Finitary Languages
Presentation for LATA 2011

Krishnendu Chatterjee & Nathanaël Fijalkow

IST Austria (Institute of Science and Technology, Austria)

May 30th, 2011
Introduction: system specification

- non-terminating (e.g. web server);
- discrete time;
- non-deterministic.
Introduction: system specification

- non-terminating;
- discrete time;
- non-deterministic.

- a finite alphabet Σ represent propositions; (e.g. “available”, “waiting”, “critical error”)
- runs are infinite words $w = w_0 \cdot w_1 \ldots w_n \ldots \in \Sigma^\omega$;
- specification given as a language $L \subseteq \Sigma^\omega$.
Introduction: system specification

queue strategy
Introduction: system specification

- ω-regular language: safety + liveness;
- liveness properties: “something good happens eventually”.
Classical liveness properties

A first example, Büchi:

- a given set of propositions appears infinitely often;
 (e.g. “job done”)
Classical liveness properties

A first example, Büchi:
- a given set of propositions appears infinitely often;

A second example, Streett (fairness):
- propositions are either requests R_i or grants G_i;
- if R_i is requested infinitely often, then it is serviced (G_i) infinitely often.
Classical liveness properties

A first example, Büchi:
- a given set of propositions appears infinitely often;

A second example, Streett (fairness):
- propositions are either requests R_i or grants G_i;
- if R_i is requested infinitely often, then it is serviced (G_i) infinitely often.

(special case: parity)
Outline

1 Motivations

2 Characterizations

3 Expressions
A drawback of classical ω-regular specifications

stack strategy
A drawback of classical ω-regular specifications

Streett specification: for $i \in \{1, 2\}$, if R_i is requested infinitely often, then it is serviced infinitely often.
A drawback of classical ω-regular specifications

Streett specification: for $i \in \{1, 2\}$, if R_i is requested infinitely often, then it is serviced infinitely often.

Satisfied, but the “service time” may grow unbounded!
A stronger formulation of liveness: finitary liveness [AH94]

Intuitively: there exists an unknown, fixed bound b such that good things happen within b transitions.
A stronger formulation of liveness: finitary liveness [AH94]

Intuitively: there exists an unknown, fixed bound \(b \) such that good things happen within \(b \) transitions.

unknown: retain independence from granularity.
A stronger formulation of liveness: finitary liveness [AH94]

Intuitively: there exists an unknown, fixed bound b such that good things happen within b transitions.

It can be expressed as a finitary operator on languages:

$$\text{fin}(L) = \bigcup \{M \mid M \text{ closed and } \omega\text{-regular, } M \subseteq L\}$$
A stronger formulation of liveness: finitary liveness [AH94]

Intuitively: there exists an unknown, fixed bound b such that good things happen within b transitions.

It can be expressed as a finitary operator on languages:

$$\text{fin}(L) = \bigcup \{M \mid M \text{ closed and } \omega\text{-regular, } M \subseteq L\}$$

- closed: involves Cantor topology;
- ω-regular: involves ω-regularity;
- restriction operator: $\text{fin}(L) \subseteq L$.
Back to the example

Finitary Streett specification: there exists a bound b, such that in the limit, for $i \in \{1, 2\}$, if R_i is requested, then it is serviced within b transitions.
Back to the example

Finitary Streett specification: there exists a bound b, such that in the limit, for $i \in \{1, 2\}$, if R_i is requested, then it is serviced within b transitions.
Back to the example

Finitary Streett specification: there exists a bound b, such that in the limit, for $i \in \{1, 2\}$, if R_i is requested, then it is serviced within b transitions.
Back to the example

Finitary Streett specification: there exists a bound b, such that in the limit, for $i \in \{1, 2\}$, if R_i is requested, then it is serviced within b transitions.

Satisfied!
Outline

1. Motivations
2. Characterizations
3. Expressions
Describing classical finitary objectives: Büchi

Let $F \subseteq \Sigma,$

$$\text{Büchi}(F) = \{ w \mid \text{Inf}(w) \cap F \neq \emptyset \}$$

$\text{Inf}(w)$ is the set of propositions that appear infinitely often in $w.$
Describing classical finitary objectives: Büchi

Let $F \subseteq \Sigma$,

$$\text{Büchi}(F) = \{ w \mid \text{Inf}(w) \cap F \neq \emptyset \}$$

$$\text{next}_k(w, F) = \inf\{ k' - k \mid k' \geq k, w_{k'} \in F \}$$
Describing classical finitary objectives: Büchi

Let $F \subseteq \Sigma$,

$$\text{Büchi}(F) = \{w \mid \inf(w) \cap F \neq \emptyset\}$$

$$\text{next}_k(w, F) = \inf\{k' - k \mid k' \geq k, w_{k'} \in F\}$$

$$w = v_0 \ldots v_k \underbrace{v_{k+1} \ldots v_{k'}}_{\not\in F} \underbrace{v_{k'}_{-1} \ldots v'_{k'}}_{\in F}$$

waiting time from the k^{th} position.
Describing classical finitary objectives: Büchi

Let $F \subseteq \Sigma$,

$$\text{Büchi}(F) = \{w \mid \text{Inf}(w) \cap F \neq \emptyset\}$$

$$\text{next}_k(w, F) = \inf\{k' - k \mid k' \geq k, w_{k'} \in F\}$$

Lemma

$$\text{fin}(\text{Büchi}(F)) = \{w \mid \limsup_k \text{next}_k(w, F) < \infty\}$$
Topological classification in Borel hierarchy

Theorem
fin(\text{Büchi}(F)), \text{fin}(\text{Parity}(p)) \text{ and } \text{fin}(\text{Streett}(R, G)) \text{ are } \Sigma_2\text{-complete.}
Automata-theoretic expressive power

We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett.
We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett. A finitary Büchi automaton is $\mathcal{A} = (Q, \Sigma, Q_0, \delta, \text{finBüchi}(F))$.
Automata-theoretic expressive power

We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett. A finitary Büchi automaton is $A = (Q, \Sigma, Q_0, \delta, \text{finBüchi}(F))$.

$$\{D, N\} \cdot \{\varepsilon \text{ (classical)}\} \cdot \{F \text{ (finitary)}\} \cdot \{B \text{ (Büchi)}, P \text{ (parity)}, S \text{ (Streett)}\}$$
Figure: Expressive power classification

- \(\omega \text{-reg} \)
- \(DB \)
- \(DFB \)
- \(DFP = DFS \)
- \(NFB = NFP = NFS \)
Outline

1. Motivations
2. Characterizations
3. Expressions
Regular and ω-regular expressions

Regular expressions defines regular languages over finite words:

$$L := \emptyset | \varepsilon | \sigma | L \cdot L | L^* | L + L; \quad \sigma \in \Sigma$$

concatenation star union

ω-regular languages are finite union of $L_1 \cdot L_2^\omega$, where L_1 and L_2 are regular languages over finite words.
The bound operator B [BC06]

$$L^\omega = \{ u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L \}$$
The bound operator B [BC06]

$$L^\omega = \{u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L\}$$

Example: $(a^* \cdot b)^\omega$ expresses “infinitely many b’s”.
The bound operator B [BC06]

$$L^\omega = \{u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L\}$$

Example: $(a^* \cdot b)^\omega$ expresses “infinitely many b’s”.

Example: $(a^B \cdot b)^\omega$ expresses “infinitely many b’s with an upper bound on the length of a’s blocks”.
Star-free ωB-regular expressions

B-regular languages are described by the grammar:

$$M := \emptyset \mid \varepsilon \mid \sigma \mid M \cdot M \mid M^* \mid M^B \mid M + M; \quad \sigma \in \Sigma$$

ωB-regular languages are finite union of $L \cdot M^\omega$, where

- L is a regular language over finite words;
- M is a B-regular language over infinite words.
Star-free ωB-regular expressions

B-regular languages are described by the grammar:

$$M := \emptyset \mid \varepsilon \mid \sigma \mid M \cdot M \mid M^* \mid M^B \mid M + M; \quad \sigma \in \Sigma$$

ωB-regular languages are finite union of $L \cdot M^\omega$, where
- L is a regular language over finite words;
- M is a B-regular language over infinite words.

Star-free ωB-regular languages are finite union of $L \cdot M^\omega$, where
- L is a regular language over finite words;
- M is a **star-free** B-regular language over infinite words.

“no star operator under the ω-operator”.
Equivalence

Theorem

NFB (non-deterministic finitary Büchi automata) has exactly the same expressive power as star-free ωB-regular expressions.
First example: $c^* \cdot (a^B \cdot b)^{\omega}$ is a star-free ωB-regular expression,
Examples

First example: $c^* \cdot (a^B \cdot b)\omega$ is a star-free ωB-regular expression, it expresses “a finite number of c’s followed by an infinite word over alphabet $\{a, b\}$, with infinitely many b’s and an upper bound on the length of a’s blocks”.
Examples

First example: \(c^* \cdot (a^B \cdot b)^\omega\) is a star-free \(\omega B\)-regular expression, it expresses “a finite number of \(c\)’s followed by an infinite word over alphabet \(\{a, b\}\), with infinitely many \(b\)’s and an upper bound on the length of \(a\)’s blocks”.

Second example: \((a^B \cdot b \cdot (a^* \cdot b)^*)^\omega\) is not a star-free \(\omega B\)-regular expression,
Examples

First example: \(c^* \cdot (a^B \cdot b)^\omega \) is a star-free \(\omega B \)-regular expression, it expresses “a finite number of \(c \)’s followed by an infinite word over alphabet \(\{a, b\} \), with infinitely many \(b \)’s and an upper bound on the length of \(a \)’s blocks”.

Second example: \((a^B \cdot b \cdot (a^* \cdot b)^*)^\omega \) is not a star-free \(\omega B \)-regular expression, it expresses “words of the form \(a^{n_0} \cdot b \cdot a^{n_1} \cdot b \ldots \) such that \(\lim \inf n_i < \infty \)”.
Conclusion

- finitary objectives is a refinement for specification purposes;
- for ω-regular languages, topological, logical and automata-theoretic studies are well-known;
- for finitary languages, all were missing; we established:
 - topological classification;
 - automata-theoretic characterization, comparison to ω-regular languages, closure properties;
 - characterization using by ωB-regular expressions.
Conclusion

- finitary objectives is a refinement for specification purposes;
- for ω-regular languages, topological, logical and automata-theoretic studies are well-known;
- for finitary languages, all were missing; we established:
 - topological classification;
 - automata-theoretic characterization, comparison to ω-regular languages, closure properties;
 - characterization using by ωB-regular expressions.

Future work:

- games (work in progress);
- a finitary logic, Myhill-Nerode equivalence relations, ...
Bibliography

The end

Thank you for your attention!