
Machine Learning
Brendan Shillingford

July 6, 2016

Implementing your own layer

Today we’ll implement our own neural net module/layer. In lecture, we saw several, such as
linear layer which computes z = Wx + b and the sigmoid module which computes zi = 1

1+e−xi

(i.e. element-wise).
This practical’s files can be found here: https://github.com/oxford-cs-ml-2015/practical4
Read README.md for setup instructions for the lab machine. Clone the repository to get all the
files:

git clone https://github.com/oxford-cs-ml-2015/practical4
cd practical4

Outline

We will:

1. (code provided) Train a simple network with the sigmoid activation function (the non-
linearity between linear layers) on the Iris dataset.

2. Implement a module for a new activation function, and use these to replace the sigmoid.
3. Check that our gradient is correct by writing a test to see if the whole model’s derivatives

are correct.
4. Check that the module’s backward function is correct using an approximation to the

Jacobian.

In this document, let z represent the output of a module, and x its input. That is, z is a function
of x. In our custom layer we won’t have parameters.

Train the basic simple network

We provide code for training and setup, in train.lua, iris_loader.lua for loading the dataset,
and main.lua that actually runs the training process. The dataset is read from iris.data.csv.
The code is similar to last time, except now the model is deeper and we are using a simpler
dataset. Additionally, we are now doing everything in full batches, computing the loss and
gradient on all of the data in each iteration.
For some nice figures showing what the dataset looks like, see http://en.wikipedia.org/wiki/
Iris_flower_data_set.
We defined a function called create_model that creates and returns the model and the criterion
objects, so we can separate this step from the training, as we will make use of the model and
criterion later in the gradient checker. The model it implements is:

Page 1

https://github.com/oxford-cs-ml-2015/practical4
http://en.wikipedia.org/wiki/Iris_flower_data_set
http://en.wikipedia.org/wiki/Iris_flower_data_set

Machine Learning
Brendan Shillingford

July 6, 2016

Figure 1: scatterplot of the 4 input features, with colour-coded classes (source: Wikipedia)

Figure 2: one of the types of iris (source: Wikipedia)

Page 2

Machine Learning
Brendan Shillingford

July 6, 2016

input (4 dim) => linear => non-linearity => linear => log softmax => cross-entropy
loss

where the non-linearity is a sigmoid or “ReQU”, the latter of which is not implemented yet.
Try running the code if you like.

Implementing a new layer/module

Read the Torch tutorial on this topic: http://code.madbits.com/wiki/doku.php?id=tutorial_
morestuff It has a useful code example.
Summary: When we implement a model, keep in mind:

• forward and backward methods (in the parent nn.Module class) already call the other
methods below, so don’t override them directly.

• override the updateOutput method to implement the forward pass, to compute z from x
• override the updateGradInput method to implement part of the backward pass, to compute

the derivative of the loss wrt your layer’s inputs (∂loss
∂x), in terms of the derivative of the

loss wrt your layer’s outputs (∂loss
∂z):

∂loss

∂x︸ ︷︷ ︸
gradInput

= ∂loss

∂z︸ ︷︷ ︸
gradOutput

·

deriv. of output wrt input︷︸︸︷
∂z
∂x

where the dot is a matrix multiplication; the right-hand side is the Jacobian matrix of our
layer’s function f that we never explicitly create. See lecture for details. Make sure you
understand this, as this is the recursion we do in backprop.

• override the accGradParameters method for the other part of the backward pass if your
layer has parameters, to compute the gradient of the loss wrt your layer’s parameters

The “ReQU” unit

Here, we’ll implement a made-up activation function that we’ll call the Rectified Quadratic Unit
(ReQU). Like the sigmoid and ReLU and several others, it is applied element-wise to all its
inputs:

zi = I[xi > 0]x2
i =

{
x2

i if xi > 0
0 otherwise

Or in matrix operations, where � is the element-wise (aka component-wise) product, and the
parenthesized expression is an element-wise truth test giving a vector of 0s (falses) and 1s (trues):

z = (x > 0)� x� x.

Page 3

http://code.madbits.com/wiki/doku.php?id=tutorial_morestuff
http://code.madbits.com/wiki/doku.php?id=tutorial_morestuff

Machine Learning
Brendan Shillingford

July 6, 2016

Handin: (determine formula for derivative) Compute the derivatives for this layer. That is,
write a formula for gradInput (∂loss

∂x) in terms of gradOutput (∂loss
∂z). It will help to write them

in matrix notation, even if you compute it element-wise first.
Handin: (implement the two formula) Implement this layer as shown in the tutorial linked
to above. For speed reasons, do not use a loop in your updateOutput or updateGradInput,
and do not use the apply function. Try to minimize memory usage, as in the Torch tutorial’s
example.
You can now rerun the code. Since the problem is easy, both models easily overfit to the training
data. We don’t have test data and we didn’t split the training data into parts since it is small.
A viable way to evaluate a model on such small data would be k-fold cross validation but we
will not do this.

Remarks/tips:

• Your layer must be able to handle minibatches. Doing so should not be difficult, though.
You should not need to write a special case for 1 and 2 dimensions, since you’re just doing
an element-wise operation.

• resizeAs will rarely reallocate memory because the minibatch size rarely changes.
• You will be able to check your answer in the next section, so don’t worry if you’re not

completely sure if your gradient is correct.
• These may be helpful if you haven’t already seen them in a previous practical:

– https://github.com/torch/torch7/blob/master/doc/tensor.md#querying-elements
– https://github.com/torch/torch7/blob/master/doc/maths.md#logical-operations-on-tensors

Testing the module in the full network, via gradient checking

Background/hint: Say we have a univariate function of n variables, E(w1, . . . , wn). Its
gradient is

dE

dw =

∂E
∂w1...
∂E

∂wn

 .
So to (approximately) compute a gradient, we need to (approximately) compute all the partial
derivatives. This gives us our finite difference approximation, based on the definition of the
derivative:

∂E

∂wi
≈ E(w1, . . . , wi + ε, . . . , wn)− E(w1, . . . , wi − ε, . . . , wn)

2ε
for small ε. A reasonable ε would be around 10−4 to 10−7.
We can use this idea for neural nets, if we treat the whole net (including the loss function) as a
univariate function E(x; w). If we pick a random x (i.e. generate a fake minibatch), and random

Page 4

https://github.com/torch/torch7/blob/master/doc/tensor.md#querying-elements
https://github.com/torch/torch7/blob/master/doc/maths.md#logical-operations-on-tensors

Machine Learning
Brendan Shillingford

July 6, 2016

parameters w, we can approximate the gradient of f wrt w, evaluated at this specific value of w
(and x). Then we can do one forward pass followed by a backprop to get our supposedly correct
gradient.

If it is “close”, our derivative computation for ReQU is probably correct. If not, Torch’s code is
unlikely to have an error, so it’s probably your ReQU module. We will be able to check this
more conclusively in the next section. To measure if these two vectors are close, we can compute
the symmetric relative error:

2 · relative error = ‖g1 − g2‖
‖g1 + g2‖

,

where gi are the two ways of computing the gradient. This ratio should have similar magnitude
to the ε we picked above. If it is not, we’ve either found a problem in the gradient checking code,
or in the model’s gradient computation.

Of course, we need to evaluate the gradient at a specific value of the parameters w, since the
gradient is a function. In the code, we’re evaluating the derivative at parameters sampled from
something similar to wi ∼ N(0, 0.012) or another value close to 0 using the default initialization
provided by torch’s nn.Linear. This is to help avoid the vanishing gradient problem, where
many gradients being multiplied together (by chain rule) in the backprop make the gradient
tend to 0. In short, if we veer too far from zero, we may land in the “flat” part of the sigmoid,
where its slope is very flat. (See the bonus question for a similar conceptual question.) This is a
problem during optimization, but here it causes us to lose a lot of precision due to rounding
error.

Note: it is essential to include the loss function in this computation and not just model, so that
the function that we are approximating the derivative of is scalar-valued. Otherwise, we’d need
to compute a Jacobian instead of a gradient, which is the next part.

Handin: use this finite-difference gradient approximation to compute the gradient of the full
model and check its correctness. The gradcheck.lua file has blanks that you may fill in.

Remarks/tips:

• If there are n parameters in the model, we need to do 2n forward passes (evaluations of f)
to use the above formula.

• Remember how to get a vector reference to all the parameters in the model and the
gradient of the loss wrt these same parameters: model:getParameters() returns these
two things.

• We should be able to do all these steps without performing any copies at all, besides
allocating space to store the approximate gradient, so that your code is fast.

Page 5

Machine Learning
Brendan Shillingford

July 6, 2016

Testing the module in isolation (unit tests), via Jacobian

Our next task is to modify a Jacobian checker. Recall the Jacobian is a m × n matrix of
derivatives for a multivariate function f : Rn → Rm:

df
dx =

∂f1
∂x1

· · · ∂f1
∂xn...

∂fm

∂x1
· · · ∂fm

∂xn

 ,
each ith row being a gradient of an element, fi, of the output vector, f . Note that we’re doing it
to compute the derivative of the output wrt the input because that’s what updateGradInput
does, and this is the function we want to test.

This matrix is implicitly what we’re computing in the backward pass. Put another way, all
mn of these derivatives are used to compute the backward pass, so numerically verifying these
(using finite differences like in the previous part) allows us to check that our backward pass is
correct in isolation. Note that this is the standard way people unit-test numerical code involving
derivatives, both when prototyping and when writing large software systems.

The computation goes as follows (similar to the one from before):

Using finite difference approximations, we can compute ∂fi
∂xj

for all i and j and compare this to
the values produced using backprop. Instead of perturbing one input and looking at a scalar
function value, we can get one whole column of the Jacobian at once:

∂f
∂xi
≈ f(x1, . . . , xi + ε, . . . , xn)− f(x1, . . . , xi − ε, . . . , xn)

2ε .

One part of backprop computes

∂loss

∂x︸ ︷︷ ︸
gradInput

= ∂loss

∂z · ∂z
∂x = ∂loss

∂z︸ ︷︷ ︸
gradOutput

·

∂f1
∂x1

· · · ∂f1
∂xn...

∂fm

∂x1
· · · ∂fm

∂xn

 ,
so selecting gradOutput to be a vector with only one 1 and the rest of the elements 0 lets you
select out one whole row, by giving this to backward or updateGradInput.

We can repeat this to compute an entire approximate Jacobian and supposedly-true Jacobian,
then compare them similarly to before.

If our layer had parameters, we could do the same to check those derivatives. Remember, a
layer can have two vector-valued inputs, as in f(x; w) where w are the parameters, so we could
actually compute the approximate Jacobian wrt either one of these, as we do in backprop. The
only difference would be that we’re perturbing w instead of x, and when we call backward or
accGradParameters to get the true Jacobian, we look at getParameters as returned by the
module instead of gradInput.

Page 6

Machine Learning
Brendan Shillingford

July 6, 2016

To simplify your task, we have provided code for a simplistic method of estimating the Jacobian.
The method in the code computes the single-sided finite difference:

∂f
∂xi
≈ f(x1, . . . , xi + ε, . . . , xn)− f(x1, . . . , xi, . . . , xn)

ε
,

but this estimate is less accurate than the two-sided version above. For such a simple function,
we should not notice much difference.

Note that the correct Jacobian of the output wrt the input of our ReQU layer is a diagonal
matrix: since it is an element-wise operation, zi depends on xj if and only if i = j (on the
diagonal).

Handin: modify the provided code to use the two-sided version. Very briefly give an overview
of your changes.

Remarks/tips:

• We should be able to do all these steps without allocating any more memory than the
existing code, so the code will be fast. Hint: make clever use of the tensor that we write
the estimated Jacobian to. You can write to it twice in an iteration.

Handin

See the bolded “Handin:” parts above.

Advanced: conceptual question (optional)

1. Explain why we initialize the bias to random numbers larger than 0. What happens if we
initialize it to a value below zero? Does this affect our ability to train?

2. Suppose we have a simple network of the shape (linear => sigmoid => linear => sigmoid
=> . . . => linear). Write out the chain rule for computing the derivative of the final
outputs of this network with respect to the parameters of the first linear layer. What can
you say about the vanishing gradient problem using this expression?

Page 7

	Implementing your own layer
	Outline
	Train the basic simple network
	Implementing a new layer/module
	The ReQU unit
	Remarks/tips:

	Testing the module in the full network, via gradient checking
	Remarks/tips:

	Testing the module in isolation (unit tests), via Jacobian
	Remarks/tips:

	Handin
	Advanced: conceptual question (optional)

