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Abstract—Big data applications are typically associated with
systems involving large numbers of users, massive complex
software systems, and large-scale heterogeneous computing and
storage architectures. The construction of such systems involves
many distributed design choices. The end products (e.g., rec-
ommendation systems, medical analysis tools, real-time game
engines, speech recognizers) thus involves many tunable config-
uration parameters. These parameters are often specified and
hard-coded into the software by various developers or teams.
If optimized jointly, these parameters can result in significant
improvements. Bayesian optimization is a powerful tool for
the joint optimization of design choices that is gaining great
popularity in recent years. It promises greater automation so as
to increase both product quality and human productivity. This
review paper introduces Bayesian optimization, highlights some
of its methodological aspects, and showcases a wide range of
applications.

I. INTRODUCTION

Design problems are pervasive in scientific and industrial
endeavours: scientists design experiments to gain insights into
physical and social phenomena, engineers design machines
to execute tasks more efficiently, pharmaceutical researchers
design new drugs to fight disease, companies design websites
to enhance user experience and increase advertising revenue,
geologists design exploration strategies to harness natural re-
sources, environmentalists design sensor networks to monitor
ecological systems, and developers design software to drive
computers and electronic devices. All these design problems
are fraught with choices, choices that are often complex and
high-dimensional, with interactions that make them difficult
for individuals to reason about.

For example, many organizations routinely use the popular
mixed integer programming solver IBM ILOG CPLEX1 for
scheduling and planning. This solver has 76 free parameters,
which the designers must tune manually – an overwhelming
number to deal with by hand. This search space is too vast
for anyone to effectively navigate.

More generally, consider teams in large companies that de-
velop software libraries for other teams to use. These libraries
have hundreds or thousands of free choices and parameters
that interact in complex ways. In fact, the level of complexity
is often so high that it becomes impossible to find domain
experts capable of tuning these libraries to generate a new
product.

As a second example, consider massive online games in-
volving the following three parties: content providers, users,

1http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

and the analytics company that sits between them. The analyt-
ics company must develop procedures to automatically design
game variants across millions of users; the objective is to
enhance user experience and maximize the content provider’s
revenue.

The preceding examples highlight the importance of au-
tomating design choices. For a nurse scheduling application,
we would like to have a tool that automatically chooses the
76 CPLEX parameters so as to improve healthcare delivery.
When launching a mobile game, we would like to use the data
gathered from millions of users in real-time to automatically
adjust and improve the game. When a data scientist uses a
machine learning library to forecast energy demand, we would
like to automate the process of choosing the best forecasting
technique and its associated parameters.

Any significant advances in automated design can result in
immediate product improvements and innovation in a wide
area of domains, including advertising, health-care informat-
ics, banking, information mining, life sciences, control engi-
neering, computing systems, manufacturing, e-commerce, and
entertainment.

Bayesian optimization has emerged as a powerful solution
for these varied design problems. In academia, it is impacting
a wide range of areas, including interactive user-interfaces
[26], robotics [101], [110], environmental monitoring [106],
information extraction [158], combinatorial optimisation [79],
[159], automatic machine learning [16], [143], [148], [151],
[72], sensor networks [55], [146], adaptive Monte Carlo [105],
experimental design [11] and reinforcement learning [27].

When software engineers develop programs, they are often
faced with myriad choices. By making these choices explicit,
Bayesian optimization can be used to construct optimal pro-
grams [74]: that is to say, programs that run faster or compute
better solutions. Furthermore, since different components of
software are typically integrated to build larger systems, this
framework offers the opportunity to automate integrated prod-
ucts consisting of many parametrized software modules.

Mathematically, we are considering the problem of finding
a global maximizer (or minimizer) of an unknown objective
function f :

x? = arg max
x∈X

f(x) , (1)

where X is some design space of interest; in global op-
timization, X is often a compact subset of Rd but the
Bayesian optimization framework can be applied to more
unusual search spaces that involve categorical or conditional
inputs, or even combinatorial search spaces with multiple
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categorical inputs. Furthermore, we will assume the black-
box function f has no simple closed form, but can be
evaluated at any arbitrary query point x in the domain. This
evaluation produces noise-corrupted (stochastic) outputs y ∈ R
such that E[y | f(x)] = f(x). In other words, we can only
observe the function f through unbiased noisy point-wise
observations y. Although this is the minimum requirement
for Bayesian optimization, when gradients are available, they
can be incorporated in the algorithm as well; see for example
Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider
a sequential search algorithm which, at iteration n, selects a
location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,
which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-
tion f can be an object recognition system (e.g., deep neural
network) with tunable parameters x (e.g., architectural choices,
learning rates, etc) with a stochastic observable classification
accuracy y = f(x) on a particular dataset such as ImageNet.
Because the Bayesian optimization framework is very data
efficient, it is particularly useful in situations like these where
evaluations of f are costly, where one does not have access
to derivatives with respect to x, and where f is non-convex
and multimodal. In these situations, Bayesian optimization is
able to take advantage of the full information provided by the
history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential
model-based approach to solving problem (1). In particular, we
prescribe a prior belief over the possible objective functions
and then sequentially refine this model as data are observed via
Bayesian posterior updating. The Bayesian posterior represents
our updated beliefs – given data – on the likely objective func-
tion we are optimizing. Equipped with this probabilistic model,
we can sequentially induce acquisition functions αn : X 7→ R
that leverage the uncertainty in the posterior to guide explo-
ration. Intuitively, the acquisition function evaluates the utility
of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing αn, where the index n indicates the
implicit dependence on the currently available data. Here the
“data” refers to previous locations where f has been evaluated,
and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two
key ingredients. The first ingredient is a probabilistic surrogate
model, which consists of a prior distribution that captures our
beliefs about the behavior of the unknown objective function
and an observation model that describes the data generation
mechanism. The second ingredient is a loss function that
describes how optimal a sequence of queries are; in practice,
these loss functions often take the form of regret, either simple
or cumulative. Ideally, the expected loss is then minimized
to select an optimal sequence of queries. After observing the
output of each query of the objective, the prior is updated
to produce a more informative posterior distribution over the
space of objective functions; see Figure 1 and Algorithm 1 for
an illustration and pseudo-code of this framework. See Section
4 of [64] for another introduction.

One problem with this minimum expected risk framework
is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization
1: for n = 1, 2, . . . do
2: select new xn+1 by optimizing acquisition function α

xn+1 = arg max
x

α(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model
6: end for

budget, is typically computationally intractable. This has led
to the introduction of many myopic heuristics known as
acquisition functions, e.g., Thompson sampling, probability
of improvement, expected improvement, upper-confidence-
bounds, and entropy search. These acquisition functions trade
off exploration and exploitation; their optima are located where
the uncertainty in the surrogate model is large (exploration)
and/or where the model prediction is high (exploitation).
Bayesian optimization algorithms then select the next query
point by maximizing such acquisition functions. Naturally,
these acquisition functions are often even more multimodal
and difficult to optimize, in terms of querying efficiency, than
the original black-box function f . Therefore it is critical that
the acquisition functions be cheap to evaluate or approximate:
cheap in relation to the expense of evaluating the black-box f .
Since acquisition functions have analytical forms that are easy
to evaluate or at least approximate, it is usually much easier
to optimize them than the original objective function.

A. Paper overview

In this paper, we introduce the ingredients of Bayesian
optimization in depth. Our presentation is unique in that we
aim to disentangle the multiple components that determine the
success of Bayesian optimization implementations. In partic-
ular, we focus on statistical modelling as this leads to general
algorithms to solve a broad range tasks. We also provide an
extensive comparison among popular acquisition functions.
We will see that the careful choice of statistical model is often
far more important than the choice of acquisition function
heuristic.

We begin in Sections II and III, with an introduction
to parametric and non-parametric models, respectively, for
binary- and real-valued objective functions. In Section IV,
we will introduce many acquisition functions, compare them,
and even combine them into portfolios. Several practical and
implementation details, including available software packages,
are discussed in Section V. A survey of theoretical results and
a brief history of model-based optimization are provided in
Sections VI and VII, respectively. Finally, we introduce more
recent developments in Section VIII.

B. Applications of Bayesian optimization

Before embarking on a detailed introduction to Bayesian
optimization, the following sections provide an overview of
the many and varied successful applications of Bayesian
optimization that should be of interest to data scientists.
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Fig. 1. Illustration of the Bayesian optimization procedure over three
iterations. The plots show the mean and confidence intervals estimated with a
probabilistic model of the objective function. Although the objective function
is shown, in practice it is unknown. The plots also show the acquisition
functions in the lower shaded plots. The acquisition is high where the model
predicts a high objective (exploitation) and where the prediction uncertainty
is high (exploration). Note that the area on the far left remains unsampled,
as while it has high uncertainty, it is correctly predicted to offer little
improvement over the highest observation [27].

1) A/B testing: Though the idea of A/B testing dates back
to the early days of advertising in the form of so-called focus
groups, the advent of the internet and smartphones has given
web and app developers a new forum for implementing these
tests at unprecedented scales. By redirecting small fractions
of user traffic to experimental designs of an ad, app, game,
or website, the developers can utilize noisy feedback to
optimize any observable metric with respect to the product’s
configuration. In fact, depending on the particular phase of a
product’s life, new subscriptions may be more valuable than
revenue or user retention, or vice versa; the click-through rate
might be the relevant objective to optimize for an ad, whereas
for a game it may be some measure of user engagement.

The crucial problem is how to optimally query these subsets
of users in order to find the best product with high probability
within a predetermined query budget, or how to redirect traffic
sequentially in order to optimize a cumulative metric while
incurring the least opportunity cost [88], [135], [38].

2) Recommender systems: In a similar setting, online con-
tent providers make product recommendations to their sub-
scribers in order to optimize either revenue in the case of
e-commerce sites, readership for news sites, or consumption
for video and music streaming websites. In contrast to A/B
testing, the content provider can make multiple suggestions to
any given subscriber. The techniques reviewed in this work
have been successfully used for the recommendation of news
articles [97], [38], [153].

3) Robotics and Reinforcement learning: Bayesian opti-
mization has also been successfully applied to policy search.
For example, by parameterizing a robot’s gait it is possible to
optimize it for velocity or smoothness as was done on the Sony
AIBO ERS-7 in [101]. Similar policy parameterization and
search techniques have been used to navigate a robot through
landmarks, minimizing uncertainty about its own location and
map estimate [110], [108]. See [27] for an example of applying
Bayesian optimization to hierarchical reinforcement learning,
where the technique is used to automatically tune the parame-
ters of a neural network policy and to learn value functions at
higher levels of the hierarchy. Bayesian optimization has also
been applied to learn attention policies in image tracking with
deep networks [44]

4) Environmental monitoring and sensor networks: Sen-
sor networks are used to monitor environmentally relevant
quantities: temperature, concentration of pollutants in the
atmosphere, soil, oceans, etc. Whether inside a building or at
a planetary scale, these networks make noisy local measure-
ments that are interpolated to produce a global model of the
quantity of interest. In some cases, these sensors are expensive
to activate but one can answer important questions like what
is the hottest or coldest spot in a building by activating a
relatively small number of sensors. Bayesian optimization was
used for this task and the similar one of finding the location of
greatest highway traffic congestion [146]. Also, see [55] for a
meteorological application.

When the sensor is mobile, there is a cost associated with
making a measurement which relates to the distance travelled
by a vehicle on which the sensor is mounted (e.g., a drone).
This cost can be incorporated in the decision making process
as in [106].

5) Preference learning and interactive interfaces: The
computer graphics and animation fields are filled with appli-
cations that require the setting of tricky parameters. In many
cases, the models are complex and the parameters unintuitive
for non-experts. In [28], [26], the authors use Bayesian opti-
mization to set the parameters of several animation systems
by showing the user examples of different parametrized an-
imations and asking for feedback. This interactive Bayesian
optimization strategy is particulary effective as humans can be
very good at comparing examples, but unable to produce an
objective function whose optimum is the example of interest.

6) Automatic machine learning and hyperparameter tuning:
In this application, the goal is to automatically select the best
model (e.g., random forests, support vector machines, neural
networks, etc.) and its associated hyperparameters for solving
a task on a given dataset. For big datasets or when considering
many alternatives, cross-validation is very expensive and hence
it is important to find the best technique within a fixed budget
of cross-validation tests. The objective function here is the
generalization performance of the models and hyperparameter
settings; a noisy evaluation of the objective corresponds to
training a single model on all but one cross-validation folds
and returning, e.g., the empirical error on the held out fold.

The traditional alternatives to cross-validation include rac-
ing algorithms that use conservative concentration bounds to
rule out underperforming models [107], [113]. Recently, the
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Bayesian optimization approach for the model selection and
tuning task has received much attention in tuning deep belief
networks [16], Markov chain Monte Carlo methods [105],
[65], convolutional neural networks [143], [148], and au-
tomatically selecting among WEKA and scikit-learn
offerings [151], [72].

7) Combinatorial optimization: Bayesian optimization has
been used to solve difficult combinatorial optimization prob-
lems in several applications. One notable approach is called
empirical hardness models (EHMs) that use a set of problem
features to predict the performance of an algorithm on a
specific problem instance [96]. Bayesian optimization with an
EHM amounts to finding the best algorithm and configuration
for a given problem. This concept has been applied to e.g., tun-
ing mixed integer solvers [78], [159], and tuning approximate
nearest neighbour algorithms [109]. Bayesian optimization has
also been applied to fast object localization in images [163].

8) Natural language processing and text: Bayesian opti-
mization has been applied to improve text extraction in [158]
and to tune text representations for more general text and
language tasks in [162].

II. BAYESIAN OPTIMIZATION WITH PARAMETRIC MODELS

The central idea of Bayesian optimization is to build a
model that can be updated and queried to drive optimization
decisions. In this section, we cover several such models, but for
the sake of clarity, we first consider a generic family of models
parameterized by w. Let D denote the available data. We will
generalize to the non-parametric situation in the proceeding
section.

Since w is an unobserved quantity, we treat it as a la-
tent random variable with a prior distribution p(w), which
captures our a priori beliefs about probable values for w
before any data is observed. Given data D and a likelihood
model p(D |w), we can then infer a posterior distribu-
tion p(w | D) using Bayes’ rule:

p(w | D) =
p(D |w) p(w)

p(D)
. (2)

This posterior represents our updated beliefs about w after
observing data D. The denominator p(D) is the marginal
likelihood, or evidence, and is usually computationally in-
tractable. Fortunately, it does not depend on w and is therefore
simply a normalizing constant. A typical modelling choice
is to use conjugacy to match the prior and likelihood so
that the posterior (and often the normalizing constant) can be
computed analytically.

A. Thompson sampling in the Beta-Bernoulli bandit model

We begin our discussion with a treatment of perhaps the
simplest statistical model, the Beta-Bernoulli. Imagine that
there are K drugs that have unknown effectiveness, where
we define “effectiveness” as the probability of a successful
cure. We wish to cure patients, but we must also identify
which drugs are effective. Such a problem is often called
a Bernoulli (or binomial) bandit problem by analogy to a
group of slot machines, which each yield a prize with some

unknown probability. In addition to clinical drug settings, this
formalism is useful for A/B testing [135], advertising, and
recommender systems [97], [38], among a wide variety of
applications. The objective is to identify which arm of the
bandit to pull, e.g., which drug to administer, which movie
to recommend, or which advertisement to display. Initially,
we consider the simple case where the arms are independent
insofar as observing the success or failure of one provides no
information about another.

Returning to the drug application, we can imagine the
effectiveness of different drugs (arms on the bandit) as being
determined by a function f that takes an index a ∈ 1, . . . ,K
and returns a Bernoulli parameter in the interval (0, 1).
With yi ∈ {0, 1}, we denote the Bernoulli outcome of the
treatment of patient i, and this has mean parameter f(ai)
if the drug administered was ai. Note that we are assuming
stochastic feedback, in contrast to deterministic or adver-
sarial feedback [9], [10]. With only K arms, we can fully
describe the function f with a parameter w ∈ (0, 1)K so
that fw(a) := wa.

Over time, we will see outcomes from different patients
and different drugs. We can denote these data as a set of
tuples Dn = {(ai, yi)}ni=1, where ai indicates which of the K
drugs was administered and yi is 1 if the patient was cured
and 0 otherwise. In a Bayesian setting, we will use these data
to compute a posterior distribution over w. A natural choice
for the prior distribution is a product of K beta distributions:

p(w |α, β) =

K∏
a=1

Beta(wa |α, β) , (3)

as this is the conjugate prior to the Bernoulli likelihood, and
it leads to efficient posterior updating. We denote by na,1 the
number of patients cured by drug a and by na,0 the number
of patients who received a but were unfortunately not cured;
that is

na,0 =

n∑
i=1

I(yi = 0, ai = a) (4)

na,1 =

n∑
i=1

I(yi = 1, ai = a) . (5)

The convenient conjugate prior then leads to a posterior
distribution which is also a product of betas:

p(w | D) =

K∏
a=1

Beta(wa |α+ na,1, β + na,0) . (6)

Note that this makes it clear how the hyperparameters α, β > 0
in the prior can be interpreted as pseudo-counts. Figure 2
provides a visualization of the posterior of a three-armed Beta-
Bernoulli bandit model with a Beta(2, 2) prior.

In Section IV, we will introduce various strategies for
selecting the next arm to pull within models like the Beta-
Bernoulli, but for the sake of illustration, we introduce Thomp-
son sampling [150], the earliest and perhaps the simplest non-
trivial bandit strategy. This strategy is also commonly known
as randomized probability matching [135] because it selects
the arm based on the posterior probability of optimality, here
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Fig. 2. Example of the Beta-Bernoulli model for A/B testing. Three different
buttons are being tested with various colours and text. Each option is given 2
successes (click-throughs) and 2 failures as a prior (top). As data are observed,
each option updates its posterior over w. Option A is the current best with 5
successes and only 1 observed failure.

given by a beta distribution. In simple models like the Beta-
Bernoulli, it is possible to compute this distribution in closed
form, but more often it must be estimated via, e.g., Monte
Carlo.

After observing n patients in our drug example, we can
think of a bandit strategy as being a rule for choosing which
drug to administer to patient n+ 1, i.e., choosing an+1 among
the K options. In the case of Thompson sampling, this can
be done by drawing a single sample w̃ from the posterior and
then maximizing the resulting surrogate fw̃, i.e.,

an+1 = arg max
a

fw̃(a) where w̃ ∼ p(w | Dn). (7)

For the Beta-Bernoulli, this corresponds to simply drawing w̃
from (6) and then choosing the action with the largest w̃a.
This procedure, shown in pseudo-code in Algorithm 2, is also
commonly called posterior sampling [127]. It is popular for
several reasons: 1) there are no free parameters other than the
prior hyperparameters of the Bayesian model, 2) the strategy
naturally trades off between exploration and exploitation based
on its posterior beliefs on w; arms are explored only if they
are likely (under the posterior) to be optimal, 3) the strategy is
relatively easy to implement as long as Monte Carlo sampling
mechanisms are available for the posterior model, and 4) the
randomization in Thompson sampling makes it particularly
appropriate for batch or delayed feedback settings where many
selections an+1 are based on the identical posterior [135], [38].

B. Linear models

In many applications, the designs available to the exper-
imenter have components that can be varied independently.
For example, in designing an advertisement, one has choices
such as artwork, font style, and size; if there are five choices
for each, the total number of possible configurations is 125.

Algorithm 2 Thompson sampling for Beta-Bernoulli bandit
Require: α, β: hyperparameters of the beta prior

1: Initialize na,0 = na,1 = i = 0 for all a
2: repeat
3: for a = 1, . . . ,K do
4: w̃a ∼ Beta(α+ na,1, β + na,0)
5: end for
6: ai = arg maxa w̃a
7: Observe yi by pulling arm ai
8: if yi = 0 then
9: nai,0 = nai,0 + 1

10: else
11: nai,1 = nai,1 + 1
12: end if
13: i = i+ 1
14: until stopping criterion reached

In general, this number grows combinatorially in the number
of components. This presents challenges for approaches such
as the independent Beta-Bernoulli model discussed in the
previous section: modelling the arms as independent will
lead to strategies that must try every option at least once.
This rapidly becomes infeasible in the large spaces of real-
world problems. In this section, we discuss a parametric
approach that captures dependence between the arms via a
linear model. For simplicity, we first consider the case of real-
valued outputs y and generalize this model to binary outputs
in the succeeding section.

As before, we begin by specifying a likelihood and a prior.
In the linear model, it is natural to assume that each possible
arm a has an associated feature vector xa ∈ Rd. We can then
express the expected payout (reward) of each arm as a function
of this vector, i.e., f(a) = f(xa). Our objective is to learn
this function f : Rd 7→ R for the purpose of choosing the
best arm, and in the linear model we require f to be of the
form fw(a) = xTaw, where the parameters w are now feature
weights. This forms the basis of our likelihood model, in
which the observations for arm a are drawn from a Gaussian
distribution with mean xTaw and variance σ2.

We use X to denote the n× d design matrix in which row i
is the feature vector associated with the arm pulled in the ith
iteration, xai . We denote by y the n-vector of observations. In
this case, there is also a natural conjugate prior for w and σ2:
the normal-inverse-gamma, with density given by

NIG(w, σ2 | w0,V0, α0, β0) =

|2πσ2V0|−
1
2 exp

{
− 1

2σ2
(w −w0)TV−1

0 (w −w0)

}
× βα0

0

Γ(α0)(σ2)α0+1
exp

{
−β0

σ2

}
. (8)

There are four prior hyperparameters in this case, w0, V0,
α0, and β0. As in the Beta-Bernoulli case, this conjugate
prior enables the posterior distribution to be computed easily,
leading to another normal-inverse-gamma distribution, now
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with parameters

wn = Vn(V−1
0 w0 + XTy) (9)

Vn = (V−1
0 + XTX)−1 (10)

αn = α0 + n/2 (11)

βn = β0 +
1

2

(
wT

0 V−1
0 w0 + yTy −wT

nV−1
n wn

)
. (12)

Integrating out the weight parameter w leads to coupling
between the arms and makes it possible for the model to
generalize observations of reward from one arm to another.

In this linear model, Thompson sampling draws a w̃ from
the posterior p(w | Dn) and selects the arm with the highest
expected reward under that parameter, i.e.,

an+1 = arg max
a

xTa w̃ where w̃ ∼ p(w | Dn). (13)

After arm an+1 is pulled and yn+1 is observed, the posterior
model can be readily updated using equations (9–12).

Various generalizations can be immediately seen. For ex-
ample, by embedding the arms of a multi-armed bandit into
a feature space denoted X , we can generalize to objective
functions f defined on the entire domain X , thus unifying
the multi-armed bandit problem with that of general global
optimization:

maximize f(x) s.t. x ∈ X . (14)

In the multi-armed bandit, the optimization is over a discrete
and finite set {xa}Ka=1 ⊂ X , while global optimization seeks
to solve the problem on, e.g., a compact set X ⊂ Rd.

As in other forms of regression, it is natural in increase the
expressiveness of the model with non-linear basis functions.
In particular, we can use J basis functions φj : X 7→ R,
for j = 1, . . . , J , and model the function f with a linear
combination

f(x) = Φ(x)Tw, (15)

where Φ(x) is the column vector of concatenated fea-
tures {φj(x)}Jj=1. Common classical examples of such φj
include radial basis functions such as

φj(x) = exp
{
− 1

2 (x− zj)
TΛ(x− zj)

}
, (16)

where Λ and {zj}Jj=1 are model hyperparameters, and Fourier
bases

φj(x) = exp
{
−ixTωj

}
, (17)

with hyperparameters {ωj}Jj=1.
Recently, such basis functions have also been learned from

data by training deep belief networks [71], deep neural net-
works [93], [144], or by factoring the empirical covariance
matrix of historical data [146], [72]. For example, in [34]
each sigmoidal layer of an L layer neural network is de-
fined as L`(x) := σ(W`x + B`) where σ is some sigmoidal
non-linearity, and W` and B` are the layer parameters.
Then the feature map Φ : Rd 7→ RJ can be expressed
as Φ(x) = LL ◦ · · · ◦ L1(x), where the final layer LL has J
output units. In [144], the weights of the last layer of a
deep neural network are integrated out to result in a tractable
Bayesian model with flexible learned basis functions.

Regardless of the feature map Φ, when conditioned on
these basis functions, the posterior over the weights w can
be computed analytically using (9-12). Let Φ(X) denote
the n× J matrix where [Φ(X)]i,j = φj(xi); then the posterior
is as in Bayesian linear regression, substituting Φ(X) for the
design matrix X.

C. Generalized linear models
While simple linear models capture the dependence between

bandit arms in a straightforward and expressive way, the model
as described does not immediately apply to other types of
observations, such as binary or count data. Generalized linear
models (GLMs) [119] allow more flexibility in the response
variable through the introduction of a link function. Here we
examine the GLM for binary data such as might arise from
drug trials or AB testing.

The generalized linear model introduces a link function g
that maps from the observation space into the reals. Most
often, we consider the mean function g−1, which defines
the expected value of the response as a function of the
underlying linear model: E[y |x] = g−1(xTw) = f(x). In the
case of binary data, a common choice is the logit link
function, which leads to the familiar logistic regression model
in which g−1(z) = 1/(1 + exp{z}). In probit regression, the
logistic mean function is replaced with the CDF of a standard
normal. In either case, the observations yi are taken to be
Bernoulli random variables with parameter g−1(xTi w).

Unfortunately, there is no conjugate prior for the parame-
ters w when such a likelihood is used and so we must resort to
approximate inference. Markov chain Monte Carlo (MCMC)
methods [4] approximate the posterior with a sequence of
samples that converge to the posterior; this is the approach
taken in [135] on the probit model. In contrast, the Laplace
approximation fits a Gaussian distribution to the posterior by
matching the curvature of the posterior distribution at the
mode. For example in [38], Bayesian logistic regression with
a Laplace approximation was used to model click-throughs
for the recommendation of news articles in a live experi-
ment. In the generalized linear model, Thompson sampling
draws a w̃ from the posterior p(w | Dn) using MCMC or
a Laplace approximation, and then selects the arm with the
highest expected reward given the sampled parameter w̃,
i.e., an+1 = arg maxa g

−1(xTa w̃).

D. Related literature
There are various strategies beyond Thompson sampling for

Bayesian optimization that will be discussed in succeeding
sections of the paper. However, before we can reason about
which selection strategy is optimal, we need to establish what
the goal of the series of sequential experiments will be. His-
torically, these goals have been quantified using the principle
of maximum expected utility. In this framework, a utility func-
tion U is prescribed over a set of experiments X := {xi}ni=1,
their outcomes y := {yi}ni=1, and the model parameter w. The
unknown model parameter and outcomes are marginalized out
to produce the expected utility

α(X) := EwEy |X,w [U(X,y,w)] , (18)
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which is then maximized to obtain the best set of experiments
with respect to the given utility U and the current posterior.
The expected utility α is related to acquisition functions in
Bayesian optimization, reviewed in Section IV. Depending
on the literature, researchers have focussed on different goals
which we briefly discuss here.

1) Active learning and experimental design: In this setting,
we are usually concerned with learning about w, which can
be framed in terms of improving an estimator of w given
the data. One popular approach is to select points that are
expected to minimize the differential entropy of the posterior
distribution p(w |X,y), i.e., maximize:

α(X) = EwEy |X,w

[∫
p(w′ |X,y) log p(w′ |X,y)dw′

]
.

In the Bayesian experimental design literature, this criterion is
known as the D-optimality utility and was first introduced by
Lindley [98]. Since this seminal work, many alternative utili-
ties have been proposed in the experimental design literature.
See [37] for a detailed survey.

In the context of A/B testing, following this strategy would
result in exploring all possible combinations of artwork, font,
and sizes, no matter how bad initial outcomes were. This is
due to the fact that the D-optimality utility assigns equal
value to any information provided about any advertisement
configuration, no matter how effective.

In contrast to optimal experimental design, Bayesian opti-
mization explores uncertain arms a ∈ {1, . . . ,K}, or areas of
the search space X , only until they can confidently be ruled
out as being suboptimal. Additional impressions of suboptimal
ads would be a waste of our evaluation budget. In Section IV,
we will introduce another differential entropy based utility that
is better suited for the task of optimization and that partially
bridges the gap between optimization and improvement of
estimator quality.

2) Multi-armed bandit: Until recently, the multi-armed
bandit literature has focussed on maximizing the sum of
rewards yi, possibly discounted by a discount factor γ ∈ (0, 1]:

α(X) = EwEy |X,w

[ n∑
i=1

γi−1yi

]
. (19)

When γ < 1, a Bayes-optimal sequence X can be computed
for the Bernoulli bandit via dynamic programming, due to
Gittins [59]. However, this solution is intractable for general
reward distributions, and so in practice sequential heuristics are
used and analyzed in terms of a frequentist measure, namely
cumulative regret [92], [135], [146], [38], [127].

Cumulative regret is a frequentist measure defined as

Rn(w) =

n∑
i=1

f?w − fw(xai), (20)

where f?w := maxa fw(xa) denotes the best possible expected
reward. Whereas the D-optimality utility leads to too much
exploration, the cumulative regret encourages exploitation by
including intermediate selections ai in the final loss func-
tion Rn. For certain tasks, this is an appropriate loss function:
for example, when sequentially selecting ads, each impression

incurs an opportunity cost. Meanwhile, for other tasks such as
model selection, we typically have a predetermined evaluation
budget for optimization and only the performance of the final
recommended model should be assessed by the loss function.

Recently, there has been growing interest in the best arm
identification problem, which is more suitable for the model
selection task [104], [30], [7], [51], [50], [72]. When using
Bayesian surrogate models, this is equivalent to performing
Bayesian optimization on a finite, discrete domain. In this so-
called pure exploration settings, in addition to a selection strat-
egy, a recommendation strategy ρ is specified to recommend
an arm (or ad or drug) at the end of the experimentation based
on observed data. The experiment is then judged via the simple
regret, which depends on the recommendation ā = ρ(D):

rn(w) = f?w − fw(xā) . (21)

III. NON-PARAMETRIC MODELS

In this section, we show how it is possible to marginalize
away the weights in Bayesian linear regression and apply the
kernel trick to construct a Bayesian non-parametric regression
model. As our starting point, we assume the observation
variance σ2 is fixed and place a zero-mean Gaussian prior
on the regression coefficients p(w |V0) = N (0,V0). In this
case, we notice that it possible to analytically integrate out the
weights, and in doing so we preserve Gaussianity:

p(y |X, σ2) =

∫
p(y |X,w, σ2) p(w | 0,V0) dw

=

∫
N (y |Xw, σ2I)N (w | 0,V0) dw

= N (y | 0,XV0X
T + σ2I) . (22)

As noted earlier, it can be useful to introduce basis func-
tions φ and in the context of Bayesian linear regression we
in effect replace the design matrix X with a feature mapping
matrix Φ = Φ(X). In Equation (22), this results in a slightly
different Gaussian for weights in feature space:

p(y |X, σ2) = N (y | 0,ΦV0Φ
T + σ2I) (23)

Note that ΦV0Φ
T ∈ Rn×n is a symmetric positive semi-

definite matrix made up of pairwise inner products between
each of the data in their basis function representations. The
celebrated kernel trick emerges from the observation that these
inner products can be equivalently computed by evaluating
the corresponding kernel function k for all pairs to form the
matrix K

Ki,j = k(xi,xj) = Φ(xi)V0Φ(xj)
T (24)

= 〈Φ(xi),Φ(xj)〉V0
. (25)

The kernel trick allows us to specify an intuitive similarity
between pairs of points, rather than a feature map Φ, which
in practice can be hard to define. In other words, we can either
think of predictions as depending directly on features Φ, as in
the linear regression problem, or on kernels k, as in the lifted
variant, depending on which paradigm is more interpretable or
computationally tractable. Indeed, the former requires a J × J
matrix inversion compared to the latter’s n× n.
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Note also that this approach not only allows us to compute
the marginal likelihood of data that have already been seen,
but it enables us to make predictions of outputs y? at new
locations X?. This can be done by observing that

p(y? |X?,X,y, σ
2) =

p(y?,y |X?,X, σ
2)

p(y |X, σ2)
. (26)

Both the numerator and the denominator are Gaussian with the
form appearing in Equation (23), and so the predictions are
jointly Gaussian and can be computed via some simple linear
algebra. Critically, given a kernel k, it becomes unnecessary
to explicitly define or compute the features Φ because both
the predictions and the marginal likelihood only depend on K.

A. The Gaussian process

By kernelizing a marginalized version of Bayesian linear
regression, what we have really done is construct an object
called a Gaussian process. The Gaussian process GP(µ0, k) is
a non-parametric model that is fully characterized by its prior
mean function µ0 : X 7→ R and its positive-definite kernel, or
covariance function, k : X×X 7→ R [126]. Consider any finite
collection2 of n points x1:n, and define variables fi := f(xi)
and y1:n to represent the unknown function values and noisy
observations, respectively. In Gaussian process regression, we
assume that f := f1:n are jointly Gaussian and the observa-
tions y := y1:n are normally distributed given f , resulting in
the following generative model:

f |X ∼ N (m,K) (27)

y | f , σ2 ∼ N (f , σ2I) , (28)

where the elements of the mean vector and covariance matrix
are defined as mi := µ0(xi) and Ki,j := k(xi,xj), respec-
tively. Equation (27) represents the prior distribution p(f)
induced by the GP.

Let Dn = {(xi, yi)}ni=1 denote the set of observations and x
denote an arbitrary test point. As mentioned when kernelizing
linear regression, the random variable f(x) conditioned on
observationsDn is also normally distributed with the following
posterior mean and variance functions

µn(x) = µ0(x) + k(x)
T

(K + σ2I)−1(y −m) (29)

σ2
n(x) = k(x,x)− k(x)

T
(K + σ2I)−1k(x) , (30)

where k(x) is a vector of covariance terms between x
and x1:n.

The posterior mean and variance evaluated at any point x
represent the model’s prediction and uncertainty, respectively,
in the objective function at the point x. These posterior
functions are used to select the next query point xn+1 as
detailed in Section IV.

B. Common kernels

In Gaussian process regression, the covariance function k
dictates the structure of the response functions we can fit. For
instance, if we expect our response function to be periodic,

2We use the notation zi:j = {zi, . . . , zj}.

Kernel profile Samples from prior Samples from posterior

MATÉRN1
MATÉRN3
MATÉRN5
SQ-EXP

Fig. 3. Left: Visualization of various kernel profiles. The horizontal axis
represents the distance r > 0. Middle: Samples from GP priors with the
corresponding kernels. Right: Samples from GP posteriors given two data
points (black circles). Note the sharper drop in the Matérn1 kernel leads to
rough features in the associated samples, while samples from a GP with the
Matérn3 and Matérn5 kernels are increasingly smooth.

we can prescribe a periodic kernel. In this review, we focus
on stationary kernels, which are shift invariant.

Matérn kernels are a very flexible class of stationary kernels.
These kernels are parameterized by a smoothness parame-
ter ν > 0, so called because samples from a GP with such a
kernel are differentiable bν − 1c times [126]. The exponential
kernel is a special case of the Matérn kernel with ν = 1

2 ,
and the squared exponential kernel is the limiting kernel
when ν →∞. The following are the most commonly used
kernels, labelled by the smoothness parameter, omitting the
factor of 1

2 .

kMATÉRN1(x,x′) = θ2
0 exp(−r) (31)

kMATÉRN3(x,x′) = θ2
0 exp(−

√
3r)(1 +

√
3r) (32)

kMATÉRN5(x,x′) = θ2
0 exp(−

√
5r)(1 +

√
5r + 5

3r
2) (33)

kSQ-EXP(x,x
′) = θ2

0 exp(− 1
2r

2), (34)

where r2 = (x− x′)
T
Λ(x− x′) and Λ is a diagonal matrix

of d squared length scales θ2
i . This family of covariance

functions are therefore parameterized by an amplitude and d
length scale hyperparameters, jointly denoted θ. Covariance
functions with learnable length scale parameters are also
known as automatic relevance determination (ARD) kernels.
Figure 3 provides a visualization of the kernel profiles and
samples from the corresponding priors and posteriors.

C. Prior mean functions

While the kernel function controls the smoothness and
amplitude of samples from the GP, the prior mean provides
a possible offset. In practice, this function is set to a con-
stant µ0(x) ≡ µ0 and inferred from data using techniques
covered in Section V-A. Unless otherwise specified, in what
follows we assume a constant prior mean function for conve-
nience. However, the prior mean function is a principled way
of incorporating expert knowledge of the objective function,
if it is available, and the following analysis can be readily
applied to non-constant functions µ0.

D. Marginal likelihood

Another attractive property of the Gaussian process model
is that it provides an analytical expression for the marginal
likelihood of the data, where marginal refers to the fact that the
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unknown latent function f is marginalized out. The expression
for the log marginal likelihood is simply given by:

log p(y|x1:n, θ) = −1

2
(y −mθ)

T
(Kθ + σ2I)−1(y −mθ)

− 1

2
log |Kθ + σ2I| − n

2
log(2π), (35)

where in a slight abuse of notation we augment the vec-
tor θ := (θ0:d, µ0, σ

2); and the dependence on θ is made
explicit by adding a superscript to the covariance matrix Kθ.
The marginal likelihood is very useful in learning the hyper-
parameters, as we will see in Section V-A. The right hand
side of (35) can be broken into three terms: the first term
quantifies how well the model fits the data, which is simply
a Mahalanobis distance between the model predictions and
the data; the second term quantifies the model complexity –
smoother covariance matrices will have smaller determinants
and therefore lower complexity penalties; finally, the last term
is simply a linear function of the number of data points n,
indicating that the likelihood of data tends to decrease with
larger datasets.

Conveniently, as long as the kernel is differentiable with
respect to its hyperparameters θ, the marginal likelihood can
be differentiated and can therefore be optimized in an off-the-
shelf way to obtain a type II maximum likelihood (MLII) or
empirical Bayes estimate of the kernel parameters. When data
is scarce this can overfit the available data. In Section V-A we
will review various practical strategies for learning hyperpa-
rameters which all use the marginal likelihood.

E. Computational costs and other regression models

Although we have analytic expressions, exact inference in
Gaussian process regression is O(n3) where n is the number
of observations. This cost is due to the inversion of the
covariance matrix. In practice, the Cholesky decomposition
can be computed once and saved so that subsequent predictions
are O(n2). However, this Cholesky decomposition must be re-
computed every time the kernel hyperparameters are changed,
which usually happens at every iteration (see Section V-A).
For large datasets, or large function evaluation budgets in the
Bayesian optimization setting, the cubic cost of exact inference
is prohibitive and there have been many attempts at reducing
this computational burden via approximation techniques. In
this section we review two sparsification techniques for Gaus-
sian processes and the alternative random forest regression.

1) Sparse pseudo-input Gaussian processes (SPGP): One
early approach to modelling large n with Gaussian processes
considered using m < n inducing pseudo-inputs to reduce
the rank of the covariance matrix to m, resulting in a
significant reduction in computational cost [137], [140]. By
forcing the interaction between the n data points x1:n and
any test point x to go through this set of m inducing pseudo-
inputs, these methods can compute an approximate posterior
in O(nm2 +m3) time. Pseudo-input methods have since been
unified in a single theory based on the following overarching
approximation.

Let f and f? denote two sets of latent function values, com-
monly representing the function at training and test locations,

respectively. The simplifying assumption is that f and f? are
independent given a third set of variables u, such that

p(f?, f) =

∫
p(f?, f ,u) du (36)

≈
∫
q(f? |u) q(f |u) p(u) du = q(f , f?) (37)

where u is the vector of function values at the pseudo-
inputs. All sparse pseudo-input GP approximations can be
specified in terms of the form used for the training and test
conditionals, q(f |u) and q(f? |u), respectively [124].

In the seminal works on pseudo-input methods, the locations
of the pseudo-inputs were selected to optimize the marginal
likelihood of the SPGP [137], [140]. In contrast, a variational
approach has since been proposed to marginalize the pseudo-
inputs to maximize fidelity to the original exact GP [152]
rather than the likelihood of the approximate GP.

The computational savings in the pseudo-input approach
to approximating the GP comes at the cost of poor variance
estimates. As can be observed in Figure 4, the uncertainty
(blue shaded area) exhibits unwanted pinching at pseudo-
inputs, while it is overly conservative in between and away
from pseudo-inputs. In this instance, the 10 inducing points,
indicated with black crosses, were not optimized to emphasize
the potential pathologies of the method. Since in Bayesian
optimization we use the credible intervals to guide exploration,
these artefacts can mislead our search.

2) Sparse spectrum Gaussian processes (SSGP): While
inducing pseudo-inputs reduce computational complexity by
using a fixed number of points in the search space, sparse
spectrum Gaussian processes (SSGP) take a similar approach
to the kernel’s spectral space [94]. Bochner’s theorem states
that any stationary kernel k(x,x′) = k(x− x′) has a positive
and finite Fourier spectrum s(ω), i.e.,

k(x) =
1

(2π)d

∫
e−iω

Txs(ω) dω . (38)

Since the spectrum is positive and bounded, it can be normal-
ized such that p(ω) := s(ω)/ν is a valid probability density
function. In this formulation, evaluating the stationary kernel is
equivalent to computing the expectation of the Fourier basis
with respect to its specific spectral density p(ω) as in the
following,

k(x,x′) = ν Eω[e−iω
T (x−x′)]. (39)

As the name suggests, SSGP approximates this expectation
via Monte Carlo estimation using m samples drawn from the
spectral density so that

k(x,x′) ≈ ν

m

m∑
i=1

e−iω
(i)Txeiω

(i)Tx′
(40)

where ω(i) ∼ s(ω)/ν. The resulting finite dimensional prob-
lem is equivalent to Bayesian linear regression with m basis
functions and the computational cost is once again reduced
to O(nm2 +m3).

As with the pseudo-inputs, the spectral points can also
be tuned via marginal likelihood optimization. Although this
violates the Monte Carlo assumption and introduces a risk of
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Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions
with good predictive power [94]. Once again, in Figure 4 we
have not tuned the 80 spectral points in this way. Whereas
around observed data (red crosses) the uncertainty estimates
are smoother than the pseudo-inputs method, away from ob-
servations both the prediction and uncertainty regions exhibit
spurious oscillations. This is highly undesirable for Bayesian
optimization where we expect our surrogate model to fall back
on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian
processes, random forest regression has been proposed as
an expressive and flexible surrogate model in the context of
sequential model-based algorithm configuration (SMAC) [79].
Introduced in 2001 [24], random forests are a class of scalable
and highly parallelizable regression models that have been
very successful in practice [42]. More precisely, the random
forest is an ensemble method where the weak learners are
decision trees trained on random subsamples of the data [24].
Averaging the predictions of the individual trees produces an
accurate response surface.

Subsampling the data, and the inherent parallelism of the
random forest regression model give SMAC the ability to
readily scale to large evaluation budgets, beyond where the
cubic cost of an exact GP would be infeasible. Similarly, at
every decision node of every tree, a fixed-sized subset of
the available dimensions is sampled to fit a decision rule;
this subsampling also helps the random forest scale to high-
dimensional search spaces. Perhaps most importantly, random
forests inherit the flexibility of decision trees when dealing
with various data types; they can easily handle categorical
and conditional variables. For example, when considering
a decision node, the algorithm can exclude certain search
dimensions from consideration when the path leading up to
said node includes a particular boolean feature that is turned
off.

The exploration strategy in SMAC still requires an uncer-
tainty estimate for predictions at test points. While the random
forest does not provide an estimate of the variance of its
predictions, Hutter et al. proposed using the empirical variance
in the predictions across trees in the ensemble [79]. Though
these are not principled uncertainty estimates, this heuristic has
been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense
that they output good predictions in the neighbourhood of
training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting
in a poor prediction; more importantly, using the variance
estimate of SMAC results in extremely confident intervals. In
Figure 4 for example, away from data the shaded area is very
narrow around a very poor constant prediction. Even more
troubling is the fact that in areas of missing data multiple
conflicting predictions can cause the empirical variance to
blow up sharply, as can be seen in Figure 4. While Gaussian
processes are also poor extrapolators (when used with local
kernels), they produce relatively uncertain predictions away
from the data by reverting to the prior – a more desirable
behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian
optimization is that the response surface is discontinuous and
non-differentiable so gradient based optimization methods are
not applicable. SMAC relies on a combination of local and
random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to
represent our belief about the unknown function f at itera-
tion n. We have not described the exact mechanism or policy
for selecting the sequence of query points x1:n. One could
select these arbitrarily but this would be wasteful. Instead,
there is a rich literature on selection strategies that utilize
the posterior model to guide the sequential search, i.e., the
selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd × R×Θ 7→ R which
maps an arbitrary query point x, its corresponding function
value v = f(x), and a setting of the model hyperparameters θ
to a measure of quality of the experiment, e.g., how much
information this query will provide as in [98]. Given some
data accumulated thus far, we can marginalize the unseen
outcome y and the unknown model hyperparameters θ to
obtain the expected utility of a query point x:

α(x;Dn) = EθEv |x,θ[U(x, v, θ)] (41)

For simplicity, in this section we will mostly ignore the θ
dependence and we will discuss its marginalization in Sec-
tion V-A.

Whereas in experimental design and decision theory, the
function α is called the expected utility, in Bayesian opti-
mization it is often called the acquisition or infill function.
These acquisition functions are carefully designed to trade off
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exploration of the search space and exploitation of current
promising areas. We first present traditional improvement-
based and optimistic acquisition functions, followed by more
recent information-based approaches.

A. Improvement-based policies

Improvement-based acquisition functions favour points that
are likely to improve upon an incumbent target τ . An early
strategy in the literature, probability of improvement (PI) [91],
measures the probability that a point x leads to an improve-
ment upon τ . Since the posterior distribution of v = f(x)
is Gaussian, we can analytically compute this probability as
follows:

αPI(x;Dn) := P[v > τ ] = Φ

(
µn(x)− τ
σn(x)

)
, (42)

where Φ is the standard normal cumulative distribution func-
tion. Recall that αPI is then maximized to select the next
query point. For this criterion, the utility function is simply
an indicator of improvement U(x, v, θ) = I[v > τ ], where the
utility function is expressed (and marginalized) with respect to
the latent variable v. Therefore, all improvements are treated
equal and PI simply accumulates the posterior probability mass
above τ at x.

Although probability of improvement can perform very well
when the target is known, in general the heuristic used for an
unknown target τ causes PI to exploit quite aggressively [81].

One could instead measure the expected improvement
(EI) [115] which incorporates the amount of improvement.
This new criterion corresponds to a different utility that is
called the improvement function, denoted by I(x). Formally,
the improvement function I is defined as follows

I(x, v, θ) := (v − τ) I(v > τ). (43)

Note that I > 0 only if there is an improvement. Once again,
because the random variable v is normally distributed, the
expectation can be computed analytically as follows

αEI(x;Dn) :=E [I(x, v, θ)]

= (µn(x)− τ)Φ

(
µn(x)− τ
σn(x)

)
+ σn(x)φ

(
µn(x)− τ
σn(x)

)
, (44)

when σn > 0 and vanishes otherwise. Here, not to be confused
with the previous section, φ is the standard normal probability
density function. These improvement strategies have been em-
pirically studied in the literature [82], [81], [27] and recently
convergence rates have been proven for EI [32].

Finally, although the target objective value (i.e., the best
reachable objective value) is often unknown, in practice τ is
adaptively set to the best observed value y+ = maxi=1:n yi.
Whereas for PI this heuristic can lead to an overly greedy op-
timization [81], it works reasonably with EI in practice [143].
When the objective function being minimized is very noisy,
using the lowest mean value as the target is reasonable [157].

PI

EI

UCB

TS

PES

Fig. 5. Visualization of the surrogate regression model and various acquisition
functions. (Top) The true objective function is shown as a dashed line and the
probabilistic regression model is shown as a blue line with a shaded region
delimiting the 2σn credible intervals. Finally, the observations are shown as
red crosses. (Bottom) Four acquisition functions are shown. In the case of PI,
the optimal mode is much closer to the best observation as in the alternative
methods, which explains its greedy behaviour. In contrast, the randomization
in TS allows it to explore more aggressively.

B. Optimistic policies

Dating back to the seminal work of Lai & Robbins [92] on
the multi-armed bandit problem, the upper confidence bound
criterion has been a popular way of negotiating exploration and
exploitation, often with provable cumulative regret bounds.
The guiding principle behind this class of strategies is to be
optimistic in the face of uncertainty. Indeed, using the upper
confidence for every query point x corresponds to effectively
using a fixed probability best case scenario according to
the model. Originally, the upper confidence was given by
frequentist Chernoff–Hoeffding bounds [8].

More recently, the Gaussian process upper confidence bound
(GP-UCB [146]) algorithm was proposed as a Bayesian op-
timistic algorithm with provable cumulative regret bounds. In
the deterministic case, a branch-and-bound extension to GP-
UCB was proven to have exponentially vanishing instanta-
neous regret [43]. The GP-UCB algorithm has since been
generalized to other Bayesian models by considering upper
quantiles [84] instead of Equation (45) defined below, which
is more reminiscent of frequentist concentration bounds. In
the GP case, since the posterior at any arbitrary point x is a
Gaussian, any quantile of the distribution of f(x) is computed
with its corresponding value of βn as follows:

αUCB(x;Dn) := µn(x) + βnσn(x). (45)

There are theoretically motivated guidelines for setting and
scheduling the hyperparameter βn to achieve optimal re-
gret [146] and, as with τ in the improvement policies, tuning
this parameter within these guidelines can offer a performance
boost.

Finally, there also exist variants of these algorithms for
the contextual bandits [153] (see Section VIII-D) and parallel
querying [45] (see Section V-E).

C. Information-based policies

In contrast to the acquisition functions introduced so far,
information-based policies consider the posterior distribution
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over the unknown minimizer x?, denoted p?(x | Dn). This
distribution is implicitly induced by the posterior over objec-
tive functions f . There are two policies in this class, namely
Thompson sampling and entropy search.

Though it was introduced in 1933 [150], Thompson sam-
pling has attracted renewed interest in the multi-armed bandit
community, producing empirical evaluations [135], [38] as
well as theoretical results [85], [2], [127]. Thompson sam-
pling (TS) is a randomized strategy which samples a reward
function from the posterior and selects the arm with the
highest simulated reward. Therefore the selection made by
TS can be expressed as the randomized acquisition func-
tion xn+1 ∼ p?(x | Dn).

However, in continuous search spaces, the analog of Thomp-
son sampling is to draw a continuous function f (n) from
the posterior GP and optimize it to obtain xn+1. In order to
be optimized, the sample f (n) needs to be fixed so it can
be queried at arbitrary points; unfortunately, it is not clear
how to fix an exact sample from the GP. However, using
recent spectral sampling techniques [20], [125], [94], we can
draw an approximate sample from the posterior that can be
evaluated at any arbitrary point x [69], which extends TS to
continuous search spaces. As an acquisition function, TS can
be formulated as

αTS(x;Dn) := f (n)(x)

where f (n) s.s.∼ GP(µ0, k | Dn) (46)

where s.s.∼ indicates approximate simulation via spectral sam-
pling. Empirical evaluations show good performance which,
however, seems to deteriorate in high dimensional problems,
likely due to aggressive exploration [139].

Instead of sampling the distribution p?(x | Dn), entropy
search (ES) techniques aim to reduce the uncertainty in
the location x? by selecting the point that is expected to
cause the largest reduction in entropy of the distribution
p?(x | Dn) [156], [67], [69]. In terms of utility, entropy search
methods use the information gain defined as follows

U(x, y, θ) = H(x? | Dn)−H(x? | Dn ∪ {(x, y)}), (47)

where the θ implicitly parameterizes the distribution of y.
In other words, ES measures the expected information gain

from querying an arbitrary point x and selects the point
that offers the most information about the unknown x?. The
acquisition function for ES can be expressed formally as

αES(x;Dn) := H(x? | Dn)− Ey|Dn,xH(x? | Dn ∪ {(x, y)})

where H(x? | Dn) denotes the differential entropy of
the posterior distribution p?(x | Dn), and the expec-
tation is over the distribution of the random vari-
able y ∼ N (µn(x), σ2

n(x) + σ2).
Once again, this function is not tractable for continuous

search spaces X so approximations must be made. Early work
discretized the space X and computed the conditional entropy
via Monte Carlo sampling [156]. More recent work uses a
discretization of the X to obtain a smooth approximation
to p? and its expected information gain [67]. This method

is unfortunately O(M4) where M is the number of discrete
so-called representer points.

Finally, predictive entropy search (PES) removes the need
for a discretization and approximates the acquisition function
in O((n + d)3) time, which, for d < n is of the same order
as EI [69]. This is achieved by using the symmetric property
of mutual information to rewrite αES(x) as

αPES(x;Dn) := H(y | Dn,x)−Ex? | Dn

[
H(y | Dn,x,x?)

]
The expectation can be approximated via Monte Carlo with
Thompson samples; and three simplifying assumptions are
made to compute H(y | Dn,x,x?). Empirically, this algorithm
has been shown to perform as well or better than the dis-
cretized version without the unappealing quartic term [69],
making it arguably the state of the art in entropy search
approximation.

D. Portfolios of acquisition functions

No single acquisition strategy provides better performance
over all problem instances. In fact, it has been empirically
observed that the preferred strategy can change at various
stages of the sequential optimization process. To address this
issue, [73] proposed the use of a portfolio containing multiple
acquisition strategies. At each iteration, each strategy in the
portfolio provides a candidate query point and meta-criterion
is used to select the next query point among these candidates.
The meta-criterion is analogous to an acquisition function at
a higher level; whereas acquisition functions are optimized
in the entire input space, a meta-criterion is only optimized
within the set of candidates suggested by its base strategies.

The earlier approach of Hoffman et al. is based on a
modification of the well-known Hedge algorithm [9], de-
signed for the full-information adversarial multi-armed bandit.
This particular portfolio algorithm relies on using the past
performance of each acquisition function to predict future
performance, where performance is measured by the objective
function. However, this performance metric does not account
for valuable information that is gained through exploration.

A more recent approach, the so-called entropy search port-
folio (ESP), considers the use of an information-based metric
instead [139]. In contrast to the GP-Hedge portfolio, ESP
selects among different candidates by considering the gain
of information towards the optimum. Removing the constant
entropy at the current time, the ESP meta-criterion reduces to

αESP(x;Dn) = −Ey | Dn,x

[
H
[
x? | Dn ∪ {(x, y)}

]]
(48)

xn = arg max
x1:K,n

αESP(x;Dn), (49)

where x1:K,n represent the candidates provided by the K base
acquisition functions. In other words the candidate selected by
this criterion is the one that results in the greatest expected
reduction in entropy about the minimizer x?. If the meta-
criterion αESP(x|Dn) were minimized over the entire space X ,
ESP reduces to the acquisition functions proposed by [156],
[67], [69]. However, ESP restricts this minimization to the set
of candidates made by each portfolio member.
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Fig. 6. Absolute error of the best observation for the Branin and Hartmann 3
synthetic functions. Plotting the mean and standard error (shaded area) over
25 repeated runs.

V. PRACTICAL CONSIDERATIONS

In this section, we discuss some implementation details
and more advanced topics. In particular, we first describe
how the unknown hyperparameters θ are dealt with, we then
provide a survey of techniques used to optimize the acquisition
functions, followed by a discussion of non-stationarity and
Bayesian optimization with parallelizable queries.

A. Handling hyperparameters

Thus far in the discussion we have mostly ignored the
kernel hyperparameters and assumed they were given. In
this section we describe two data-driven ways of handling
hyperparameters, namely point estimation and approximate
marginalization. Consider a generic function α : X ×Θ 7→ R,
where θ ∈ Θ represents the hyperparameters of our GP. In the
context of Bayesian optimization, this function could be our
objective function or any function derived from the Gaussian
process, but for concreteness, it may help to think of it
specifically as the acquisition function, hence the symbol α.
We wish to marginalize out our uncertainty about θ with the
following expression

αn(x) := Eθ|Dn
[α(x; θ)] =

∫
α(x; θ)p(θ | Dn)dθ. (50)

This integral is over our posterior belief over θ given obser-
vations Dn, which can be decomposed via Bayes’ rule as

p(θ | Dn) =
p(y |X, θ)p(θ)

p(Dn)
. (51)

The simplest approach to tackling (50) is to fit the hy-
perparameter to observed data using a point estimate θ̂ML

n

or θ̂MAP
n , corresponding to type II maximum likelihood or

maximum a posteriori estimates, respectively. The posterior
is then replaced by a delta measure at the corresponding θ̂n
which yields

α̂n(x) = α(x; θ̂n). (52)

The estimators θ̂ML
n and θ̂MAP

n can be obtained by optimiz-
ing the marginal likelihood or the unnormalized posterior,
respectively. For certain priors and likelihoods, these quan-
tities as well as their gradients can be computed analytically.
For example, the GP regression model yields the following
marginal likelihood defined in (35), which we denote here
by Ln. Therefore it is common to use multi-started quasi-
Newton hill-climbers (e.g., the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method) on objectives
such as the likelihood Ln or the unnormalized posterior.

In Bayesian optimization, our uncertainty about the response
surface plays a key role in guiding exploration and therefore
it is important to incorporate our uncertainty about θ in the re-
gression model. Naturally, these point estimates cannot capture
this uncertainty. For this reason we consider marginalizing out
the hyperparameters using either quadrature or Monte Carlo
[120], [26], [143].

The common component in Monte Carlo (MC) methods
is that they approximate the integral in (50) using M sam-
ples

{
θ

(i)
n

}M
i=1

from the posterior distribution p(θ | Dn):

Eθ|Dn
[α(x; θ)] ≈ 1

M

M∑
i=1

α(x; θ(i)
n ). (53)

However, in practice it is impossible to sample directly from
the posterior so Markov chain Monte Carlo (MCMC) and
sequential Monte Carlo (SMC) techniques are used to produce
a sequence of samples that are marginally distributed accord-
ing to p(θ | Dn) in the limit of infinitely long chains. Once
the M hyperparameter samples are obtained, the acquisition
function is evaluated and averaged over all samples; this
marginal acquisition function incorporates the uncertainty in
θ. In addition to MC methods, one could also use quadrature
as shown in [120]. Here, samples (not necessarily drawn from
the posterior) are combined using a weighted mixture:

Eθ|Dn
[α(x; θ)] ≈

M∑
i=1

ωiα(x; θ(i)
n ). (54)

We could do away with samples entirely and approximately in-
tegrate out the hyperparameters as shown in [53]. To make the
integral tractable, the authors adopted a linear approximation
to the likelihood which enables them to derive an approximate
posterior. This method, however, has not been demonstrated
in the setting of Bayesian optimization.

Estimating the hyperparameters of GP kernels with very few
function evaluations is a challenging task, often with disastrous
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consequences as illustrated by a simple example in [15]. The
typical estimation of the hyperparameters by maximizing the
marginal likelihood [126], [82] can easily fall into traps, as
shown in [32]. Several authors have proposed to integrate out
the hyperparameters using quadrature or Monte Carlo methods
[120], [26], [143]. These more advanced techniques can still
fall in traps as illustrated with a simple simulation example
in [157], where theoretical bounds are used to ensure that
Bayesian optimization is robust with respect to the choice of
hyperparameters.

B. Optimizing acquisition functions

A central step of the Bayesian optimization framework is
the maximization of the acquisition function. Naturally, an
acquisition function is only useful if it is cheap to evaluate rel-
ative to the objective function f . Nevertheless, the acquisition
function is often multimodal and maximizing it is not a trivial
task. In practice, the community has resorted to using various
techniques such as discretization [143] and adaptive grids [13],
or similarly, the divided rectangles approach of [83], which
was used in [28], [110], [105]. When gradients are available,
or can be cheaply approximated, one can use a multi-started
quasi-Newton hill-climbing approach [100], [143]. Alterna-
tively, [16] and [159] use the CMA-ES method of [66], and
[79] apply multi-start local search.

Unfortunately, these auxiliary optimization techniques can
be problematic for several reasons. First, in practice it is
difficult to assess whether the auxiliary optimizer has found
the global maximizer of the acquisition function. This raises
important concerns about the convergence of Bayesian opti-
mization algorithms because theoretical guarantees are only
valid with the assumption that the exact optimizer is found
and selected; see for example [146], [154] and [32]. Second,
between any two consecutive iterations of the Bayesian opti-
mization algorithm, the acquisition function may not change
dramatically. Therefore, rerunning the auxiliary optimizer can
be unnecessarily wasteful.

Recent proposed optimistic optimization methods provide
an alternative to Bayesian optimization [87], [31], [116].
These methods sequentially build space-partitioning trees by
splitting leaves with high function values or upper confidence
bounds; the objective function is then evaluated at the centre
of the chosen leaves. Simultaneous optimistic optimization
(SOO) can reach the global optimum without knowledge of
the function’s smoothness [116]. Since SOO is optimistic at
multiple scales (i.e., it expands several leaves simultaneously,
with at most one leaf per level) it has also been referred to as
multi-scale optimistic optimization [158].

Though these optimistic optimization methods do not re-
quire any auxiliary optimization, these methods are not as
competitive as Bayesian optimization in practical domains
where prior knowledge is available. The Bayesian multi-scale
SOO (BamSOO) algorithm combines the tree partitioning
idea of SOO with the surrogate model of Bayesian optimiza-
tion [158], eliminating the need for auxiliary optimization.
BamSOO also boasts some theoretical guarantees that do not
depend on the exact optimization of an acquisition function.

f+

True Objective.
Discarded Region.
Confidence Region.
Sampled Points.

Fig. 7. Conditioned on the unknown objective function (red) lying between
the surrogate confidence bounds (green region) with high probability, we can
discard regions of the space where the upper bound is lower than the best
lower bound encountered thus far. Figure from [43].

Intuitively, the method implements SOO to optimize the
objective function directly, but avoids querying points that
are deemed unlikely to be optimal by the surrogate model’s
confidence bounds.

In other words, BaMSOO uses the surrogate model to
reduce the number of function evaluations, increasing sample
efficiency. This work is also reminiscent of the theoretical
work in [43], which proposes to only search in regions where
the upper bound on the objective is greater than the best lower
bound encountered thus far. Figure 7 illustrates how regions
are discarded. Guided by the probabilistic model, the most
promising regions are explored first, which avoids covering
the entire space. Figure 8 compares SOO and BaMSOO on a
simple one-dimensional example. Incorporating the surrogate
model leads to better more refined optimization for the same
number of query points.

C. Conditional Spaces

It is often the case that some variables will only influence
the function being optimized when other variables take on
certain values. These are called conditional variables and
are said to be active or inactive. For example, when the
function involves selecting between different algorithms as
well as optimizing their hyperparameters, then certain sets
of hyperparameters belonging to a given algorithm will be
inactive if that algorithm is not selected [79], [16].

More formally, consider a variable x1 ∈ X2 and another
variable x2 ∈ X2. x1 is said to be a child of x2 if it is only
active when x2 takes on certain values in X2. This conditional
structure can be extended with multiple variables to form
more complicated tree or directed acyclic graph structures.
This greatly extends the capabilities of the Bayesian opti-
mization framework, allowing it to chain together individual
algorithms to form sophisticated pipelines that can be jointly
optimized [151], [19].
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SOO

Queried points

BamSOO

Fig. 8. Comparison of SOO (top) and BamSOO (bottom) on f(x) =
1
2
sin(15x) sin(27x) in [0, 1]. Blue dots represent nodes where the objec-

tive was evaluated. BaMSOO does not evaluate f at points that are sub-
optimal with high probability under the surrogate model (not shown). Figure
from [158].

Models such as random forests or the tree Parzen estimator
(TPE) are naturally tailored to handle conditional spaces.
Random forests are constructed using ensembles of decision
trees that can learn to ignore inactive variables and the TPE
itself is a graph-structured generative model that follows the
conditional structure of the search space.

Gaussian processes are not immediately suitable for con-
ditional spaces because standard kernels are not defined over
variable-length spaces. A simple approach is to define a sepa-
rate GP for each group of jointly active hyperparameters [16],
however this ignores dependencies between groups. Recent
work has focused on defining a fixed-length embedding of
conditional spaces where a standard kernel using Euclidean
distance can be applied [147]. This is currently a very new
area of research and more work needs to be done before GPs
can work in conditional spaces as well as tree-based models.

D. Non-stationarity

A major assumption made by GP regression using the
kernels suggested in Section III-B is that the underlying
process is stationary. Formally, this assumption means that

the kernel k(x,x′) can be equivalently written as a function
of x− x′. Intuitively, a function whose length-scale does not
change throughout the input space will be well modelled by
a GP with a stationary kernel.

In real world problems we often expect that the true
underlying process will be non-stationary. In these cases, the
GP prior is misspecified, which means that it will require more
data in order to produce reasonable posterior estimates. For
Bayesian optimization this is an issue, as the entire goal is
to minimize the function in as few evaluations as possible.
Here, we will discuss some of the ways in which Bayesian
optimization can be modified to deal with non-stationarity.

a) Non-stationary kernels: One way to create a non-
stationary process is to use a non-stationary kernel. One
strategy is to convert a stationary kernel into a non-stationary
one by transforming x using a parametric warping func-
tion x(w) = w(x) and then applying a stationary kernel
to x(w) [129], [145]. If w is chosen appropriately, the data
will follow a stationary process in the transformed space.

In Bayesian optimization, the inputs are traditionally pro-
jected onto the unit hypercube and this fact was exploited in
[145], who chose the warping function to be the cumulative
distribution function (CDF) of the beta distribution,

wd(x) =
xα−1
d (1− xd)

β−1

B(α, β)
, (55)

where α and β are the shape parameters, and the B is the
beta function. In this case, wd(x) is a warping function for
the dth dimension of x, and a separate warping is applied to
each dimension.

Examples of functions before and after applying beta
warping are shown in Figure 9. Despite having only two
parameters, the beta CDF is able to express a wide variety
of transformations. These transformations contract portions of
the input space, and expand others, which has the effect of
decreasing and increasing the length scale in those portions,
respectively. The beta warping approach has been shown to be
highly effective on several benchmark problems as well as hy-
perparameter optimization for machine learning models [145],
[18].

While the beta CDF is not the only choice, it is appealing
for a number of reasons. For hyperparameter optimization, it
mimics the kind of transformations practitioners tend to apply
when applying a grid search, such as searching over learning
rates in the log-domain. It is compactly parameterized, so
that learning the shape parameters is not too much more
expensive than learning other kernel parameters. Finally, it is
an invertible transformation so that once the maximum of the
acquisition function is found, it can easily be mapped back
into the original space. For α = β = 1, the transformation is
the identity and the original, stationary GP is recovered.

Learning α and β via point estimates can be difficult when
using gradient based optimization as the beta function and
its derivatives with respect to α and β do not have simple
closed-form solutions. An appealing alternative in this case is
the Kumaraswamy distribution, whose CDF takes the form

wd(x) = 1− (1− xαd )β . (56)
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Two examples of how input warping using the Beta CDF can transform a non-stationary function into 
a stationary one.   Fig. 9. Left: Examples of beta CDF warpings under different settings of the shape parameters α and β. Right: Examples of functions after applying a beta

CDF warping (originally from [145]). The regions where the CDF has a slope greater than 1 are expanded along the horizontal axis, while regions where the
CDF has slope less than 1 are contracted.

There are many other examples of non-stationary covariance
functions [70], [121], [132], [126], [118], [22], [3], [54] that
have been proposed for GP regression along with closely
related output warping techniques [141] that can also model
certain kinds of non-stationary processes.

b) Partitioning: An alternative approach to modelling
non-stationarity that has been useful in practice is to partition
the space into distinct regions and then to model each region as
a separate stationary process. In a random forest model [79],
[27], this is achieved by finer partitioning in regions of the
space where the function changes rapidly, and more granular
partitioning in regions where the function changes slowly.
Partitioning can also be an effective strategy for GPs. For
example, [63] proposed the treed GP model, which partitions
the data and then applies a separate GP to each region.

c) Heteroscedasticity: Heteroscedasticity is a close ana-
logue of non-stationarity, but refers to non-stationary be-
haviour in the noise process governing the observation model,
instead of the true process that we wish to capture. Standard
GP regression using an isotropic noise kernel assumes by
default that the noise process is constant everywhere, and is
therefore stationary by definition. In practice, it is possible to
have non-stationarity in both the true process and the noise
process. Heteroscedasticity has been widely addressed in the
GP literature, see e.g., [95], [86], [103].

For Bayesian optimization in particular, one approach to
handling heteroscedastic noise was proposed in [5] using a
partitioning approach. The idea is to build a partition using
classification and regression trees (CART) [25]; however,
splitting was restricted to occur at data points rather than
between them. This ensured that the variance estimates of the
GP would remain smooth between partitions.

Another form of non-stationarity that is closely related
to heteroscedasticity is a non-stationary amplitude [1], [54].
This is where the magnitude of the output process changes
as a function of the input. To our knowledge this has not
been directly addressed in the Bayesian optimization literature.
There have however been attempts to be robust to this effect by
integrating out the amplitude parameter of the GP kernel. This
was done numerically in [143] and analytically using conju-
gate priors in [138], resulting in a latent GP with t-distributed

predictions and an input-dependent noise covariance.

E. Parallelization

Bayesian optimization is conventionally posed as a sequen-
tial problem where each experiment is completed before a
new one is proposed. In practice it may be possible and
advantageous to run multiple function evaluations in parallel.
Even if the number of experiments required to reach the
minimum does not change, parallel approaches can yield a
substantial reduction in terms of wall-clock time [80], [143].

Ginsbourger et al. [57] proposed several approaches based
on imputing the results of currently running experiments. The
idea is that given the current observations Dn = {(xn, yn)}
and pending experiments Dp = {xp}, one can impute a set
of set of experimental outcomes D̃p = {(xp, ỹp)} and then
perform a step of Bayesian optimization using the augmented
dataset Dt ∪ D̃p.

One simple strategy is the constant liar, where a constant L
is chosen such that ỹp = L, ∀p. Another strategy is the Kriging
believer, which uses the GP predictive mean ỹp = µn(xp).
[143] used an approach where a set of S fantasies are sampled
for each unfinished experiment from the full GP posterior
predictive distribution. These are then combined to estimate
the following parallel integrated acquisition function,

α(x;Dn,Dp) =

∫
RJ

α(x;Dn ∪ D̃p)P (ỹ1:J ;Dn)dyp1:J , (57)

≈ 1

S

S∑
s=1

α(x;Dn ∪ D̃(s)
p ), (58)

D̃(s)
p ∼ P (ỹ1:J ;Dn), (59)

where J is the number of currently pending experiments. This
approach has been shown to be very effective in practice
when α is chosen to be EI. Similar approaches are proposed
in [58], [40] and a similar parallel extension to GP-UCB is
proposed [45].

Although the imputation approaches deal with parallel ex-
periments, the nature in which they propose candidates is
still inherently sequential. A truly parallel approach would
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simultaneously propose a set of candidates. Jones [81] and
Hutter et al. [80] proposed an approach based on GP-UCB
where αUCB is optimized using a range of βn values, which
produces a set of points that favour a range of exploration and
exploitation.

F. Software implementations

As of this writing, there are several open source packages
implementing various forms of Bayesian optimization. We
highlight several popular libraries in Table I.

VI. THEORY OF BAYESIAN OPTIMIZATION

There exist a vast literature on the theoretical properties
of bandit algorithms in general. Theoretical properties of
Bayesian optimization, however, have only been established
recently. In this section, we focus on the results concern-
ing Gaussian process based Bayesian optimization and defer
detailed discussions of bandit algorithms to other dedicated
surveys [29], [117].

There exist several early consistency proofs for Gaussian
process based Bayesian optimization algorithms, in the one-
dimensional setting [102] and one for a simplification of the
algorithm using simplicial partitioning in higher dimensions
[164]. The consistency of the algorithm using multivariate
Gaussian processes has been established in [155].

More recently, [146] provided the first finite sample bound
for Gaussian process based Bayesian optimization. In this
work, the authors showed that the GP-UCB algorithm suffers
from sub-linear cumulative regret in the stochastic setting. The
regret bounds, however, allow only fixed hyperparameters. In
[32], Bull provided both upper and lower bounds of simple
regret for the EGO algorithm [82] in the deterministic setting.
In addition to regret bounds concerning fixed hyperparameters,
the author also provided simple regret bounds while allowing
varying hyperparameters.

Since the pioneering work of [146] and [32], there emerged
a large body of results on this topic including, exponentially
vanishing simple regret bounds in the deterministic setting
[43]; bounds for contextual Gaussian process bandits [89];
Bayes regret bounds for Thompson sampling [85], [127];
bounds for high-dimensional problems with a underlying low-
rank structure [46]; bounds for parallel Bayesian optimization
[45]; and improved regret bounds using mutual informa-
tion [41].

Despite the recent surge in theoretical contributions, there
is still a wide gap between theory and practice. Regret bounds
or even consistency results, for example, have not been es-
tablished for approaches that use a full Bayesian treatment of
hyperparameters [143]. Such theoretical results could advance
the field of Bayesian optimization and provide insight for
practitioners.

VII. HISTORY OF BAYESIAN OPTIMIZATION AND RELATED
APPROACHES

Arguably the earliest work related to Bayesian optimization
was that of William Thompson in 1933 where he considered
the likelihood that one unknown Bernoulli probability is

greater than another given observational data [150]. In his
article, Thompson argues that when considering, for example,
two alternative medical treatments one should not eliminate the
worst one based on a single clinical trial. Instead, he proposes,
one should estimate the probability that one treatment is
better than the other and weigh future trials in favour of the
seemingly better treatment while still trying the seemingly
suboptimal one. Thompson rightly argues that by adopting
a single treatment following a clinical trial, there is a fixed
chance that all subsequent patients will be given suboptimal
treatment. In contrast, by dynamically selecting a fraction of
patients for each treatment, this sacrifice becomes vanishingly
small.

In modern terminology, Thompson was directly addressing
the exploration–exploitation trade-off, referring to the tension
between selecting the best known treatment for every future
patient (the greedy strategy) and continuing the clinical trial
for longer in order to more confidently assess the quality of
both treatments. This is a recurring theme not only in the
Bayesian optimization literature, but also the related fields
of sequential experimental design, multi-armed bandits, and
operations research.

Although modern experimental design had been developed
a decade earlier by Ronald Fisher’s work on agricultural
crops, Thompson introduced the idea of making design choices
dynamically as new evidence becomes available; a general
strategy known as sequential experimental design or, in the
multi-armed bandit literature, adaptive or dynamic allocation
rules [92], [59].

The term Bayesian optimization was coined in the seventies
[115], but a popular version of the method has been known
as efficient global optimization in the experimental design
literature since the nineties [134]. Since the approximation of
the objective function is often obtained using Gaussian process
priors, the technique is also referred to as Gaussian process
bandits [146].

In the nonparametric setting, Kushner [91] used Wiener pro-
cesses for unconstrained one-dimensional optimization prob-
lems. Kushner’s decision model was based on maximizing
the probability of improvement. He also included a pa-
rameter that controlled the trade-off between ‘more global’
and ‘more local’ optimization, in the same spirit as the
exploration–exploitation trade-off. Meanwhile, in the former
Soviet Union, Močkus and colleagues developed a multidi-
mensional Bayesian optimization method using linear combi-
nations of Wiener fields [115], [114]. Both of these methods,
probility of and expected improvement, were in studied in
detail in [81].

At the same time, a large, related body of work emerged
under the name kriging, in honour of the South African student
who developed this technique at the University of the Witwa-
tersrand [90], though largely popularized by Matheron and
colleagues (e.g., [111]). In kriging, the goal is interpolation of
a random field via a linear predictor. The errors on this model
are typically assumed to not be independent, and are modelled
with a Gaussian process.

Kriging has been applied to experimental design under
the name DACE, after design and analysis of computer ex-
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TABLE I
A LIST OF SEVERAL POPULAR OPEN SOURCE SOFTWARE LIBRARIES FOR BAYESIAN OPTIMIZATION AS OF MAY, 2015.

Package License URL Language Model

SMAC Academic non-commercial license. http://www.cs.ubc.ca/labs/beta/Projects/SMAC Java Random forest
Hyperopt BSD https://github.com/hyperopt/hyperopt Python Tree Parzen estimator
Spearmint Academic non-commercial license. https://github.com/HIPS/Spearmint Python Gaussian process
Bayesopt GPL http://rmcantin.bitbucket.org/html C++ Gaussian process
PyBO BSD https://github.com/mwhoffman/pybo Python Gaussian process
MOE Apache 2.0 https://github.com/Yelp/MOE Python / C++ Gaussian process

periments, the title of a paper by Sacks et al. [128] (and
more recently a book by Santner et al. [130]). In DACE, the
regression model is a best linear unbiased predictor (BLUP),
and the residual model is a noise-free Gaussian process.
The goal is to find a design point or points that optimizes
some criterion. Experimental design is usually non-adaptive:
the entire experiment is designed before data is collected.
However, sequential design is an important and active subfield
(e.g., [160], [33].

The efficient global optimization (EGO) algorithm is the
combination of DACE model with the sequential expected
improvement acquisition criterion. It was published in a paper
by Jones et al. [82] as a refinement of the SPACE algorithm
(stochastic process analysis of computer experiments) [133].
Since EGO’s publication, there has evolved a body of work
devoted to extending the algorithm, particularly in adding
constraints to the optimization problem [6], [131], [23], and
in modelling noisy functions [14], [75], [76].

In the bandits setting, Lai and Robbins [92] introduced
upper confidence bounds (UCB) as approximate alternatives
to Gittins indices in 1985. Auer studied these bounds using
frequentist techniques, and in adversarial multi-armed bandit
settings [9], [8].

The literature on multi-armed bandits is vast. The book of
Cesa-Bianchi [36] is a good reference on the topic of online
learning with experts and bandits in adversarial settings. There
are many results on exploration [30], [51], [50] and contextual
bandits [97], [112], [2]. These contextual bandits, may also be
seen as myopic approximations to Markov decision processes.

VIII. EXTENSIONS AND OPEN QUESTIONS

A. Constrained Bayesian optimization

In [56] a scenario was outlined in which a food company
wished to design the best tasting cookie subject to the number
of calories being below a certain level. This is an example of
constrained optimization, where certain regions of the design
space X are invalid. In machine learning, this can arise when
certain hyperparameter configurations result in models that
diverge during training, or that run out of computer memory.
When the constraints are known a priori, they can be incor-
porated into the optimization of the acquisition function. The
more challenging case arises when it is not known in advance
which configurations will result in a constraint violation.
Several approaches deal with this problem by altering the
acquisition function itself.

Gramacy and Lee [62] proposed the integrated expected
conditional improvement (IECI) acquisition function:

αIECI(x) =

∫
x′

(αEI(x
′,Dn)− αEI(x

′,Dn ∪ x)|x))h(x′)dx.

(60)

This gives the change in expected improvement from observ-
ing x under the density h. Choosing h to model the probability
of satisfying the constraint encourages IECI to favor regions
with a high probability of being valid.

Snoek [142] and Gelbart et al. [56] proposed the weighted
expected improvement criterion (wEI) that multiplies EI by
the probability of satisfying the constraints:

αwEI(x) = αEI(x,Dn)h(x,Dn). (61)

Where h(x,Dn) is a Gaussian process with a Bernoulli
observation model. This reduces EI in regions that are likely
to violate constraints.

A variant of wEI was proposed in [52] to deal with
the case where the function is constrained to be less than
some value λ. They used h(x,Dt) = P(f(x) < λ | Dt), the
posterior probability of satisfying this constraint under the
Gaussian process model of the function.

Hernández-Lobato et al. [68] recently proposed a variation
of the predictive entropy search acquisition function to deal
with the decoupled case, where the function and constraints
can be evaluated independently.

In a different approach, Gramacy et al. [61] adapted the
augmented Lagrangian approach to the Bayesian optimization
setting, with unconstrained Bayesian optimization approxi-
mately solving the inner loop of the algorithm.

B. Cost-sensitivity

In some cases, each function evaluation may return both a
value along with an associated cost. In other words, it may
be more expensive to evaluate the function in some parts of
the design space than others. If there is a limited budget, then
the search should be biased toward low-cost areas. In [143],
the goal was to train a machine learning model and the cost
was the time it took to train the model. They used expected
improvement per second, EI(x,Dn)/c(x) in order to bias the
search toward good models with fast training times. Here, c(x)
was the estimated cost of querying the objective at x and was
modelled using a Gaussian process with response log(c(x)).
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C. High-dimensional problems

Despite many success stories, Bayesian optimization is
restricted to problems of moderate dimension. To advance the
state of the art, Bayesian optimization should be scaled to
high-dimensional parameter spaces. This is a difficult problem:
to ensure that a global optimum is found, we require good
coverage of X , but as the dimensionality increases, the number
of evaluations needed to cover X increases exponentially.

For linear bandits, Carpentier et al. [35] recently proposed
a compressed sensing strategy to attack problems with a
high degree of sparsity. Also recently, Chen et al. [39] made
significant progress by introducing a two stage strategy for
optimization and variable selection of high-dimensional GPs.
In the first stage, sequential likelihood ratio tests with a couple
of tuning parameters are used to select the relevant dimensions.
This, however, requires the relevant dimensions to be axis-
aligned with an ARD kernel. Chen et al. provide empirical
results only for synthetic examples (of up to 400 dimensions),
but they provide key theoretical guarantees.

Hutter et al. [79] used Bayesian optimization with ran-
dom forests based on frequentist uncertainty estimates. Their
method does not have theoretical guarantees for continuous
optimization, but it achieved state-of-the-art performance for
tuning up to 76 parameters of algorithms for solving com-
binatorial problems. Note that in constructing the trees that
make the forest, one samples and selects the most promising
features (dimensions). That is, random forests naturally select
the relevant dimensions of the problem, and so not surprisingly
have worked well in practice.

Many researchers have noted that for certain classes of prob-
lems most dimensions do not change the objective function
significantly; examples include hyperparameter optimization
for neural networks and deep belief networks [17] and auto-
matic configuration of state-of-the-art algorithms for solving
NP-hard problems [77]. That is to say these problems have
low effective dimensionality. To take advantage of this prop-
erty, Bergstra and Bengio [17] proposed to simply use random
search for optimization – the rationale being that points
sampled uniformly at random in each dimension can densely
cover each low-dimensional subspace. As such, random search
can exploit low effective dimensionality without knowing
which dimensions are important. In [159], the authors exploit
the same property, while still capitalizing on the strengths
of Bayesian optimization. By combining randomization with
Bayesian optimization, they were able to derive a new ap-
proach that outperforms each of the individual components.

Figure 10 illustrates the approach in a nutshell. Assume
we know that a given D = 2 dimensional black-box func-
tion f(x1, x2) only has d = 1 important dimensions, but we
do not know which of the two dimensions is the important
one. We can then perform optimization in the embedded
1-dimensional subspace defined by x1 = x2 since this is
guaranteed to include the optimum. This idea enables us to
perform Bayesian optimization in a low-dimensional space
to optimize a high-dimensional function with low intrinsic
dimensionality. Importantly, it is not restricted to cases with
axis-aligned intrinsic dimensions.
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Fig. 10. This function in D = 2 dimesions only has d = 1 effective
dimension: the vertical axis indicated with the word important on the right
hand side figure. Hence, the one-dimensional embedding includes the two-
dimensional function’s optimizer. It is more efficient to search for the optimum
along the one-dimensional random embedding than in the original two-
dimensional space.

To make the discussion more precise, a func-
tion f : RD 7→ R will have effective dimensionality de,
with de < D, if there exists a linear effective subspace T
of dimension de such that for all x> ∈ T ⊂ RD
and x⊥ ∈ T ⊥ ⊂ RD, and f(x) = f(x> + x⊥) = f(x>),
where the so-called constant subspace T ⊥ denotes the
orthogonal complement of T . This definition simply states
that the function does not change along the coordinates x⊥,
and hence the name for T ⊥.

Given this definition, Theorem 1 of [159] shows that
problems of low effective dimensionality can be solved via
random embedding. The theorem assumes we are given a
function f : RD 7→ R with effective dimensionality de and a
random matrix A ∈ RD×d with independent entries sampled
according to N (0, 1) and d ≥ de. It then shows that, with
probability 1, for any x ∈ RD, there exists a z ∈ Rd such
that f(x) = f(Az).

Effectively, the theorem says that given any x ∈ RD
and a random matrix A ∈ RD×d, with probability 1, there
is a point z ∈ Rd such that f(x) = f(Az). This implies
that for any optimizer x? ∈ RD, there is a point z? ∈ Rd
with f(x?) = f(Az?). Therefore, instead of optimizing in
the high dimensional space, we can optimize the func-
tion g(z) = f(Az) in the lower dimensional space. This obser-
vation gives rise to an algorithm called Bayesian optimization
with random embedding (REMBO), described in Algorithm 3.
REMBO first draws a random embedding (given by A) and
then performs Bayesian optimization in this embedded space.

Algorithm 3 REMBO
1: Generate a random matrix A
2: Choose the set Z
3: for n = 1, 2, . . . do
4: select zn+1 by optimizing the acquisition function α:

zn+1 = arg max
z∈Z

α(z|Dn)

5: augment the data Dn+1 = {Dn, (zn+1, f(Azn+1)}
6: update the kernel hyperparameters
7: end for

An important detail is how REMBO chooses the bounded
region Z , inside which it performs Bayesian optimization. This
is important because its effectiveness depends on the size of Z .
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(1)
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Fig. 11. Left: Three correlated functions drawn from a multi-output GP.
Middle: The GP posterior predictive distribution of function (3) when the
functions are assumed to be independent. This is equivalent to ignoring
observations from functions (1) and (2). Right: Posterior predictive distri-
bution of function (3) when the correlations are taken into account. Here, the
observations from functions (1) and (2) act as weak observations for function
(3). This results in a much more accurate prediction.

Locating the optimum within Z is easier if Z is small, but
if we set Z too small it may not actually contain the global
optimizer. We refer the readers to the original paper for details.

D. Multi-Task

When tuning the hyperparameters of a machine learning
model on some data, it is unlikely that the hyperparameters
will change very much if new data is added to the original
data, especially if the new data represents a small fraction
of the total amount. Likewise, if one were to train a model
for object recognition, then good hyperparameter settings are
likely to also be good on other object recognition datasets.
Experts often exploit this property when applying their models
to new datasets.

There have been several attempts to exploit this property
within the Bayesian optimization framework [89], [79], [12],
[148], [161], [49]. The idea is that there are several correlated
functions, T = {1, 2, . . . ,M}, called tasks and that we are
interested in optimizing some subset of these tasks. In essence,
the data from one task can provide information about another
task.

One way to share information between tasks in a Bayesian
optimization routine is to modify the underlying Gaussian
process model. There has been a great deal of work on
extending Gaussian processes to the multi-task scenario. These
extensions are also known as multi-output Gaussian processes.
The key is to define a valid covariance over input and task
pairs, k((x,m), (x′,m′)). One method is to use the intrinsic
model of coregionalization (ICM) [60], [136], [21] that utilizes
the product kernel,

k((x,m), (x′,m′)) = kX (x,x′)kT (m,m′). (62)

Where m, m′ ∈ T . kT defines the covariance between tasks.
There are many ways to parameterize the task covariance func-
tion [123]. Figure 11 illustrates how knowledge of correlations
between tasks can be used with a multi-output GP to make
more accurate predictions.

An alternative view of the ICM model is that it defines a
latent process that is rotated and scaled to produce each of the
individual tasks. The problem of defining a multi-output GP
can then be viewed as learning a latent function, or a set of
latent functions, that can be transformed to produce the output
tasks. [12] proposed an approach that learns a latent ranking
function at each iteration using pairs of observations from
within each task. By learning a single ranking function that

works across tasks, the tasks are effectively jointly embedded
in a latent space that is invariant to potentially different output
scales across tasks.

Each task may come with additional side information, or
context features. In this case, it is possible to define a joint
model that uses this context. This was considered for algorithm
configuration in [79] using a random forest model. When
starting a new task, [49] uses task features to find similar
tasks. The best inputs from the most similar tasks are then
used as the initial design for the new task.

E. Freeze-Thaw

In some cases, the experiments selected by Bayesian op-
timization themselves require an inner loop of iterative opti-
mization. For example, in the case of tuning machine learning
hyperparameters, each experiment consists of training a model
before evaluating it. It is often possible to evaluate the model
during training in order to get an estimate of how it is perform-
ing. When tuning hyperparameters by hand, experts can use
this information in order to estimate model performance at the
end of training and can halt training early if this estimate looks
unsatisfactory. This allows a far greater number of models to
be trained in a given amount of time.

An attempt to incorporate this into the Bayesian optimiza-
tion framework is given in [149]. They identify that many
loss functions in machine learning follow an exponential
decay pattern during training, and construct a basis set of
exponentially decaying functions of the form f(t, λ) = e−λt,
where λ represents the rate of decay over time, represented
by t, in order to forecast model performance. It is possible to
construct a nonstationary kernel from this basis set:

k(t, t′) =
βα

(t+ t′ + β)α
, (63)

where α and β are hyperparameters that control the shape of
the kernel. This kernel is used within a Gaussian process to
jointly model (x, t) pairs. Given the ability to forecast curves,
[149] then uses an entropy search-based acquisition function
in order to determine whether to freeze a currently running
experiment, thaw a previous experiment in order to resume
training, or start a new experiment.

Rather than constructing a kernel, [48], [47] built a basis set
manually based on previously collected training curves. This
basis set is then used with Bayesian linear regression in order
to forecast training curves, and an early stopping rule is given
based on the probability of improvement using the forecasted
value.

An alternative view of this procedure is to consider Gaussian
process models that incorporate partial feedback. This view
is used in [122], where they construct a Gaussian process
with non-stationary noise process that starts high when the
experiment begins, and decays over time.

IX. CONCLUDING REMARKS

In this paper we have introduced Bayesian optimization
from a modelling perspective. Beginning with the Beta-
Bernoulli and linear models, and extending them to non-
parametric models, we recover a wide range of approaches
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to Bayesian optimization that have been introduced in the
literature. There has been a great deal of work that has
focussed heavily on designing acquisition functions, however
we have taken the perspective that the importance of this plays
a secondary role to the choice of the underlying surrogate
model.

In addition to outlining different modelling choices, we
have considered many of the design decisions that are used to
build Bayesian optimization systems. We further highlighted
relevant theory as well as practical considerations that are used
when applying these techniques to real-world problems. We
provided a history of Bayesian optimization and related fields
and surveyed some of the many successful applications of
these methods. We finally discussed extensions of the basic
framework to new problem domains, which often require new
kinds of surrogate models.

Although the underpinnings of Bayesian optimization are
quite old, the field itself is undergoing a resurgence, aided by
new problems, models, theory, and software implementations.
In this paper, we have attempted to summarize the current state
of Bayesian optimization methods; however, it is clear that the
field itself has only scratched the surface and that there will
surely be many new problems, discoveries, and insights in the
future.
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[113] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical Bernstein
stopping. In International Conference on Machine Learning, pages
672–679. ACM, 2008.
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N. de Freitas. An entropy search portfolio. In NIPS workshop on
Bayesian Optimization, 2014.

[140] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems,
pages 1257–1264, 2005.

[141] E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian
processes. In Advances in Neural Information Processing Systems,
2003.

[142] J. Snoek. Bayesian Optimization and Semiparametric Models with Ap-
plications to Assistive Technology. PhD thesis, University of Toronto,
Toronto, Canada, 2013.

[143] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. In Advances in Neural
Information Processing Systems, pages 2951–2959, 2012.

[144] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. Patwary, Prabhat, and R. Adams. Scalable Bayesian optimization
using deep neural networks. In International Conference on Machine
Learning, 2015.

[145] J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams. Input warping
for Bayesian optimization of non-stationary functions. In International
Conference on Machine Learning, 2014.



24

[146] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design.
In International Conference on Machine Learning, pages 1015–1022,
2010.

[147] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. A. Osborne.
Raiders of the lost architecture: Kernels for Bayesian optimization in
conditional parameter spaces. arXiv preprint arXiv:1409.4011, 2014.

[148] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimiza-
tion. In Advances in Neural Information Processing Systems, pages
2004–2012, 2013.

[149] K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian
optimization. arXiv preprint arXiv:1406.3896, 2014.

[150] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294, 1933.

[151] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms. In Knowledge Discovery and Data Mining, pages
847–855, 2013.

[152] M. K. Titsias. Variational learning of inducing variables in sparse Gaus-
sian processes. In International Conference on Artificial Intelligence
and Statistics, pages 567–574, 2009.

[153] H. P. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause. Explore-
exploit in top-N recommender systems via Gaussian processes. In
Proceedings of the 8th ACM Conference on Recommender systems,
pages 225–232. ACM, 2014.

[154] E. Vazquez and J. Bect. Convergence properties of the expected
improvement algorithm with fixed mean and covariance functions. J.
of Statistical Planning and Inference, 140:3088–3095, 2010.

[155] E. Vazquez and J. Bect. Convergence properties of the expected
improvement algorithm with fixed mean and covariance functions.
Journal of Statistical Planning and Inference, 140(11):3088–3095,
2010.

[156] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach
to the global optimization of expensive-to-evaluate functions. J. of
Global Optimization, 44(4):509–534, 2009.

[157] Z. Wang and N. de Freitas. Theoretical analysis of Bayesian optimisa-
tion with unknown Gaussian process hyper-parameters. arXiv preprint
arXiv:1406.7758, 2014.

[158] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas. Bayesian multi-scale
optimistic optimization. In AI and Statistics, pages 1005–1014, 2014.

[159] Z. Wang, M. Zoghi, D. Matheson, F. Hutter, and N. de Freitas.
Bayesian optimization in high dimensions via random embeddings. In
International Joint Conference on Artificial Intelligence, pages 1778–
1784, 2013.

[160] B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design
of computer experiments to minimize integrated response functions.
Statistica Sinica, 10:1133–1152, 2000.

[161] D. Yogatama and G. Mann. Efficient transfer learning method for
automatic hyperparameter tuning. In AI and Statistics, pages 1077–
1085, 2014.

[162] D. Yogatama and N. A. Smith. Bayesian optimization of text repre-
sentations. arXiv preprint arXiv:1503.00693, 2015.

[163] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object
detection with deep convolutional networks via Bayesian optimization
and structured prediction. In IEEE Computer Vision and Pattern
Recognition Conference, 2015.
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