
Machine Learning
Brendan Shillingford

July 6, 2016

Practical 6: LSTMs for language modelling

Logistics

Since this is the last week for practicals, it will be extremely short and does not require
writing code, and is due by the end of the Friday’s session (regardless of whether you are from
the Wednesday or Friday session).

Technical aspects of practical (do this before reading)

Clone the practical and download the associated data:

git clone https://github.com/oxford-cs-ml-2015/practical6.git
cd practical6
wget http://www.cs.ox.ac.uk/people/brendan.shillingford/teaching/practical6-data.tar.gz
tar xvf practical6-data.tar.gz

and start training the model:

th train.lua -vocabfile vocab.t7 -datafile train.t7

Make note of the time at which you run the train.lua script. Every several iterations,
the training script will save the current model (including its parameters) to a file called
model_autosave.t7. You can make snapshots of this file if you want, but this is not required
for the practical.

Running the sampler script

Run

th sample.lua -vocabfile vocab.t7 -model model_autosave.t7 -sample -primetext " "

to sample from the model named model_autosave.t7. This is just a serialized copy of the
whole network (embedding layer, LSTM and its internal parameters, and the linear and softmax
on the output). We discuss the network in more detail below.

Handin: take a look at the samples shortly after training, and observe their quality (i.e. how
much they qualitatively look like English). Try again 20 minutes after or later, and compare.
How do the samples differ? You may change the random seed using -seed if you want the
sampling to be deterministic on each run of sample.lua.

Page 1



Machine Learning
Brendan Shillingford

July 6, 2016

Introduction

This week, we will train a character-level LSTM language model on a small amount of news
data (from the Billion Word Corpus, which in turn comes from the WMT 2011 News Crawl
corpus: http://arxiv.org/abs/1312.3005).
In language modelling, the task is to model the probability of sequences of tokens, usually words
but in this case characters (for time and computational resource constraints in the lab). More
precisely, for a sequence of T words w1, . . . , wT , we define its probability as

P (w1, . . . , wT ) =
T∏

t=1
P (wt|w1:(t−1))

where 1 : (t− 1) denotes the sequence of indices 1 up to t− 1. Hence we hope the model will
assign high probabilities to character sequences like the weather is but low probabilities to
character sequences like lzzsjdrfzzzzz.

Overview of LSTMs

As we have seen in the lecture, recurrent neural networks (RNNs) are a powerful model for
sequential data but suffer from the exploding and vanishing gradient problem that makes them
difficult to train in practice. More precisely, a sequence of derivatives less than 1 will vanish
exponentially quickly with the length of the time lag, while a sequence of derivatives greater
than 1 will cause the resultant gradient to explode. This may cause the gradient to decay faster
than the duration between two related events in the input, such as the duration between an
open and close parenthesis.
An LSTM is a RNN architecture that provides a solution to this problem: when derivatives
values are back-propagated from the output, derivatives are able to propagate arbitrarily far
back without decaying significantly, as we will see below. This will allow the model to learn
longer-term dependencies than a traditional RNN.
An LSTM is described by the following equations:

• Input gate: Controls how much of the current input xt and the previous output ht−1 will
enter into the new cell

it = σ(Wxixt + Whiht−1 + bi)
= σ(linearxi(xt) + linearhi(ht−1))

• Forget (reset) gate: Decides whether to erase (set to zero) or keep individual components
of the memory

ft = σ(Wxf xt + Whf ht−1 + bf )
• Cell update (input) transformation: transforms the input and previous state to be taken

into account into the current state

gt = tanh(Wxgxt + Whght−1 + bg)

Page 2

http://arxiv.org/abs/1312.3005


Machine Learning
Brendan Shillingford

July 6, 2016

• Cell state update step: computes the next timestep’s state using the gated previous state
and the gated input

ct = ft � ct−1 + it � gt

• Output gate: Scales the output from the cell

ot = σ(Wxoxt + Whoht−1 + bo)

• Final output of the LSTM: Output of the LSTM scaled by a tanh (squashed) transformation
of the current state

ht = ot � tanh(ct)

Note that this solves the vanishing gradient problem, for k < t, as
∂ct

∂ck
= ∂ct

∂ct−1

∂ct−1
∂ct−2

· · · ∂ck+1
∂ck

= diag(ft) · diag(ft−1) · · · diag(fk+1) = diag(ft � ft−1 � · · · � fk+1)

This shows there is a clear path for the gradient to flow mostly uninterrupted (i.e. without
decaying towards 0), except for the constant (wrt ct−1) multiplicative factor from the forget gate
which will usually be near 1 and hence not cause much decay, except when the forget gate resets
the cell state during the forward pass, in which case the gradient should not flow back anyway.
In contrast, a traditional RNN’s main path for the gradient to flow will involve derivatives of
sigmoids and derivatives of weight matrices, both of which are much less likely to be close to 1.
A good exercise is to write this derivative out and verify this for yourself.

Forward pass

We will now describe how a forward pass takes place in our LSTM model.
Our model has 3 components:

1. the LSTM module,
2. an embedding module to map words (or in this case, characters) to continuous vectors, and
3. a linear module followed by a softmax, mapping the LSTM’s output ht to a probability

distribution.

Preparation: we unroll the LSTM to T timesteps, with each copy of the LSTM timestep
sharing weights (i.e. Wxi,Wxo,Wxf etc.) with the other timesteps. We do the same for the
linear, softmax and embedding layers to produce T copies that share weights.
Forward pass 1. pass the inputs through the embedding layers, to get T embeddings 2. for
t = 1..T do: 1. run a timestep of the LSTM, using the embedding at time t as input 2. get the
output of the softmax at time t, which predicts which symbol should be output at time t
A backward pass is now easy: we just take the forward pass and perform it completely in reverse,
calling backward instead of forward, and keeping track of the gradInput that each backward()
call returns, and passing it to the next backward call. See train.lua for implementation details.

Page 3



Machine Learning
Brendan Shillingford

July 6, 2016

Sampling from the LSTM

At each time step the LSTM outputs a probability distribution over the characters, via the
softmax.

Given each timestep’s distribution, there are several methods to obtain a single character, which
gets embedded and fed back into the LSTM as input to the next timestep: 1. taking the
maximum at the current timestep (try running sample.lua without -sample to see this) 2.
sampling from the distribution given by the softmax 3. taking the top k maxima and doing a
beam search, which is not implemented here.

Evaluating the quality of the samples

The easiest method: visualize the data! Words like “the” or “and” will appear frequently even
after a very short amount of training. As training continues, the samples will (noticeably!) look
increasingly like English. This is what we asked you to do in the first section, and is sufficient
for this practical’s handin.

For a more formal evaluation of the performance one can measure the perplexity on an unseen
test set. Perplexity is the inverse probability of the test set, normalized by the number of words.
Minimizing perplexity is the same as maximizing the probability, thus a lower perplexity model
better describes the data. Perplexity is a frequently used measure for evaluating language models
and has the following formula:

PP = P (w1w2...wN )
−1
N =

(
N∏

i=1

1
P (wi|w1w2...wi−1)

) 1
N

where w1, . . . , wN is the entire sequence of data that we are training on; we treat the whole
thing as one sequence. In a bigram model, the conditions are truncated,

PP =
(

N∏
i=1

1
P (wi|wi−1)

) 1
N

but in the recurrent net we depend on the entire past as in the first formula.

In the practical, however, we will not measure perplexity as we don’t have a test set, and we are
training a character-level model. Perplexity is usually used on word-level language models.

Handin

Handin: see first section above

Page 4



Machine Learning
Brendan Shillingford

July 6, 2016

If you finish early

Nothing! :) Unless you’re interested in using LSTMs in your own work, in which case you should
keep reading.

But if you want to do something, start by understanding the code in detail. One thing to
understand well is how to sample from the LSTM, or produce a sequence taking the maximum
at each step. Once you understand the forward pass, the backward pass is easy: we just reverse
it.

If you want a further exercise, try modelling some other kind of sequence, and perhaps turn it
into a larger project. Or, perhaps you may try making changes to the architecture of the LSTM
to improve its performance, for instance http://arxiv.org/abs/1502.02367. We don’t have any
test evaluation procedure here, so that would need to be added first.

Page 5

http://arxiv.org/abs/1502.02367

	Practical 6: LSTMs for language modelling
	Logistics

	Technical aspects of practical (do this before reading)
	Running the sampler script

	Introduction
	Overview of LSTMs
	Forward pass
	Sampling from the LSTM
	Evaluating the quality of the samples


	Handin
	If you finish early

