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Outline of the lecture
This lecture describes the construction of binary classifiers using a
technique called Logistic Regression. The objective is for you to learn:

 How to apply logistic regression to discriminate between two
classes.
 How to formulate the logistic regression likelihood.
 How to derive the gradient and Hessian of logistic regression.
 How to incorporate the gradient vector and Hessian matrix into
Newton’s optimization algorithm so as to come up with an algorithm
for logistic regression, which we call IRLS.
 How to do logistic regression with the softmax link.



McCulloch-Pitts model of a neuron



Sigmoid functionP

sigm(´) refers to the sigmoid function, also known as the logistic or
logit function:

sigm(´) =
1

1 + e¡´
=

e´

e´ + 1



Linear separating hyper-plane

[Greg Shakhnarovich]



Bernoulli: a model for coins

A Bernoulli random variable r.v. X takes values in {0,1}

q if x=1
p(x|q ) =

1- q if x=0

Where q 2 (0,1). We can write this probability more succinctly as
follows:



Entropy

In information theory, entropy H is a measure of the uncertainty
associated with a random variable. It is defined as:

H(X) = - p(x|q ) log p(x|q )

Example: For a Bernoulli variable X, the entropy is:

S
x



Logistic regression
The logistic regression model speci¯es the probability of a binary output
yi 2 f0; 1g given the input xi as follows:

p(yjX; µ) =

nY

i=1

Ber(yijsigm(xiµ))

=
nY

i=1

·
1

1 + e¡xiµ

¸yi ·

1¡
1

1 + e¡xiµ

¸1¡yi

where xiµ = µ0 +
Pd

j=1 µjxij



Gradient and Hessian of binary logistic regression

The gradient and Hessian of the negative loglikelihood, J(µ) = ¡ log p(yjX;µ),
are given by:

g(w) =
d

dµ
J(µ) =

nX

i=1

xTi (¼i ¡ yi) = XT (¼ ¡ y)

H =
d

dµ
g(µ)T =

X

i

¼i(1¡ ¼i)xix
T
i = XTdiag(¼i(1¡ ¼i))X

where ¼i = sigm(xiµ)

One can show that H is positive de¯nite; hence the NLL is convex and
has a unique global minimum.

To ¯nd this minimum, we turn to batch optimization.



Iteratively reweighted least squares (IRLS)
For binary logistic regression, recall that the gradient and Hessian of the
negative log-likelihood are given by

gk = XT (¼k ¡ y)

Hk = XTSkX

Sk := diag(¼1k(1¡ ¼1k); : : : ; ¼nk(1¡ ¼nk))

¼ik = sigm(xiµk)

The Newton update at iteration k + 1 for this model is as follows (using
´k = 1, since the Hessian is exact):

µk+1 = µk ¡H¡1gk

= µk + (XTSkX)¡1XT (y ¡ ¼k)

= (XTSkX)¡1
£
(XTSkX)µk + XT (y ¡ ¼k)

¤

= (XTSkX)¡1XT [SkXµk + y ¡ ¼k]



Softmax formulation



Likelihood function



Negative log-likelihood criterion



Neural network representation of loss



Manual gradient computation



Manual gradient computation



Next lecture

In the next lecture, we develop an automatic layer-wise way of
computing all the necessary derivatives known as back-propagation.

This is the approach used in Torch. We will review the torch nn class.


