Deciding the value 1 problem
for probabilistic leaktight automata

Séminaire Automates

Nathanaël Fijalkow,
joint work with Hugo Gimbert and Youssouf Oualhadj

LIAFA, CNRS & Université Denis Diderot - Paris 7, France
nath@liafa.jussieu.fr

November 25th, 2011
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Outline

1. **The value 1 problem for probabilistic automata**
 - Definitions
 - Deciding the isolation problem

2. **An algebraic solution to the limitedness problem for distance automata**
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. **Towards an algebraic treatment of probabilistic automata**
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Probabilistic automata (Rabin, 1963)

\[\mathbb{P}_A : A^* \rightarrow [0, 1] \]
Cutpoint and value

Fix $0 < \lambda \leq 1$, define:

$$L_\lambda = \{w \mid \mathbb{P}_A(w) \geq \lambda\}.$$
Cutpoint and value

Fix $0 < \lambda \leq 1$, define:

$$L_\lambda = \{w \mid \mathbb{P}_A(w) \geq \lambda\}.$$

λ is isolated if there exists $\delta > 0$ such that for all $w \in A^*$, we have

$$|\mathbb{P}_A(w) - \lambda| \geq \delta$$
Cutpoint and value

Fix $0 < \lambda \leq 1$, define:

$$L_\lambda = \{ w | P_A(w) \geq \lambda \}.$$

λ is isolated if there exists $\delta > 0$ such that for all $w \in A^*$, we have

$$|P_A(w) - \lambda| \geq \delta$$

Theorem (Rabin, 1963)

If λ is isolated, then L_λ is a regular language.
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
The isolation problem

Fix $0 \leq \lambda \leq 1$, the isolation problem is:

Instance: a probabilistic automaton A

Question: is λ isolated in A?
The isolation problem

Fix $0 \leq \lambda \leq 1$, the isolation problem is:

Instance: a probabilistic automaton A

Question: is λ isolated in A?

For $0 < \lambda < 1$, Bertoni showed that this is undecidable (in 1974)!
The value 1 problem

For $\lambda = 1$ the isolation problem can be formulated as: “are there words accepted by A with probability arbitrarily close to 1”.
The value 1 problem

For $\lambda = 1$ the isolation problem can be formulated as: “are there words accepted by \mathcal{A} with probability arbitrarily close to 1”.
Equivalently, define $\text{val}(\mathcal{A}) = \sup_w P_{\mathcal{A}}(w)$, then the problem is:

$\text{val}(\mathcal{A}) \overset{?}{=} 1$.
The value 1 problem

For $\lambda = 1$ the isolation problem can be formulated as: “are there words accepted by A with probability arbitrarily close to 1”.

Equivalently, define $\text{val}(A) = \sup_w P_A(w)$, then the problem is:

“$\text{val}(A) \geq 1$”.

Theorem (Gimbert, Oualhadj, 2010)

The value 1 problem is undecidable.
An intuition

has value 1 if and only if $x > \frac{1}{2}$.
A very restricted case

Theorem (Fijalkow, Gimbert, Oualhadj, 2011)

The isolation problem is (still) undecidable if we randomise only on one transition.
Sketch of proof (1)
Sketch of proof (2)

Given A reading words from A^*, we construct B over a new alphabet B, with one probabilistic transition, and a morphism $\hat{_} : A^* \rightarrow B^*$ such that:

$$\forall w \in A^*, P_A(w) = P_B(\hat{w}).$$
Sketch of proof (2)

Given A reading words from A^*, we construct B over a new alphabet B, with one probabilistic transition, and a morphism $\hat{_}: A^* \rightarrow B^*$ such that:

$$\forall w \in A^*, \mathbb{P}_A(w) = \mathbb{P}_B(\hat{w}).$$

$$\hat{a} = \text{check}(a, q_0) \cdot \text{apply}(a, q_0) \ldots \text{check}(a, q_{n-1}) \cdot \text{apply}(a, q_{n-1}) \cdot \text{merge}.$$
Given A reading words from A^*, we construct B over a new alphabet B, with one probabilistic transition, and a morphism $\hat{\cdot} : A^* \rightarrow B^*$ such that:

$$\forall w \in A^*, \mathbb{P}_A(w) = \mathbb{P}_B(\hat{w}).$$

$$\hat{a} = \text{check}(a, q_0) \cdot \ldots \cdot \text{apply}(a, q_0) \ldots \text{check}(a, q_{n-1}) \cdot \ldots \cdot \text{apply}(a, q_{n-1}) \cdot \text{merge}.$$
Sketch of proof (3)
Sketch of proof (3)

\[\mathcal{A} \]

\[a \]

\[p \rightarrow p \]

\[q \rightarrow r \]

\[r \rightarrow q \]

\[\mathcal{B} \]

\[\text{check}(a, p) \cdot \ast \cdot \text{apply}(a, p) \]

\[p \rightarrow \tilde{p} \]

\[q \]

\[r \]
Sketch of proof (3)

\[\mathcal{A} \]

\[a \]

\[p \rightarrow p \]

\[q \rightarrow r \]

\[r \rightarrow q \]

\[\mathcal{B} \]

\[\text{check}(a, q) \cdot * \cdot \text{apply}(a, q) \]

\[p \rightarrow \tilde{p} \]

\[q \rightarrow \tilde{r} \]

\[r \rightarrow q \]
Sketch of proof (3)

\[\mathcal{A} \]

\[
\begin{align*}
a & \quad \rightarrow \quad p \\
p & \quad \rightarrow \quad p \\
q & \quad \rightarrow \quad r \\
r & \quad \rightarrow \quad q
\end{align*}
\]

\[\mathcal{B} \]

\[
\begin{align*}
\text{check}(a, r) \cdot \ast \cdot \text{apply}(a, r) \\
p & \quad \rightarrow \quad \tilde{p} \\
q & \quad \rightarrow \quad \tilde{r} \\
r & \quad \rightarrow \quad \tilde{q}
\end{align*}
\]
Sketch of proof (3)

\[A \]

\[p \quad a \quad q \]

\[r \quad p \quad q \]

\[B \]

\[p \quad \tilde{p} \quad p \]

\[q \quad \tilde{r} \quad r \]

\[r \quad \tilde{q} \quad q \]

merge
Sketch of proof (4)

\[\mathcal{B} \text{ is unable to check that a letter check}(a, q) \text{ is actually followed by the corresponding apply}(a, q): \text{inbetween, it will go through } s_* \text{ and “forget” the state it was in.} \]
Sketch of proof (4)

B is unable to check that a letter check(a, q) is actually followed by the corresponding apply(a, q): inbetween, it will go through s_* and “forget” the state it was in.

$$\sup_{n} \mathbb{P}_{B}((\hat{w} \cdot \text{finish})^n) = \mathbb{P}_{A}(w)$$
Assume $p \in F$, $q \notin F$ and i is the initial state of a (deterministic) automaton recognizing $(\hat{A}^* \cdot \text{finish})^*$.

![Diagram](image)
Our objective

Define a large and interesting subclass of probabilistic automata for which the value 1 problem is decidable.
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Probabilistic automata VS distance automata

Consider a semiring \((\mathcal{K}, +, \cdot)\). An automaton computes in the semiring \(\mathcal{K}\) if \(\text{val}(w) = \sum\{\Pi(\rho) \mid \rho \text{ is a run over } w\}\).
Probabilistic automata VS distance automata

Consider a semiring \((\mathcal{K}, +, \cdot)\). An automaton computes in the semiring \(\mathcal{K}\) if \(\text{val}(w) = \sum \{ \Pi(\rho) \mid \rho \text{ is a run over } w \} \).

- Classical automata compute in the boolean semiring.
- Probabilistic automata compute in \((\mathbb{R}, +, \cdot)\) (there is a catch here).
- Distance automata compute in the tropical semiring \((\mathbb{N} \cup \{\infty\}, \min, +)\). Here is an example:
The value 1 problem VS the limitedness problem

The value 1 problem for probabilistic automata is:

“are there words accepted with probability arbitrarily close to 1?”.

The unlimitedness problem for distance automata is:

“are there words with arbitrarily high value?”.

The value 1 problem VS the limitedness problem

The value 1 problem for probabilistic automata is:

“are there words accepted with probability arbitrarily close to 1?”.

undecidable

The unlimitedness problem for distance automata is:

“are there words with arbitrarily high value?”.

decidable (Hashiguchi, 1988)
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Weighted automata using algebra (Schützenberger)

\[\langle a \rangle = \begin{pmatrix} 0 & \infty & \infty \\ \infty & 1 & \infty \\ \infty & \infty & 0 \end{pmatrix} \quad \langle b \rangle = \begin{pmatrix} 0 & 0 & \infty \\ \infty & \infty & 0 \\ \infty & \infty & 0 \end{pmatrix} \]

\[I = \begin{pmatrix} 0 & 0 & \infty \end{pmatrix} \quad F = \begin{pmatrix} \infty \\ 0 \\ 0 \end{pmatrix} \]
Weighted automata using algebra (Schützenberger)

\[
\langle a \rangle = \begin{pmatrix}
0 & \infty & \infty \\
\infty & 1 & \infty \\
\infty & \infty & 0
\end{pmatrix} \quad \quad \langle b \rangle = \begin{pmatrix}
0 & 0 & \infty \\
\infty & \infty & 0 \\
\infty & \infty & 0
\end{pmatrix}
\]

\[
I \cdot \langle aaabaa \rangle \cdot F = \begin{pmatrix}
0 & 0 & \infty \\
\infty & \infty & 3 \\
\infty & \infty & 0
\end{pmatrix} = 2
\]

\[
\left\{ \begin{array}{l}
k \in \mathbb{N} \quad \text{best run has value } k \\
\infty \quad \text{no run}
\end{array} \right.
\]
Towards Leung’s algorithm: \(\dagger \)-expressions

\[
\text{val}((a^n \cdot b)^n \cdot a^n) = n
\]
Towards Leung’s algorithm: $\#$-expressions

$$\text{val}((a^n \cdot b)^n \cdot a^n) = n$$

An unlimitedness witness is $(a^\# \cdot b)^\# \cdot a^\#$.
Towards Leung’s algorithm: stabilization

\[\langle a \rangle = \begin{pmatrix}
0 & \infty & \infty & \infty & \infty \\
\infty & 1 & \infty & \infty & \infty \\
\infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty \\
\infty & \infty & \infty & \infty & 0
\end{pmatrix} \]

\[\langle a^n \rangle = \begin{pmatrix}
0 & \infty & \infty & \infty & \infty \\
\infty & n & \infty & \infty & \infty \\
\infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty \\
\infty & \infty & \infty & \infty & 0
\end{pmatrix} \]

\[\langle a^\# \rangle = \begin{pmatrix}
0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty \\
\infty & \infty & 0 & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty \\
\infty & \infty & \infty & \infty & 0
\end{pmatrix} \]
Towards Leung’s algorithm: stabilization

\[\langle a \rangle = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 1 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} \quad \langle a^n \rangle = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & n & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} \]

\[\langle a^\# \rangle = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} \]

\{ \begin{align*}
 k \in \mathbb{N} & \quad \text{best run has value } k \\
 \infty & \quad \text{arbitrarily high value} \\
 \infty & \quad \text{no run}
\end{align*} \]
Leung’s algorithm

To ensure termination we project the tropical semiring \((\mathbb{N} \cup \infty, \min, +)\) into the finite semiring \((\{0, 1, \infty\}, \min, +)\).
Leung’s algorithm

To ensure termination we project the tropical semiring \((\mathbb{N} \cup \infty, \min, +)\) into the finite semiring \((\{0, 1, \infty\}, \min, +)\).

Compute a monoid inside the monoid \(\mathcal{M}_{\mathbb{Q} \times \mathbb{Q}}(\{0, 1, \infty\}, \min, +)\).

- Compute \(\langle a \rangle\) for \(a \in A\).
- Close under product and stabilization.
- If there exists a matrix \(M\) such that \(I \cdot M \cdot F = \infty\) then “unlimited”, otherwise “limited”.
Leung’s algorithm: termination and correction

Termination: the monoid $\mathcal{M}_{Q \times Q}(\{0, 1, \infty\}, \text{min}, +)$ is finite.
Leung’s algorithm: termination and correction

Termination: the monoid $\mathcal{M}_{Q \times Q}(\{0, 1, \infty\}, \min, +)$ is finite.

Correction: the proof is complicated, and relies on Simon’s theorem.
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Our objective (again)

Decide the value 1 problem for a subclass of probabilistic automata, by **algebraic** and **non-numerical** means.
Our objective (again)

Decide the value 1 problem for a subclass of probabilistic automata, by algebraic and non-numerical means.

- **algebraic**: focus on the automaton structure,
- **non-numerical**: abstract away the values.
Our objective (again)

Decide the value 1 problem for a subclass of probabilistic automata, by \textit{algebraic} and \textit{non-numerical} means.

- \textbf{algebraic}: focus on the automaton structure,
- \textbf{non-numerical}: abstract away the values.

Hence we consider non-deterministic automata: we project \((\mathbb{R}, +, \cdot)\) into the boolean semiring \((\{0, 1\}, +, \cdot)\).
Our objective (again)

Decide the value 1 problem for a subclass of probabilistic automata, by **algebraic** and **non-numerical** means.

- **algebraic**: focus on the automaton structure,
- **non-numerical**: abstract away the values.

Hence we consider non-deterministic automata: we project \((\mathbb{R}, +, \cdot)\) into the boolean semiring \((\{0, 1\}, +, \cdot)\).
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Defining stabilization

$\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.
Defining stabilization

\[\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \langle a^\# \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \]

In \(\langle a \rangle \), the state 1 is transient and the state 2 is recurrent.
Defining stabilization

\[
\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \langle a^\# \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
\]

In \(\langle a \rangle \), the state 1 is transient and the state 2 is recurrent.

\[
M^\#(s, t) = \begin{cases}
1 & \text{if } M(s, t) = 1 \text{ and } t \text{ recurrent in } M, \\
0 & \text{otherwise.}
\end{cases}
\]

(This definition gives an asymmetric monoid, this is unusual.)
A first algorithm

Compute a monoid inside the finite monoid \(\mathcal{M}_{\mathbb{Q} \times \mathbb{Q}}(\{0, 1\}, +, \cdot) \).

- Compute \(\langle a \rangle \) for \(a \in A \):

\[
\langle a \rangle(s, t) = \begin{cases}
1 & \text{if } \mathbb{P}_A(s \xrightarrow{a} t) > 0, \\
0 & \text{otherwise}.
\end{cases}
\]

- Close under product and stabilization.
A first algorithm

Compute a monoid inside the **finite** monoid $\mathcal{M}_{\mathbb{Q} \times \mathbb{Q}}(\{0, 1\}, +, \cdot)$.

- Compute $\langle a \rangle$ for $a \in A$:
 \[
 \langle a \rangle(s, t) = \begin{cases}
 1 & \text{if } \mathbb{P}_A(s \xrightarrow{a} t) > 0, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- Close under product and stabilization.
- If there exists a matrix M such that
 \[
 \forall t \in \mathbb{Q}, \quad M(s_0, t) = 1 \Rightarrow t \in F
 \]
 then “A has value 1”, otherwise “A does not have value 1”.

An example
An example
An example
An example
An example
An example
Correctness

Theorem

If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \Rightarrow t \in F$$

then A has value 1.
Correctness

Theorem

If there exists a matrix \(M \) such that

\[
\forall t \in Q, \quad M(s_0, t) = 1 \implies t \in F
\]

then \(A \) has value 1.

But the value 1 problem is undecidable, so…
No completeness

Left and right parts are symmetric, so for all M:

\[M(0, L_2) = 1 \iff M(0, R_2) = 1. \]
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
An example
An example
An example

\[\langle a^\# \cdot b \rangle \]
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
A three-valued semiring

Instead of \((\{0, 1\}, +, \cdot)\) we compute in \((\{0, \varepsilon, 1\}, +, \cdot)\), where \(0 < \varepsilon < 1\).
A three-valued semiring

Instead of \((\{0, 1\}, +, \cdot)\) we compute in \((\{0, \varepsilon, 1\}, +, \cdot)\), where \(0 < \varepsilon < 1\).

\[
\begin{array}{c|c|c|c}
+ & 0 & \varepsilon & 1 \\
0 & 0 & \varepsilon & 1 \\
\varepsilon & \varepsilon & \varepsilon & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c|c}
\cdot & 0 & \varepsilon & 1 \\
0 & 0 & 0 & 0 \\
\varepsilon & 0 & \varepsilon & \varepsilon \\
1 & 0 & \varepsilon & 1 \\
\end{array}
\]
The algorithm

- Compute $\langle a \rangle$ for $a \in A$:

 \[
 \langle a \rangle(s, t) = \begin{cases}
 1 & \text{if } \mathbb{P}_A(s \xrightarrow{a} t) > 0, \\
 0 & \text{otherwise.}
 \end{cases}
 \]

- Close under product and stabilization:

 \[
 M^\#(s, t) = \begin{cases}
 1 & \text{if } M(s, t) = 1 \text{ and } t \text{ recurrent in } M, \\
 \varepsilon & \text{if } M(s, t) = 1 \text{ and } t \text{ transient in } M, \\
 \varepsilon & \text{if } M(s, t) = \varepsilon, \\
 0 & \text{otherwise.}
 \end{cases}
 \]
The algorithm

- Compute $\langle a \rangle$ for $a \in A$:

$$\langle a \rangle(s, t) = \begin{cases}
1 & \text{if } \mathbb{P}_A(s \xrightarrow{a} t) > 0, \\
0 & \text{otherwise}.
\end{cases}$$

- Close under product and stabilization:

$$M^\#(s, t) = \begin{cases}
1 & \text{if } M(s, t) = 1 \text{ and } t \text{ recurrent in } M, \\
\varepsilon & \text{if } M(s, t) = 1 \text{ and } t \text{ transient in } M, \\
\varepsilon & \text{if } M(s, t) = \varepsilon, \\
0 & \text{otherwise}.
\end{cases}$$

- If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \Rightarrow t \in F$$

then “A has value 1”, otherwise “A does not have value 1”.
The control lemma

We say that a word w reify M in \mathcal{M}_A if:

- $M = \langle a \rangle$ and $w = a$;
- $M = M_1 \cdot M_2$ and there exists w_1 and w_2 reifying M_1 and M_2, respectively, such that $w = w_1 \cdot w_2$;
- $M = N^\#$ and there exists x_1, \ldots, x_n each reifying N, such that $w = x_1 \ldots x_n$ for some $n \geq 1$.
The control lemma

We say that a word \(w \) reify \(M \) in \(\mathcal{M}_A \) if:

- \(M = \langle a \rangle \) and \(w = a \);
- \(M = M_1 \cdot M_2 \) and there exists \(w_1 \) and \(w_2 \) reifying \(M_1 \) and \(M_2 \), respectively, such that \(w = w_1 \cdot w_2 \);
- \(M = N^\# \) and there exists \(x_1, \ldots, x_n \) each reifying \(N \), such that \(w = x_1 \ldots x_n \) for some \(n \geq 1 \).

Lemma (The control lemma)

For all \(M \) in \(\mathcal{M}_A \), for all words \(w \) reifying \(M \), for all states \(s, t \) in \(Q \), we have:

\[
M(s, t) \neq 0 \iff \mathbb{P}_A(s \xrightarrow{w} t) > 0.
\]
Leaktight automata

Definition
An automaton A is leaktight if for all M, we have

$$M(s, t) = \varepsilon \implies (s \text{ is transient}) \text{ or } (M(t, s) = 1).$$
Leaktight automata

Definition
An automaton A is leaktight if for all M, we have

$$M(s, t) = \varepsilon \implies (s \text{ is transient}) \text{ or } (M(t, s) = 1).$$

Theorem (Fijalkow, Gimbert, Oualhadj)

The value 1 problem is decidable for leaktight automata.
Outline

1. The value 1 problem for probabilistic automata
 - Definitions
 - Deciding the isolation problem

2. An algebraic solution to the limitedness problem for distance automata
 - Taking a step back: weighted automata
 - Leung’s algorithm

3. Towards an algebraic treatment of probabilistic automata
 - First tries
 - Leaks
 - The good semiring
 - The completeness proof using Simon’s theorem
Decomposition trees

Fact
The set \mathcal{M}_A computed by the algorithm is a stabilization monoid.

Definition
A decomposition tree of a word $w \in A^+$ is a finite unranked ordered tree, whose nodes have labels in (A^+, \mathcal{M}_A) and such that:

- the root is labeled by (w, u), for some $u \in \mathcal{M}_A$,
- every leaf is labeled by $(a, \langle a \rangle)$ where a is a letter,
- every internal node with two children labeled by (w_1, u_1) and (w_2, u_2) is labeled by $(w_1 \cdot w_2, u_1 \cdot u_2)$,
- for every internal node with three or more children, there exists $e \in E(M)$ such that the node is labeled by $(w_1 \ldots w_n, e^\#)$ and its children are labeled by $(w_1, e), \ldots, (w_n, e)$.
Bounding the height of a decomposition tree

In a decomposition tree, an iteration node is said discontinuous if $M^\# \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.
Bounding the height of a decomposition tree

In a decomposition tree, an iteration node is said discontinuous if
\(M^\# \neq M \). The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word \(w \in A^+ \) *has a decomposition tree whose span is less than*
\(3 \cdot |\mathcal{M}_A| \).
Bounding the height of a decomposition tree

In a decomposition tree, an iteration node is said discontinuous if $M^# \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word $w \in A^+$ has a decomposition tree whose span is less than $3 \cdot |M_A|$.

Lemma (Simon, 1990)

Let $M \in E(M_A)$, if $M^# \neq M$, then $M^# < \mathcal{J} M$.
Bounding the height of a decomposition tree

In a decomposition tree, an iteration node is said discontinuous if $M^\# \neq M$. The span of a decomposition tree is the maximal length of a path that contains no discontinuous path.

Theorem (Simon, 1990)

Every word $w \in A^+$ has a decomposition tree whose span is less than $3 \cdot |\mathcal{M}_A|$.

Lemma (Simon, 1990)

Let $M \in E(\mathcal{M}_A)$, if $M^\# \neq M$, then $M^\# < \mathcal{J} M$.

Corollary

*Every word $w \in A^+$ has a decomposition tree whose height is less than $3 \cdot |\mathcal{M}_A| \cdot J(\mathcal{A})$.***
Bounding the acceptance probability from below

Lemma

There exists a positive rational number \(\eta \) which depends only on \(A \) such that: for all words \(w \in A^+ \), there exists \(M \) in \(\mathcal{M}_A \) satisfying for all states \(s, t \in Q \),

\[
M(s, t) = 1 \Rightarrow \mathbb{P}_A(s \xrightarrow{w} t) \geq \eta.
\]
Bounding the acceptance probability from below

Lemma

There exists a positive rational number \(\eta \) *which depends only on* \(A \) *such that: for all words* \(w \in A^+ \), *there exists* \(M \) *in* \(M_A \) *satisfying for all states* \(s, t \in Q \),

\[
M(s, t) = 1 \Rightarrow \mathbb{P}_A(s \xrightarrow{w} t) \geq \eta.
\]

Proof idea: given \(w \), consider a decomposition tree of bounded height, and prove by induction that the lower bound \(2^{-h+1} \) holds at depth \(h \), going from leaves to the root.
The case of an iteration node (1)

The node is labelled by \((w_1 \ldots w_n, \langle u^\# \rangle)\) and its children are labelled by \((w_1, \langle u \rangle), \ldots, (w_n, \langle u \rangle)\), where \(\langle u \rangle\) is idempotent, and \(\eta\) a lower bound shared by the \(n \geq 3\) children.
The case of an iteration node (1)

The node is labelled by \((w_1 \ldots w_n, \langle u^\# \rangle)\) and its children are labelled by \((w_1, \langle u \rangle), \ldots, (w_n, \langle u \rangle)\), where \(\langle u \rangle\) is idempotent, and \(\eta\) a lower bound shared by the \(n \geq 3\) children.

Let \(s, t\) such that \(\langle u^\# \rangle(s, t) = 1\), then:

\[
P_A(s \xrightarrow{w_1 \ldots w_n} t) \geq P_A(s \xrightarrow{w_1} t) \cdot P_A(t \xrightarrow{w_2 \ldots w_n} t) \geq \eta^2.
\]
The case of an iteration node (1)

The node is labelled by $(w_1 \ldots w_n, \langle u \rangle)$ and its children are labelled by $(w_1, \langle u \rangle), \ldots, (w_n, \langle u \rangle)$, where $\langle u \rangle$ is idempotent, and η a lower bound shared by the $n \geq 3$ children.

Let s, t such that $\langle u \rangle(s, t) = 1$, then:

$$\mathbb{P}_A(s \xrightarrow{w_1 \ldots w_n} t) \geq \mathbb{P}_A(s \xrightarrow{w_1} t) \cdot \mathbb{P}_A(t \xrightarrow{w_2 \ldots w_n} t) \geq \eta^2.$$

The left inequality follows from induction hypothesis, since $\langle u \rangle(s, t) = 1$.

The case of an iteration node (2)

Consider the right inequality: $\mathbb{P}_A(t \xrightarrow{w_2 \ldots w_n} t) \geq \eta$

Let $C = \{q \mid \langle u \rangle(t, q) \neq 0\}$, we have:

$$\mathbb{P}_A(t \xrightarrow{w_2 \ldots w_n} t) = \sum_{q \in C} \mathbb{P}_A(t \xrightarrow{w_2 \ldots w_{n-1}} q) \cdot \mathbb{P}_A(q \xrightarrow{w_n} t) \geq \eta \geq \eta \cdot \sum_{q \in C} \mathbb{P}_A(t \xrightarrow{w_2 \ldots w_{n-1}} q) = \eta$$

Indeed, since t is recurrent and thanks to the leaktight assumption, we have $C \subseteq \{q \mid \langle u \rangle(q, t) = 1\}$, so the inequality follows from induction hypothesis, and the equality from the “control lemma”.
What I didn’t (and won’t) say

- One can decide whether an automaton is leaktight in PSPACE,
- The value 1 problem for probabilistic leaktight automata is PSPACE-complete,
- The class of leaktight automata subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,
- The class of leaktight automata is closed under parallel composition and synchronized product.
The end.

Thanks for your attention!