s

book and Nocedal & Wright)
• Convex optimization / constrained optimization (See Boy’s book)



Next lecture

In the next lecture, we apply these ideas to learn a neural network
with a single neuron (logistic regression).


