Deciding the value 1 problem for probabilistic leaktight automata

Nathanaël Fijalkow,
joint work with Hugo Gimbert and Youssouf Oualhadj

LIAFA, Université Paris 7, France,
University of Warsaw, Poland.

LICS, Dubrovnik, Croatia
June 26th 2012
Probabilistic automata (Rabin, 1963)

\[\mathbb{P}_A : A^* \rightarrow [0, 1] \]
The value 1 problem

The value 1 problem is, given a probabilistic automaton \mathcal{A}:

“are there words accepted by \mathcal{A} with arbitrarily high probability?”
The value 1 problem

The value 1 problem is, given a probabilistic automaton A:

“are there words accepted by A with arbitrarily high probability?”

Define $\text{val}(A) = \sup_w \mathbb{P}_A(w)$. An equivalent formulation of this problem is:

“$\text{val}(A) = 1$.”
The value 1 problem

The value 1 problem is, given a probabilistic automaton \(A \):

“are there words accepted by \(A \) with arbitrarily high probability?”

Define \(\text{val}(A) = \sup_w P_A(w) \). An equivalent formulation of this problem is:

“\(\text{val}(A) = 1 \).”

Theorem (Gimbert, Oualhadj, 2010)

The value 1 problem is undecidable.
Our objective

Decide the value 1 problem for a subclass of probabilistic automata, by algebraic and non-numerical means.
Decide the value 1 problem for a subclass of probabilistic automata, by **algebraic** and **non-numerical** means.

- **algebraic**: focus on the automaton structure,
- **non-numerical**: abstract away the values.
Our objective

Decide the value 1 problem for a subclass of probabilistic automata, by algebraic and non-numerical means.

- **algebraic**: focus on the automaton structure,
- **non-numerical**: abstract away the values.

Hence we consider non-deterministic automata:
Weighted automata using algebra (Schützenberger)

\[\langle a \rangle = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \langle b \rangle = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \]

\[I \cdot \langle abba \rangle \cdot F = 1 \quad \text{if and only if} \quad \mathbb{P}_A(abba) > 0 \]
The stabilization operation $\#$

\[
\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.
The stabilization operation \(\#$\)

\[
\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \langle a^# \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
\]

In \(\langle a \rangle\), the state 1 is transient and the state 2 is recurrent.
The stabilization operation $\#$

\[\langle a \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \langle a^\# \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \]

In $\langle a \rangle$, the state 1 is transient and the state 2 is recurrent.

"$M^\# = \lim_{n} M^n$"
A saturation algorithm

Compute a monoid inside the finite monoid $\mathcal{M}_{\mathbb{Q} \times \mathbb{Q}}(\{0, 1\}, +, \times)$.

- Compute $\langle a \rangle$ for $a \in A$
- Close under product and stabilization.
A saturation algorithm

Compute a monoid inside the finite monoid $\mathcal{M}_{Q \times Q}(\{0, 1\}, +, \times)$.

- Compute $\langle a \rangle$ for $a \in A$
- Close under product and stabilization.
- If there exists a matrix M such that

$$\forall t \in Q, \quad M(s_0, t) = 1 \implies t \in F$$

then “A has value 1”, otherwise “A does not have value 1”.
An example
An example

\[
\begin{array}{c}
\langle a \rangle \\
0 \rightarrow 1 \\
0 \rightarrow 1 \\
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow 1 \rightarrow F \\
0 \rightarrow 1 \rightarrow F \\
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow 1 \rightarrow F \\
0 \rightarrow 1 \rightarrow F \\
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow 1 \rightarrow F \\
0 \rightarrow 1 \rightarrow F \\
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow 1 \rightarrow F \\
0 \rightarrow 1 \rightarrow F \\
\end{array}
\]

\[
\begin{array}{c}
0 \rightarrow 1 \rightarrow F \\
0 \rightarrow 1 \rightarrow F \\
\end{array}
\]
An example
An example
An example

\[\langle a^\# \rangle \]

\[\langle b \rangle \]

\[\langle a^\# \cdot b \rangle \]
An example
An example

\[
\langle a \rangle \\
\langle a^\# \rangle \\
\langle b \rangle \\
\langle a^\# \cdot b \rangle \\
\langle (a^\# \cdot b)^\# \rangle
\]
Correct, but not complete

Theorem (Correctness)

If the algorithm answers “A has value 1” then A has value 1.
Correct, but not complete

Theorem (Correctness)

If the algorithm answers “A has value 1” then A has value 1.

But the value 1 problem is undecidable, so the converse cannot hold!
Completeness in the absence of leaks

Definition
An automaton A is leaktight if it has no leak.

Theorem (Completeness)
If A is leaktight and has value 1,

then the algorithm answers “A has value 1”.

The proof relies on Simon’s factorization forest theorem.
A leak

Diagram:

- Circles labeled 1, 2, 3
- Arrows labeled 'a', 'b', and 'a, b'
-Node 1 has a loop labeled 'a'
- Node 2 has a loop labeled 'b'
- Node 3 has a loop labeled 'a' and an arrow labeled 'b' pointing to node 1
A leak

\[a, b, a \cdot (a^{\#} \cdot b) \]
There is a leak from 1 to 3.
Conclusion and perspectives

- We defined a subclass of probabilistic automata which subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,
Conclusion and perspectives

- We defined a subclass of probabilistic automata which subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,

- We defined an algebraic algorithm for the value 1 problem and proved its completeness for the class of leaktight automata.
Conclusion and perspectives

- We defined a subclass of probabilistic automata which subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,

- We defined an algebraic algorithm for the value 1 problem and proved its completeness for the class of leaktight automata.

- What does this algorithm actually compute?
Conclusion and perspectives

- We defined a subclass of probabilistic automata which subsumes all subclasses of probabilistic automata whose value 1 problem is known to be decidable,

- We defined an algebraic algorithm for the value 1 problem and proved its completeness for the class of leaktight automata.

- What does this algorithm actually compute?

- Can we use similar algorithms for other semirings?