
Deciding the Value 1 Problem of Probabilistic
Leaktight Automata

Nathanaël Fijalkow
LIAFA,

Université Denis Diderot-Paris 7, France
Email: nath@liafa.univ-paris-diderot.fr

Hugo Gimbert
CNRS, LaBRI

Université de Bordeaux, France
Email: hugo.gimbert@labri.fr

Youssouf Oualhadj
LaBRI

Université de Bordeaux, France
Email: youssouf.oualhadj@labri.fr

Abstract—The value 1 problem is a decision problem for
probabilistic automata over finite words: given a probabilistic
automaton, are there words accepted with probability arbitrarily
close to 1?

This problem was proved undecidable recently. We sharpen
this result, showing that the undecidability holds even if the
probabilistic automata have only one probabilistic transition.

Our main contribution is to introduce a new class of proba-
bilistic automata, called leaktight automata, for which the value
1 problem is shown decidable (and PSPACE-complete). We
construct an algorithm based on the computation of a monoid
abstracting the behaviors of the automaton, and rely on algebraic
techniques developed by Simon for the correctness proof. The
class of leaktight automata is decidable in PSPACE, subsumes
all subclasses of probabilistic automata whose value 1 problem
is known to be decidable (in particular deterministic automata),
and is closed under two natural composition operators.

Index Terms—Probabilistic automata, Value 1 problem, Alge-
braic Techniques in Automata Theory.

I. I NTRODUCTION

Probabilistic automata:Rabin invented a very simple yet
powerful model of probabilistic machine called probabilistic
automata, which, quoting Rabin, “are a generalization of finite
deterministic automata” [20]. A probabilistic automaton has
a finite set of statesQ and reads input words over a finite
alphabetA. The computation starts from the initial statei
and consists in reading the input word sequentially; the state
is updated according to transition probabilities determined
by the current state and the input letter. The probability to
accept a finite input word is the probability to terminate the
computation in one of the final statesF ⊆ Q.

From a language-theoretic perspective, several algorithmic
properties of probabilistic automata are known: while language
emptiness is undecidable [2], [14], [19], language equivalence
is decidable [9], [21], [24] as well as other properties [8],[10].

Rather than formal language theory, our initial motivation
for this work comes from control and game theory: we aim
at solving algorithmic questions about partially observable
Markov decision processes and stochastic games. For this
reason, we consider probabilistic automata as machines con-
trolled by a blind controller, who is in charge of choosing the
sequence of input letters in order to maximize the acceptance

This work was supported by French CNRS-PEPS Project “Stochastic
Games and Verification” and by the ANR projet FREC, 2010 BLAN 0202 02
FREC.

probability. While in a fully observable Markov decision
process the controller can observe the current state of the
process to choose adequately the next input letter, a blind
controller does not observe anything and its choice depends
only on the number of letters already chosen. In other words,
the strategy of a blind controller is an input word of the
automaton.

The value of a probabilistic automaton:With this game-
theoretic interpretation in mind, we define thevalueof a proba-
bilistic automaton as the supremum of acceptance probabilities
over all input words, and we would like to compute this value.
Unfortunately, as a consequence of an undecidability result
due to Paz [19], the value of an automaton is not computable
in general. However, the following decision problem was
conjectured by Bertoni to be decidable [2]:

Value 1 problem: Given a probabilistic automaton, does
the automaton have value1? In other words, are there words
accepted with probability arbitrarily close to1?

Actually, Bertoni formulated the value1 problem in a
different yet equivalent way: “Is the cut-point1 isolated or
not?”. There is indeed a close relation between the value1
problem and the notion of isolated cut-point introduced by
Rabin in the very first paper about probabilistic automata. A
real number0 ≤ λ ≤ 1 is an isolated cut-pointif there exists
a boundǫ > 0 such that the acceptance probability of any
word is either greater thanλ + ǫ or smaller thanλ − ǫ. A
theorem of Rabin states that if the cut-pointλ is isolated, then
the languageLλ = {w | PA(w) ≥ λ} is regular [20]. The
value1 problem can be reformulated in term of isolated cut-
point: an automaton has value1 if and only if 1 is not an
isolated cut-point. Bertoni proved that forλ strictly between
0 and1, the isolation ofλ is undecidable in general, and left
the special caseλ ∈ {0, 1} open.

Recently, the second and third authors of the present paper
proved that the value1 problem is undecidable as well [14].
However, probabilistic automata, and more generally par-
tially observable Markov decision processes and stochastic
games, are a widely used model of probabilistic machines
considered in many fields like software verification [1], [5],
image processing [11], computational biology [12] and speech
processing [18]. As a consequence, it is crucial to understand
which decision problems are algorithmically tractable for

probabilistic automata.
Our result: As a first step, we sharpen the undecidability

result: we prove that the value1 problem is undecidable
even for probabilistic automata with only one probabilistic
transition. This result motivated the introduction of a newclass
of probabilistic automata, calledleaktight automata, for which
the value1 problem is decidable. This subclass subsumes
all known subclasses of probabilistic automata sharing this
decidability property and is closed under parallel composition
and synchronized product. Our algorithm to decide the value1
problem computes in polynomial space a finite monoid whose
elements are directed graphs and checks whether it containsa
certain type of elements that are value1 witnesses.

Related works:The value1 problem was proved decid-
able for a subclass of probabilistic automata called♯-acyclic
automata [14]. Since the class of♯-acyclic automata is strictly
contained in the class of leaktight automata, the result of the
present paper extends the decidability result of [14]. Chadha et
al. [3] recently introduced the class of hierarchical probabilistic
automata, which is also strictly contained in the class of
leaktight automata. As a consequence of our result, the value
1 problem is decidable for hierarchical probabilistic automata.
Our proof techniques totally depart from the ones used in [3],
[14]. Instead, we make use of algebraic techniques and in
particular Simon’s factorization forest theorem, which was
successfully used to prove the decidability of the boundedness
problem for distance automata [23].

A very related work on probabilistic automata will also
appear [6]. The work of [6] focuses on probabilistic automata
over infinite words and identifies a new class of probabilistic
automata where the value 1 problem is decidable, called
structurally simple automata. An interesting direction offuture
work would be to investigate the connection between leaktight
and structurally simple automata.

Outline: We give the basic definitions in Section II. As
a first step we present our algorithm to decide the value1
problem of probabilistic leaktight automata in Section III,
which is followed by the decidability of the leaktight property
in Section IV. Next, in Section V, we present and prove the
technical core of the paper, called the lower bound lemma.
Finally, Section VI investigates properties and provides ex-
amples of leaktight automata. A full version with proofs is
available in [13].

II. D EFINITIONS

A. Probabilistic automata

Let Q be a finite set of states. A probability distribution
overQ is a row vectorδ of size|Q| whose coefficients are real
numbers from the interval[0, 1] and such that

∑
q∈Q δ(q) = 1.

A probabilistic transition matrixM is a square matrix in
[0, 1]Q×Q such that every row ofM is a probability distri-
bution overQ.

Definition 1 (Probabilistic automata). A probabilistic automa-
ton A is a tuple (Q,A, (Ma)a∈A, i, F), whereQ is a finite
set of states,A is the finite input alphabet,(Ma)a∈A are the

probabilistic transition matrices,i ∈ Q is the initial state and
F ⊆ Q is the set of accepting states.

For each lettera ∈ A, Ma(s, t) is the probability to go
from states to statet when reading lettera. Given an input
word w ∈ A∗, we denote byw(s, t) the probability to go
from states to statet when reading the wordw. Formally,
if w = a1a2 · · · an thenw(s, t) = (Ma1

·Ma2
· · ·Man

)(s, t).
Note that0 ≤ w(s, t) ≤ 1, for all wordsw and statess andt.
Furthermore, the definition of a probabilistic transition matrix
implies that

∑
t∈Q w(s, t) = 1 for all statess.

Definition 2 (Value and acceptance probability). The accep-
tance probabilityof a word w ∈ A∗ by A is PA(w) =∑

f∈F w(i, f). Thevalueof A, denoted val(A), is the supre-
mum of the acceptance probabilities over all possible input
words:

val(A) = sup
w∈A∗

PA(w) . (1)

B. The value1 problem for probabilistic automata

We are interested in the following decision problem:

Problem (Value1 Problem). Given a probabilistic automaton
A, decide whether val(A) = 1.

Whereas the formulation of the value1 problem only relies
qualitativelyon the asymptotic behaviour of probabilities (the
probability to be in non-final states should be arbitrarily small),
the answer to the value1 problem dependsquantitativelyon
the transition probabilities.

0L

⊤

R

⊥

a

b, 1

2

a, 1− x

b

a, x

a, b

b, 1

2

a, x

b

a, 1− x

a, b

Fig. 1. This automaton has value1 if and only if x > 1

2
.

For instance, the automaton depicted on Fig. 1 has value1
if and only if x > 1

2 and has value less or equal than half
otherwise (see also [1], [14] for similar results). Note that
in this example, the value is a discontinuous function of the
transition probabilities. The input alphabet is{a, b}, the initial
state is the central state0 and the unique final state is⊤. In
order to maximize the probability to reach⊤, playing twob’s
in a row is certainly not a good option because from state0
this ensures to reach the non-accepting absorbing state⊥ with
probability at least half. A smarter strategy consists in playing
oneb, then long sequences ofa’s followed by one letterb. If
x ≤ 1

2 , there is still no hope to have a word accepted with

2

probability strictly greater than half: starting from0, and after
a b and a sequence ofa’s, the probability to be inR is greater
or equal than the probability to be inL, thus playingbanb
from state0 the probability to reach the sink⊥ is greater or
equal than the probability to reach the final state⊤. However,
if x > 1

2 then a simple calculation shows that the probability
to accept(ban)2

n

tends to1 asn goes to infinity.

C. Undecidability in a very restricted case

As a first step we refine the undecidability result: we show
that the value1 problem is undecidable even when restricted
to probabilistic automata having exactly one probabilistic
transition. For such automata, there exists exactly one state
s and one lettera such that0 ≤ Ma(s, t) < 1 for all t,
and the remaining transitions are deterministic: for all triple
(s′, a′, t) ∈ S × A × S such that(s′, a′) 6= (s, a) then
Ma′(s′, t) ∈ {0, 1}.

Our proof goes by simulating a probabilistic automaton
A with a probabilistic automatonB which has only one
probabilistic transition, satisfying val(A) = 1 if and only if
val(B) = 1.

As a first attempt, we define the automatonB with a larger
alphabet: wheneverA reads a lettera, thenB reads a sequence
of actions â corresponding toa, allowing a state-by-state
simulation ofA. The unique probabilistic transition ofB is
used to generate random bits for the simulation. However, the
automatonB cannot check that the sequences of actions are
well-formed and allow for a faithful simulation. Hence we
modify the construction, such that to simulate the automaton
A on the input wordw, the automatonB now reads(ŵ)n for
arbitrarily largen. Each timeB reads a wordŵ, it simulates
A on w with a small yet positive probability and “delays” the
rest of the simulation, also with positive probability. This delay
process allows to run on parallel a deterministic automaton
which checks that the sequences of actions are well-formed,
ensuring a faithful simulation.

This undecidability result illustrates that even very restricted
classes of probabilistic automata may have an undecidable
value 1 problem. In Section III, we introduce a non-trivial
yet decidable subclass of probabilistic automata, defined by
the leaktight property.

D. Informal description of the leaktight property

One of the phenomena that makes tracking vanishing prob-
abilities difficult are leaks. A leak occurs in an automaton
when a sequence of words turns a set of statesC ⊆ Q into a
recurrence classC on the long run but on the short run, some
of the probability of the recurrence class is “leaking” outside
the class.

Such leaks occur in the automaton of Fig. 1 with the input
sequence(anb)n∈N. The set of states{L} and {R} are the
two recurrence classes on the long run; however there is still
a positive probability to reach⊤ and⊥, which vanishes asn
grows large. We identified two leaks, one fromL to ⊤ and
the other fromR to ⊥. As a consequence, the real asymptotic

behaviour is complex and depends on the compared speeds of
these leaks.

An automaton without leak is called a leaktight automaton.
Our main result is to prove that the value1 problem is
decidable when restricted to the subclass of leaktight automata.

The definition of a leaktight automaton relies on two key
notions, idempotent words and word-recurrent states.

A finite word u is idempotentif reading once or twice the
word u does not change qualitatively the transition probabili-
ties:

Definition 3 (Idempotent words). A finite word u ∈ A∗ is
idempotent if for every statess, t ∈ Q,

u(s, t) > 0 ⇐⇒ (u · u)(s, t) > 0 .

Idempotent words are everywhere: every word, if iterated a
large number of times, becomes idempotent.

Lemma 1. For every word u ∈ A∗, the word u|Q|! is
idempotent.

A finite word u naturally induces a finite homogeneous
Markov chain onQ∗, which splits the set of states into two
classes: recurrent states and transient states. Intuitively, a state
is transient if there is some non-zero probability to leave it
forever, and recurrent otherwise; equivalently from a recurrent
state the probability to visit it again in the future is one.

Definition 4 (Recurrent states). Letu ∈ A∗ be a finite word. A
states is u-recurrentif it is recurrent in the finite Markov chain
Mu induced byu, with statesQ and transitions probabilities
(u(s, t))s,t∈Q.

In the case of idempotent words, recurrence of a state can
be easily characterized:

Lemma 2. Let s be a state andu be an idempotent word.
Thens is u-recurrent if and only if for every statet,

u(s, t) > 0 =⇒ u(t, s) > 0 .

The formal definition of a leak is as follows:

Definition 5 (Leaks and leaktight automata). A leak from a
state r ∈ Q to a stateq ∈ Q is a sequence(un)n∈N of
idempotent words such that:

1) for every s, t ∈ Q, the sequence(un(s, t))n∈N con-
verges to some valueu(s, t). We denote byMu the
Markov chain with statesQ and transition probabilities
(u(s, t))s,t∈Q,

2) r is recurrent inMu,
3) for all n in N, un(r, q) > 0,
4) r is not reachable fromq in Mu.

A probabilistic automaton is leaktight if it has no leak.

The automaton depicted in Fig. 1 is not leaktight when0 <
x < 1 because the sequence(un)n∈N = (anbanb)n∈N is a
leak fromL to ⊤, and fromR to ⊥. (Note that the wordanb
is not idempotent, which is why we consideranbanb.) The
limit Markov chainMu sends state0 to statesL andR with

3

probability half each, and all other states are absorbing (i.e
loop with probability1). In particular, stateL is recurrent in
Mu, and for everyn, un(L,⊤) > 0 but there is no transition
from ⊤ to L in Mu.

Several examples of leaktight automata are given in Sec-
tion VI.

III. T HE VALUE 1 PROBLEM IS DECIDABLE FOR

LEAKTIGHT AUTOMATA

In this section we establish our main result:

Theorem 1. The value1 problem is decidable for leaktight
automata.

A. The Markov monoid algorithm

Our decision algorithm for the value1 problem computes
iteratively a setG of directed graphs called limit-words. Each
limit-word is meant to represent the asymptotic effect of a
sequence of input words, and some particular limit-words can
witness that the automaton has value1.

Algorithm 1 The Markov monoid algorithm.
Input: A probabilistic automatonA.
Output: Decide whetherA has value1 or not.

1 G ← {a | a ∈ A} ∪ {1}.
2 repeat
3 if there isu,v ∈ G such thatu · v /∈ G then
4 addu · v to G
5 if there isu ∈ G idempotent such thatu♯ /∈ G then
6 addu♯ to G
7 until there is nothing to add
8 if there is a value1 witness inG then
9 return true

10 else
11 return false

In the rest of the section, we explain the algorithm in details.

Definition 6 (Limit-word). A limit-word is a mapu : Q2 →
{0, 1} satisfying∀s ∈ Q, ∃t ∈ Q,u(s, t) = 1.

As it will be clear from Definition 9 and 10, for a limit-
word u, we interpretu(s, t) = 1 by a positive probability
to reacht from s. The condition expresses that our automata
are complete: whatever the input word, from any states there
exists some statet which is reached with positive probability.
A limit-word u can be seen as a directed graph with no dead-
end, whose vertices are the states of the automatonA, where
there is an edge froms to t if u(s, t) = 1.

Initially, G only contains those limit-wordsa that are
induced by input lettersa ∈ A, where the limit-worda is
defined by:

∀s, t ∈ Q, (a(s, t) = 1 ⇐⇒ a(s, t) > 0) ,

plus the identity limit-word1 defined by(1(s, t) = 1) ⇐⇒
(s = t), which represents the constant sequence of the empty
word.

The algorithm repeatedly adds new limit-words toG. There
are two ways for that: concatenating two limit-words inG or
iterating an idempotent limit-word inG.

Concatenation of two limit-words:The concatenationof
two limit-wordsu andv is the limit-wordu · v such that:

(u · v)(s, t) = 1 ⇐⇒ ∃q ∈ Q,u(s, q) = 1 andv(q, t) = 1 .

In other words, concatenation coincides with the multipli-
cation of matrices with coefficients in the boolean semiring
({0, 1},∨,∧). The concatenation of two limit-words intu-
itively corresponds to the concatenation of two sequences
(un)n∈N and (vn)n∈N of input words into the sequence
(un · vn)n∈N. Note that the identity limit-word1 is neutral
for the concatenation.

Iteration of an idempotent limit-word:Intuitively, if a
limit-word u represents a sequence(un)n∈N then its iteration

u
♯ represents a sequence

(
u
f(n)
n

)
n∈N

for an increasing func-

tion f : N→ N.
The iteration u

♯ of a limit-word u is only defined whenu
is idempotenti.e whenu · u = u. It relies on the notion of
u-recurrent state.

Definition 7 (u-recurrence). Let u be an idempotent limit-
word. A states is u-recurrent if for every statet,

u(s, t) = 1 =⇒ u(t, s) = 1 .

The iterated limit-wordu♯ removes fromu any edge that
does not lead to a recurrent state:

u
♯(s, t) = 1 ⇐⇒ u(s, t) = 1 and t is u-recurrent.

This underlying idea is that iterating a great number of times
the actionu, the transient states are left forever.

B. The Markov monoid and value1 witnesses

The setG of limit-words computed by the Markov monoid
algorithm is called the Markov monoid.

Definition 8 (Markov monoid). The Markov monoid is the
smallest set of limit-words containing the set{a | a ∈ A} of
limit-words induced by letters, the identity limit-word1, and
closed under concatenation and iteration.

Two key properties,consistencyand completeness, ensure
that the limit-words of the Markov monoid reflect exactly
every possible asymptotic effect of a sequence of input words.

Consistency ensures that every limit-word inG abstracts the
asymptotic effect of an input sequence.

Definition 9 (Consistency). A set of limit-wordsG ⊆ {0, 1}Q
2

is consistentwith a probabilistic automatonA if for each limit-
word u ∈ G, there exists a sequence of input words(un)n∈N

such that for every statess, t ∈ Q the sequence(un(s, t))n∈N

converges and:

u(s, t) = 1 ⇐⇒ lim
n

un(s, t) > 0 . (2)

Conversely, completeness ensures that every input sequence
reifies one of the limit-words.

4

Definition 10 (Completeness). A set of limit-wordsG ⊆
{0, 1}Q

2

is completefor a probabilistic automatonA if for
each sequence of input words(un)n∈N, there existsu ∈ G
such that for every statess, t ∈ Q:

lim sup
n

un(s, t) = 0 =⇒ u(s, t) = 0 . (3)

A limit-word may witness that the automaton has value1.

Definition 11 (Value 1 witnesses). Let A be a probabilistic
automaton. Avalue1 witnessis a limit-wordu such that for
every states ∈ Q,

u(i, s) = 1 =⇒ s ∈ F . (4)

Thanks to value1 witnesses, the answer to the value1
problem can be read in a consistent and complete set of limit-
words:

Lemma 3 (A criterion for value1). LetA be a probabilistic
automaton andG ⊆ {0, 1}Q

2

be a set of limit-words. Suppose
that G is consistent withA and complete forA. ThenA has
value1 if and only if G contains a value1 witness.

Proof: Assume first thatA has value1. By definition,
there exists a sequence(un)n∈N of input words such that
PA(un) =

∑
f∈F un(i, f) −−→

n
1. Since for alln ∈ N, we

have
∑

q∈Q un(i, q) = 1, then for alls /∈ F , un(i, s) −−→
n

0.
SinceG is complete, there exists a limit-wordu such that (3)
holds. Thenu is a value1 witness: for everys ∈ Q such that
u(i, s) = 1, equation (3) implieslim supn un(i, s) > 0, hence
s ∈ F .

Conversely, assume now thatG contains a value1 witness
u. SinceG is consistent, there exists a sequence(un)n∈N such
that (2) holds. It follows from (2) and (4), that for alls 6∈ F , we
haveun(i, s) −−→

n
0. ThusPA(un) =

∑
f∈F un(i, f) −−→

n
1

andA has value1.
The following theorem proves that the Markov monoid of a

leaktight automaton is consistent and complete, thus according
to Lemma 3 it can be used to decide the value1 problem.

Theorem 2. The Markov monoid associated with an automa-
tonA is consistent. Moreover ifA is leaktight then the Markov
monoid is complete.

The proof of the second part of this theorem relies on a sub-
tle algebraic argument based on the existence of factorization
forests of bounded height [22]. The same kind of argument was
used by Simon to prove the decidability of the boundedness
problem for distance automata [23].

The proof of completeness will follow from the lower bound
lemma, which is the whole concern of Section V. For now we
show that the Markov monoid is consistent.

Lemma 4 (Consistency). Let G ⊆ {0, 1}Q
2

be a set of limit-
words. Suppose thatG is consistent. Then for everyu,v ∈ G
the setG ∪ {u · v} is consistent. If moreoveru is idempotent
thenG ∪ {u♯} is consistent as well.

The proof uses the notion of reification.

Definition 12. A sequence(un)n∈N of input words reifies a
limit-word u if for every statess, t the sequence(un(s, t))n∈N

converges and

u(s, t) = 1 ⇐⇒ lim
n

un(s, t) > 0 . (5)

In particular, a set of limit-wordsG is consistent forA if each
limit-word in G is reified by some sequence of input words.

Proof: Letu,v ∈ G. We build a sequence(wn)n∈N which
reifiesu ·v. By induction hypothesis onu andv, there exists
(un)n and(vn)n which reify u andv respectively. Letwn =
un · vn. Then(wn)n∈N reifiesu · v, because

wn(s, r) =
∑

t∈Q

un(s, t) · vn(t, r)

and by definition of the concatenation of two limit-words.
Suppose now thatu is idempotent, we build a sequence

(zn)n∈N which reifies u
♯. By induction hypothesis, there

exists a sequence(un)n∈N which reifiesu. For every states
s, t we denote byu(s, t) the valuelimn un(s, t). Sinceu is
idempotent, the Markov chainMu with state spaceQ and
transition probabilities(u(s, t))s,t∈Q is 1-periodic thus aperi-
odic. According to standard results about finite Markov chains,
the sequence of matrices(uk)k∈N has a limitz ∈ [0, 1]Q×Q

such that transient states ofMu have no incoming edges in
z. This implies:

∀s, t ∈ Q, (z(s, t) > 0 =⇒ t is z-recurrent) . (6)

Since(un)n∈N converges tou and by continuity of the matrix
product, for everyk ∈ N the sequence of matrices(uk

n)n∈N

converges touk. It follows that there existsφ(k) ∈ N such
that ||uk − uk

φ(k)||∞ ≤
1
k

. As a consequence the sequence of
matrices(zn)n∈N = (un

φ(n))n∈N converges toz.
Now we prove that(zn)n∈N reifiesu♯ because,

u
♯(s, t) = 1 ⇐⇒ t is u-recurrent andu(s, t) = 1

⇐⇒ t is u-recurrent andu(s, t) > 0

⇐⇒ t is z-recurrent andz(s, t) > 0

⇐⇒ z(s, t) > 0

⇐⇒ lim
n

zn(s, t) > 0 ,

where the first equivalence is by definition of the iteration,the
second holds because(un)n∈N reifiesu, the third because the
iterated Markov chain induced byz = limk u

k has the same
recurrent states than the Markov chainMu, the fourth holds
by (6), and the fifth by definition ofz.

C. Correctness of the Markov monoid algorithm

Proposition 1. The Markov monoid algorithm solves the value
1 problem for leaktight automata.

Proof: Termination of the Markov monoid algorithm is
straightforward because each iteration adds a new element in
G and there are at most2|Q|2 elements inG.

The correctness is a corollary of Theorem 2: since the
Markov monoid is consistent and complete then according to

5

Lemma 3,A has value1 if and only if G contains a value1
witness, if and only if the Markov monoid algorithm outputs
“true”.

In case the Markov monoid algorithm outputs “true”, then
for sure the input automaton has value1. This positive result
holds for every automaton, leaktight or not.

Proposition 2. If the Markov monoid algorithm outputs
“true”, the input probabilistic automaton has value1.

Proof: According to Theorem 2, the Markov monoid is
consistent. If it contains a value1 witness, then according to
the second part of the proof of Lemma 3,A has value1.

In case the Markov monoid algorithm outputs “false” and
the automaton is leaktight then the value of the automaton can
be bounded from above:

Proposition 3. Let A be a probabilistic automaton whose
minimal non-zero transition probability is denotedpmin. If the
Markov monoid algorithm outputs “false” and if moreoverA

is leaktight, then val(A) ≤ 1− p2
3·J2

min , with J = 22|Q|2 .

The proof of this proposition is a direct corollary of the
lower bound lemma presented in Section V.

In case the Markov monoid algorithm outputs “false”, one
surely wishes to know whether the input automaton is leaktight
or not. Fortunately, the leaktight property is decidable, as
discussed in Section IV.

D. Complexity of the Markov monoid algorithm

Proposition 4. The value1 problem for leaktight automata is
PSPACE-complete.

The termination argument given above only implies an
exponential-time algorithm. We improve thisEXPTIME up-
per bound toPSPACE; for that we use the same arguments
that Kirsten used to prove that limitedness of desert automata
can be decided inPSPACE [16]. We avoid the explicit
computation of the Markov monoid and look for value1
witnesses in a non-deterministic way. The algorithm guesses
non-deterministically the value1 witnessu and its decompo-
sition by the product and iteration operations. The algorithm
computes a♯-expression,i.e a finite tree with concatenation
nodes of arbitrary degree on even levels and iteration nodesof
degree one on odd levels and labelled consistently by limit-
words. The depth of this tree is at most twice the♯-height
(the number of nested applications of the iteration operation)
plus one. The root of the♯-expression is labelled byu and the
expression is computed non-deterministically from the root in
a depth-first way.

For desert automata, the key observation made by Kirsten
is that the♯-height is at most|Q|. The adaptation of Kirsten’s
proof to probabilistic automata is achieved by the two follow-
ing lemmata:

Lemma 5. Let u and v be two idempotent limit-words.
Assumeu ≤J v, then there are fewer non-trivial strongly
connected component inu than in v.

Lemma 6. Letu be an idempotent limit-word. The set of non-
trivial strongly connected component ofu is included in the set
of non-trivial strongly connected component ofu

♯. Moreover
if u 6= u

♯ this inclusion is strict.

Since the number of non-trivial strongly connected compo-
nent in a limit-word is bounded by|Q|, and if we require the
iteration operation to be applied only to unstable idempotent,
the♯-height of a♯-expression is bounded by|Q| thus the depth
of the expression is bounded by2|Q|+ 1.

Consequently, the value1 problem can be decided in
PSPACE: to guess the value1 witness, the non-deterministic
algorithm needs to store at most2|Q|+ 1 limit-words which
can be done in spaceO(|Q|2). Savitch’s theorem implies that
the deterministic complexity isPSPACE as well.

ThisPSPACE upper bound on the complexity is tight. The
value 1 problem is known to bePSPACE-complete when
restricted to♯-acyclic automata [14]. The same reduction to the
PSPACE-complete problem of intersection of deterministic
automata can be used to prove completeness of the value1
problem for leaktight automata, relying on the facts that de-
terministic automata are leaktight (Proposition 5) and theclass
of leaktight automata is closed under parallel composition
(Proposition 6). The completeness result is also a corollary
of Proposition 5: since♯-acyclic automata are a subclass of
leaktight automata, the decision problem isa fortiori complete
for leaktight automata.

IV. D ECIDING WHETHER AN AUTOMATON IS LEAKTIGHT

At first sight, the decidability of the leaktight property is
not obvious: to check the existence of a leak one would need
to scan the uncountable set of all possible sequences of input
words. Still:

Theorem 3. The leaktight property is decidable in polynomial
space.

Algorithm 2 The leak-finder algorithm.
Input: A probabilistic automatonA.
Output: Decide whetherA is leaktight or not.

1 G+ ← {(a, a) | a ∈ A} ∪ {(1,1)}.
2 repeat
3 if there is(u,u+), (v,v+) ∈ G+ such that(u·u,v+ ·

v+) 6∈ G+ then
4 add (u · v,u+ · v+) to G+
5 if there is(u,u+) ∈ G+ both idempotents such that

(u♯,u+) 6∈ G+ then
6 add (u♯,u+) to G+
7 until there is nothing to add
8 if there is a leak witness inG+ then
9 return false

10 else
11 return true

The leak-finder algorithmdeciding the leaktight property is
very similar to the Markov monoid algorithm, except for two

6

differences. First, the algorithm keeps track of those edges
that are deleted by successive iteration operations. For that
purpose, the algorithm stores together with each limit-word
u another limit-wordu+ to keep track of strictly positive
transition probabilities. Second, the algorithm looks forleak
witnesses.

Definition 13 (Extended limit-word). An extended limit-word
is a pair of limit-words. The set of extended limit-words
computed by the leak-finder algorithm is called theextended
Markov monoid.

The extended Markov monoid is indeed a monoid equipped
with the component-wise concatenation operation:

(u,u+) · (v,v+) = (u · v,u+ · v+) ,

It follows that an extended limit-word(u,u+) is idempotent
if both u andu+ are idempotent.

Definition 14 (Leak witness). An extended limit-word(u,u+)
is a leak witnessif it is idempotent and there existsr, q ∈ Q
such that:

1) r is u-recurrent,
2) u+(r, q) = 1,
3) u(q, r) = 0.

The correctness of the leak-finder algorithm is a conse-
quence of:

Theorem 4. An automatonA is leaktight if and only if its
extended Markov monoid does not contain a leak witness.

Although we chose to present Theorem 2 and Theorem 4
separately, their proofs are tightly linked.

As a consequence, the leaktight property is qualitative: it
does not depend on the exact value of transition probabilities
but only on their positivity.

V. THE LOWER BOUND LEMMA

The lower bound lemma is the key to both our decidability
result (via Proposition 3) and the characterization of leaktight
automata (Theorem 4).

Lemma 7 (Lower bound lemma). Let A be a probabilistic
automaton whose extended Markov monoid contains no leak
witness. Letpmin the smallest non-zero transition probability
ofA. Then for every wordu ∈ A∗, there exists a pair(u,u+)
in the extended Markov monoid such that, for all statess, t ∈
Q,

u+(s, t) = 1 ⇐⇒ u(s, t) > 0 , (7)

u(s, t) = 1 =⇒ u(s, t) ≥ p2
3·J2

min , (8)

whereJ = 22|Q|2.

To prove Lemma 7, we rely on the notion of Ramseyan
factorization trees and decomposition trees introduced by
Simon [22], [23].

Definition 15. Let A be a finite alphabet,(M, ·, 1) a monoid
andφ : A∗ →M a morphism. ARamseyan factorization tree

of a word u ∈ A+ for φ is a finite unranked ordered tree,
whose nodes are labelled by pairs(w, φ(w)) wherew is a
word in A+ and such that:

(i) the root is labelled by(u, φ(u)),
(ii) every internal node with two children labelled by

(u1, φ(u1)) and(u2, φ(u2)) is labelled by(u1 ·u2, φ(u1 ·
u2)),

(iii) leaves are labelled by pairs(a, φ(a)) with a ∈ A,
(iv) if an internal node t has three or more children

t1, . . . , tn labelled by(u1, φ(u1)), . . . , (un, φ(un)), then
there existse ∈ M such thate is idempotent and
e = φ(u1) = φ(u2) = . . . = φ(un). In this caset
is labelled by(u1 · · ·un, e).

Internal nodes with one or two children areconcatenation
nodes, the other internal nodes areiteration nodes.

Not surprisingly, every wordu ∈ A+ can be factorized
in a Ramseyan factorization tree, using only concatenation
nodes: anybinary tree whose leaves are labelled from left to
right by the letters ofu and whose internal nodes are labelled
consistently is a Ramseyan factorization tree. Notice thatif
u has lengthn then such a tree has a height logarithmic in
n, with the convention that the height of a leaf is0. As a
consequence, with this naı̈ve factorization ofu, the longer the
word u, the deeper its factorization tree.

The following powerful result of Simon states that every
word can be factorized with a Ramseyan factorization tree
whose depth is bounded independently of the length of the
word:

Theorem 5([4], [7], [22]). LetA be a probabilistic automaton
whose extended Markov monoid contains no leak witness.
Every wordu ∈ A+ has a Ramseyan factorization tree of
height at most3 · |M |.

In [23], Simon used the tropical semiring(N∪{∞},min,+)
to prove the decidability of the boundedness problem for
distance automata. Similarly to the Markov monoid, the
tropical semiring is equipped with an iteration operation♯.
Following the proof scheme of Simon, we introduce the notion
of decomposition tree relatively to a monoidM equipped with
an iteration operation♯.

Definition 16. Let A be a finite alphabet,(M, ·, 1) a monoid
equipped with a function♯ that maps every idempotente ∈M
to another idempotent elemente♯ ∈ M and φ : A∗ → M a
morphism. Adecomposition treeof a wordu ∈ A+ is a finite
unranked ordered tree, whose nodes have labels in(A+,M)
and such that:

i) the root is labelled by(u,u), for someu ∈M ,
ii) every internal node with two children labelled by(u1,u1)

and (u2,u2) is labelled by(u1 · u2,u1 · u2),
iii) every leaf is labelled by(a, a) wherea is a letter,
iv) for every internal node with three or more children, there

existse ∈ M such thate is idempotent and the node is
labelled by(u1 . . . un, e

♯) and its children are labelled
by (u1, e), . . . , (un, e).

7

Internal nodes with one or two children areconcatenation
nodes, the other internal nodes areiterationnodes.

An iteration node labelled by(u, e) is discontinuousif e♯ 6=
e. Thespanof a decomposition tree is the maximal length of
a path that contains no discontinuous iteration node.

Remark that decomposition and factorization trees are
closely related:

Lemma 8. A Ramseyan factorization tree is a decomposition
tree if and only if it contains no discontinuous iteration nodes.

Proof: The definitions 15 and 16 are similar except for
condition iv). If there are no discontinuous nodes thene = e

♯

in iv) of Definition 16.
The following theorem is adapted from [23, Lemma 10] and

is a direct corollary of Theorem 5.

Theorem 6. Let A be a finite alphabet,(M, ·, 1) a monoid
equipped with a function♯ that maps every idempotente ∈M
to another idempotent elemente♯ ∈ M and φ : A∗ → M
a morphism. Every wordu ∈ A+ has a decomposition tree
whose span is less than3 · |M |.

To obtain the lower bound lemma, we need to bound the
depth of a decomposition tree; now that the span is bounded
thanks to Theorem 6, we need to bound the number of
discontinuous iteration nodes. Simon and Leung noticed that
this number is actually bounded by the number ofJ -classes
in the monoid. The notion ofJ -class of a monoidM is a
classical notion in semigroup theory, derived from one of the
four Green’s relations called theJ -preorder: aJ -class is an
equivalence class for this preorder (for details about Green’s
relations, see [15], [17]). TheJ -preorder between elements
of a monoidM is defined as follows:

∀a, b ∈M,a ≤J b if a ∈MbM ,

whereMbM denotes the set{ubv | u, v ∈M}.
The number of discontinuous nodes along a path in a

decomposition tree can be bounded using the following result,
adapted from [23, Lemma 3].

Lemma 9. Let A be a finite alphabet, andM a monoid
equipped with a function♯ that maps every idempotente ∈M
to another idempotent elemente♯ ∈ M . Suppose moreover
that for every idempotente ∈M ,

e♯ · e = e♯ = e · e♯ . (9)

Then for every idempotent elemente ∈M , eithere♯ = e or
e♯ <J e.

As a consequence, the number of discontinuous nodes along
a path in a decomposition tree is at mostJ , whereJ is the
number ofJ -classes of the monoid.

Now we are ready to complete the proof of the lower bound
lemma.

Proof of Lemma 7: Let M be the extended Markov
monoid G+ associated withA and equipped with the con-
catenation operation:

(u,u+) · (v,v+) = (u · v,u+ · v+) ,

and for idempotent pairs the iteration operation:

(u,u+)
♯ = (u♯,u+) .

Let w ∈ A+. (The case of the empty word is easily settled,
considering the extended limit-word(1,1).) We apply Theo-
rem 6 to the wordw, the extended Markov monoidM = G+
and the morphismφ : A → M defined byφ(a) = (a, a).
According to Theorem 6,w has a decomposition treeT of
span less than3 · |G+|, whose root is labelled by(w, (w,w+))
for some extended limit-word(w,w+) ∈ G+.

According to the second part of Lemma 9, and since there
are lessJ -classes than there are elements in the monoidG+,

the depth ofT is at most3 · |G+|
2. (10)

To complete the proof of Lemma 7, we prove that for every
nodet labelled(u, (u,u+)) of depthh in the decomposition
tree and for all statess, t ∈ Q,

u+(s, t) = 1 ⇐⇒ u(s, t) > 0 , (11)

u(s, t) = 1 =⇒ u(s, t) ≥ p2
h

min . (12)

We prove (11) and (12) by induction onh.
If h = 0 then the node is a leaf, henceu is a lettera and

u = u+ = a. Then (11) holds by definition ofa and (12)
holds by definition ofpmin.

For the induction, there are two cases.
First case: t is a concatenation node labelled by

(u, (u,u+)) with two sons labelled by(u1, (u1,u+,1)) and
(u2, (u2,u+,2)).

We first prove that (11) holds. Lets, t such thatu+(s, t) =
1. By definition of a decomposition tree,u+ = u+,1 · u+,2.
Sinceu+(s, t) = 1 then by definition of the concatenation
there existsq ∈ Q such thatu+,1(s, q) = 1 andu+,2(q, t) = 1.
By induction hypothesis we haveu1(s, q) · u2(q, t) > 0; and
since u = u1 · u2 then u(s, t) ≥ u1(s, q) · u2(q, t), which
proves the direct implication of (11).

The converse implication is similar: ifu(s, t) > 0 then by
definition of matrix product, there existsq ∈ Q such that
u1(s, q) > 0 and u(q, t) > 0, and we use the induction
hypothesis to getu+(s, t) = 1. This concludes the proof
of (11).

Now we prove that (12) holds. Lets, t ∈ Q such that
u(s, t) = 1. By definition of a decomposition tree,u = u1 ·u2.
Sinceu(s, t) = 1 then by definition of the product of two
limit-words there existsq ∈ Q such thatu1(s, q) = 1 and
u2(q, t) = 1. Thenu(s, t) ≥ u1(s, q) ·u2(q, t) ≥ p2

h

min ·p
2h

min =

p2
h+1

min where the first inequality is by definition of the matrix
product and the second inequality is by induction hypothesis.
This completes the proof of (12).

Second case: t is an iteration node labelled
by (u, (u♯,u+)) with k sons t1, . . . , tk labelled by
(u1, (u,u+)), . . . , (uk, (u,u+)). The proof that (11) holds
is similar to the concatenation node case (and relies on the
fact thatu+ is idempotent). We focus on the proof of (12).
Let s, r ∈ Q such thatu♯(s, r) = 1. By definition of a

8

decomposition tree,u = u1 · · ·uk. Since t is an iteration
node,k ≥ 3 thus:

u(s, r) ≥ u1(s, r) ·
∑

q∈Q

((u2 · · ·uk−1) (r, q) · uk(q, r)) .

(13)
To establish (12) we prove that:

u1(s, r) ≥ p2
h

min, (14)

∀q ∈ Q, (u2 · · ·uk−1)(r, q) > 0 =⇒ uk(q, r) ≥ p2
h

min. (15)

First we prove (14). Sinceu♯(s, r) = 1 then by definition
of the iteration operation,r is u-recurrent andu(s, r) = 1.
By induction hypothesis applied tot1, according to (12), it
implies u1(s, r) ≥ p2

h

min i.e (14).
Now we prove (15). For that we use the hypothesis

that (u,u+) is not a leak witness. Letq ∈ Q such that
(u2 · · ·uk−1)(r, q) > 0. Then by induction hypothesis applied
to t2, . . . , tk−1, according to (11),uk−2

+ (r, q) = 1. Thus
by idempotency ofu+, u+(r, q) = 1. Since by hypothesis
u
♯(s, r) = 1 thenr is u-recurrent and since(u,u+) is not a

leak witness then necessarilyu(q, r) = 1. Thus, by induction
hypothesis and according to (12),uk(q, r) ≥ p2

h

min i.e (15).
Now, putting (13), (14) and (15) altogether,

u(s, r) ≥ u1(s, r) ·
∑

q∈Q

(u2 · · ·uk−1)(r, q) · uk(q, r)

≥ p2
h

min ·
∑

q∈Q

(u2 · · ·uk−1)(r, q) · p
2h

min

≥ p2
h+1

min ,

where the second inequality holds because∑
q∈Q(u2 · · ·uk−1)(r, q) = 1 by basic property of transition

matrices. This completes the proof of (12).

To conclude, according to (10) the depth of a decomposition
tree can be bounded by3 · |G+|2, and sinceG+ has less
than J = 22|Q|2 elements the depthh is less than3 · J2.
Then according to (11) and (12) this completes the proof of
Lemma 7.

VI. A FEW LEAKTIGHT AUTOMATA

In this section, we present several properties and examples
of leaktight automata.

A. Two basic examples

The automaton on Fig. 2 is leaktight. Its extended Markov
monoid is depicted on the right-hand side (except for the
neutral element(1,1)). Each of the four directed graphs
represents an extended limit-word(u,u+); the edges marked
+ are the edges that are inu+ but not inu.

The initial state of the automaton is state0, and the unique
final state is state1. This automaton has value1 and this can
be checked using its Markov monoid: there is a single value1
witnessa♯, which correspond to two distinct extended limit-
words labelled bya♯ andb · a♯ on Fig. 2.

The automaton on Fig 3 is leaktight. The initial state of
the automaton is state0, and the unique final state is stateF .

0 1

a, 1

2

b

a

a, 1

2

b

a

0 1

a
♯

0 1

+

b

0 1

b · a
♯

0 1

+

+

Fig. 2. A leaktight automaton and its extended Markov monoid.

The Markov monoid has too many elements to be represented
here. This automaton does not have value1.

0

L R

F

a, 1

2
a, 1

2

b

a

a

b, 1

2

b

a, 1

2

b, 1

2
a, 1

2

.

Fig. 3. A leaktight automaton which does not have value1.

B. The class of leaktight automata is rich and stable

The class of leaktight automata contains all known classes
of probabilistic automata with a decidable value1 problem,
in particular hierarchical automata defined in [3] and♯-acyclic
automata defined in [14].

Proposition 5. Deterministic automata, hierarchical proba-
bilistic automata and♯-acyclic automata are leaktight and
these inclusions are strict.

Another interest of the class of leaktight automata is its
stability under two natural composition operators: parallel
composition and synchronized product. An automatonA||B
is the parallel composition of two automataA and B if its
state space is the disjoint union of the state spaces ofA and
B plus a new initial state. For every input letter, the possible
successors of the initial state are itself or one of the initial
state ofA andB. An automatonA × B is the synchronized
product of two automataA and B if its state space is the
cartesian product of the state spaces ofA andB, with induced
transition probabilities.

Proposition 6. The leaktight property is stable by parallel
composition and synchronized product.

9

C. About♯-height

The ♯-height of an automaton is the minimal number of
nested applications of the iteration operator needed to obtain
a value1 witness, if there is one. As already mentioned, an
adaptation of a result by Kirsten (Lemma 5.7 in [16]) shows
that the♯-height of an automaton is at most|Q|. A natural
question is whether this bound is tight. The answer is positive:
the only value1 witness of the automaton of Fig. 4 isu =
(· · · ((a♯0a1)

♯
a2)

♯
a3)

♯ · · · an−1)
♯, whose♯-height isn = |Q|−

2.

0 1 2 n− 1 n

⊥

a0,
1

2

(ai)i≤n−1

(ai)i≤0 (ai)i≤1 (ai)i≤n−2

(ai)i≥0

a0,
1

2

a1,
1

2 a1,
1

2

a2,
1

2

a2,
1

2

an−1,
1

2

an−1,
1

2

(ai)i≥1

(ai)i≥2

(ai)i≥3

.

.

Fig. 4. A leaktight automaton with value1 and ♯-heightn.

The above study of♯-height shows a crucial difference
between leaktight automata and♯-acyclic automata, as it is
easy to see that♯-acyclic automata have♯-height one.

CONCLUSION

We introduced a subclass of probabilistic automata, called
leaktight automata, for which we proved that the value1
problem isPSPACE-complete.

In the present paper we considered automata over finite
words. Next step is the adaptation of our results to infinite
words and probabilistic Büchi automata [1], [3], as well as
partially observable Markov decision processes.

A natural question is “what does the Markov monoid say
about a probabilistic automaton (leaktight or not)?”. Since
the Markov monoid is independent of the actual values of
transition probabilities (only positivity matters), thissuggests
the two following questions. Given a probabilistic automaton
whose transition probabilities are unspecified (only positivity
is specified),

1) is it decidable whether the answer to the value1 problem
is the same forany choice of transition probabilities?

2) does the Markov monoid contain a value1 witness if
and only if the automaton has value1 for somechoice
of transition probabilities?

The first question, suggested by a referee of the present paper,
is open, while the answer to the second question seems to be
negative.

ACKNOWLEDGMENT

We thank Thomas Colcombet for having pointed us to the
work of Leung and Simon, as well as two referees for their
careful reading and their constructive comments and help in
improving this paper.

REFERENCES

[1] Christel Baier, Nathalie Bertrand, and Marcus Größer.On decision
problems for probabilistic Büchi automata. InFoundations of Software
Science and Computation Structures, pages 287–301, 2008.

[2] Alberto Bertoni. The solution of problems relative to probabilistic au-
tomata in the frame of the formal languages theory. InGI Jahrestagung,
pages 107–112, 1974.

[3] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan.Power
of randomization in automata on infinite strings. InInternational
Conference on Concurrency Theory, pages 229–243, 2009.

[4] Jérémie Chalopin and Hing Leung. On factorization forests of finite
height. Theoretical Computer Science, 310(1-3):489–499, 2004.

[5] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Algorithms for omega-regular games of incomplete
information. Logical Methods in Computer Science, 3(3), 2007.

[6] Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for
probabilistic automata on infinite words. InLogics In Computer Science,
2012.

[7] Thomas Colcombet. Factorization forests for infinite words and appli-
cations to countable scattered linear orderings.Theoretical Computer
Science, 411(4-5):751–764, 2010.

[8] Anne Condon and Richard J. Lipton. On the complexity of space
bounded interactive proofs (extended abstract). InFoundations of
Computer Science, pages 462–467, 1989.

[9] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance
and equivalence of probabilistic automata.International Journal of
Foundations of Computer Science, 18(4):761–779, 2007.

[10] Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley.
On the computation of the relative entropy of probabilisticautomata.
International Journal of Foundations of Computer Science, 19(1):219–
242, 2008.

[11] Karel Culik and Jarkko Kari. Digital images and formal languages,
pages 599–616. Springer-Verlag New York, Inc., 1997.

[12] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.
Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, July 1999.

[13] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. A class
of probabilistic automata with a decidable value 1 problem.CoRR,
abs/1104.3055, 2011.

[14] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on
finite words: Decidable and undecidable problems. InInternational
Colloquium on Automata, Languages and Programming, pages 527–
538, 2010.

[15] John M. Howie. Fundamentals of semigroup theory. Clarendon Press,
Oxford, 1995.

[16] Daniel Kirsten. Distance desert automata and the star height problem.
Informatique Théorique et Applications, 39(3):455–509, 2005.

[17] Gérard Lallement.Semigroups and Combinatorial Applications. Wiley,
1979.

[18] Mehryar Mohri. Finite-state transducers in language and speech pro-
cessing.Computational Linguistics, 23:269–311, June 1997.

[19] Azaria Paz. Introduction to probabilistic automata. Academic Press,
1971.

[20] Michael O. Rabin. Probabilistic automata.Information and Control,
6(3):230–245, 1963.

[21] Marcel-Paul Schützenberger. On the definition of a family of automata.
Information and Control, 4, 1961.

[22] Imre Simon. Factorization forests of finite height.Theoretical Computer
Science, 72(1):65–94, 1990.

[23] Imre Simon. On semigroups of matrices over the tropicalsemiring.
Informatique Théorique et Applications, 28(3-4):277–294, 1994.

[24] Wen-Guey Tzeng. A polynomial-time algorithm for the equivalence of
probabilistic automata.SIAM Journal on Computing, 21(2):216–227,
1992.

10

