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Abstract—The value 1 problem is a decision problem for probability. While in a fully observable Markov decision
probabilistic automata over finite words: given a probabilistic process the controller can observe the current state of the
alutomtatolno, are there words accepted with probability arbitarily process to choose adequately the next input letter, a blind
close to 17 . : .

This problem was proved undecidable recently. We sharpen controller does not observe anything and its choice depends
this result, showing that the undecidability holds even if he ©Only on the number of letters already chosen. In other words,
probabilistic automata have only one probabilistic transtion. the strategy of a blind controller is an input word of the

Our main contribution is to introduce a new class of proba- gyutomaton.

bilistic automata, called leaktight automata, for which the value P - .

1 problem is shown decidable (and PSPACE-complete). We Th.e yalue of a.pro.babl.hsnc automatorWﬂh this game-
construct an algorithm based on the computation of a monoid theoretic interpretation in mind, we define tralueof a proba-
abstracting the behaviors of the automaton, and rely on alderaic ~ bilistic automaton as the supremum of acceptance probabili
techniques developed by Simon for the correctness proof. Bh over all input words, and we would like to compute this value.
class of leaktight automata is decidable in PSPACE, subsuree Unfortunately, as a consequence of an undecidability resul
all subclasses of probabilistic automata whose value 1 préém due to Paz [19], the value of an automaton is not computable
is known to be decidable (in particular deterministic automata), . ' . -
and is closed under two natural composition operators. in general. However, the following decision problem was

Index Terms—Probabilistic automata, Value 1 problem, Alge- conjectured by Bertoni to be decidable [2]:

braic Techniques in Automata Theory. Value 1 problem: Given a probabilistic automaton, does

the automaton have value? In other words, are there words

. INTRODUCTION ted with bability arbitrarilv cl b7
I o . accepted with probability arbitrarily close to?
Probabilistic automata:Rabin invented a very simple yet P P 4 4

powerful model of probabilistic machine called probabitis _Actually, Bertoni formulated the valug problem in a
automata, which, quoting Rabin, “are a generalization dffin different yet equivalent way: “Is the cut-poirtisolated or
deterministic automata” [20]. A probabilistic automatoash NOt?". There is indeed a close relation between the value
a finite set of state) and reads input words over a finiteProblem and the notion of isolated cut-point introduced by
alphabetA. The computation starts from the initial state Ra@bin in the very first paper about probabilistic automata. A
and consists in reading the input word sequentially; theestd€al numbe < A <1 is anisolated cut-poinif there exists
is updated according to transition probabilities deteedin @ Pounde > 0 such that the acceptance probability of any
by the current state and the input letter. The probability #§0rd is either greater than + ¢ or smaller than\ —e. A
accept a finite input word is the probability to terminate th€orem of Rabin states that if the cut-paknis isolated, then
computation in one of the final statésC Q. the languagelx = {w | Pa(w) > A} is regular [20]. The
From a language-theoretic perspective, several algoi(i:thr?'{al_uel problem can be reformu_lated in term of _|solated cut-
properties of probabilistic automata are known: while lzmge POINt: an automaton has valueif and only if 1 is not an
emptiness is undecidable [2], [14], [19], language eqeivet isolated cut-!oomt.. Berton.| proved.that erstrlctIy between
is decidable [9], [21], [24] as well as other properties [8]]. © and1, t.he isolation of\ is undecidable in general, and left
Rather than formal language theory, our initial motivatiofe special casa € {0,1} open.
for this work comes from control and game theory: we aim Recently, the second and third authors of the present paper
at solving algorithmic questions about partially obseteabproved that the valué problem is undecidable as well [14].
Markov decision processes and stochastic games. For tH®wever, probabilistic automata, and more generally par-
reason, we consider probabilistic automata as machines ctially observable Markov decision processes and stoahasti
trolled by a blind controller, who is in charge of choosing thgames, are a widely used model of probabilistic machines
sequence of input letters in order to maximize the acceptargonsidered in many fields like software verification [1],,[5]

image processing [11], computational biology [12] and shee
This work was supported by French CNRS-PEPS Project “Ssicha gep g[ ] P gy[ ] b

Games and Verification” and by the ANR projet FREC, 2010 BLA20D 02 pro_cessmg_ [18] As a consequence, '_t IS (;ru0|al to undedsta
FREC. which decision problems are algorithmically tractable for



probabilistic automata. probabilistic transition matrices; € @ is the initial state and
Our result: As a first step, we sharpen the undecidability” C @ is the set of accepting states.

result: we prove that the valugé problem is undecidable

even for probabilistic automata with only one probabidisti

transition. This result motivated the introduction of a neass

of probabilistic automata, callddaktight automatafor which :
the valuel problem is decidable. This subclass subsum]crom states to statet when reading the word. Formally,
P ; w = ayaz---an thenw(s,t) = (Mg, - Mg, -+ - Mg, )(s,t).

- : |
all I_<novyn subclasses of_probab|I|st|c automata Shar.mg.ﬂ}{lote that0 < w(s,t) < 1, for all wordsw and states andt.
decidability property and is closed under parallel comjmsi o o . .
. . : Furthermore, the definition of a probabilistic transitiomatnix
and synchronized product. Our algorithm to decide the value _ .
: : - ; implies that) ", _, w(s,t) = 1 for all statess.

problem computes in polynomial space a finite monoid whose €q
elements are directed graphs and checks whether it corgtair3efinition 2 (Value and acceptance probabilityJhe accep-
certain type of elements that are valuavitnesses. tance probabilityof a word w € A* by A is Py(w) =

Related works:The valuel problem was proved decid- ;. » w(i, f). Thevalueof A, denoted vdlA), is the supre-
able for a subclass of probabilistic automata caljestyclic mum of the acceptance probabilities over all possible input
automata [14]. Since the class pacyclic automata is strictly words:
contained in the class of leaktight automata, the resulhef t val(A) = sup Py(w) . Q)
present paper extends the decidability result of [14]. Glhast weAr
al. [3] recently introduced the class of hierarchical plobstic B. The valuel problem for probabilistic automata
automata, which is also strictly contained in the class of we are interested in the following decision problem:
leaktight automata. As a consequence of our result, theevalu _ o
1 problem is decidable for hierarchical probabilistic autdan Problem (Value 1 Problem) Given a probabilistic automaton

Our proof techniques totally depart from the ones used in [3f: decide whether val) = 1.

[14]. Instead, we make use of algebraic techniques and inwhereas the formulation of the valaeproblem only relies
particular Simon’s factorization forest theorem, whichswagajitativelyon the asymptotic behaviour of probabilities (the
successfully used to prove the decidability of the boundsdn probability to be in non-final states should be arbitrarityad),

problem for distance automata [23]. _ the answer to the value problem dependguantitativelyon
A very related work on probabilistic automata will alsghe transition probabilities.

appear [6]. The work of [6] focuses on probabilistic autcenat
over infinite words and identifies a new class of probabdisti a,b a,b
automata where the value 1 problem is decidable, called
structurally simple automata. An interesting directioriudtire
work would be to investigate the connection between leaktig
and structurally simple automata.

Outline: We give the basic definitions in Section Il. As
a first step we present our algorithm to decide the value
problem of probabilistic leaktight automata in Section, 11l
which is followed by the decidability of the leaktight prape
in Section IV. Next, in Section V, we present and prove the
technical core of the paper, called the lower bound lemma. , .
Finally, Section VI investigates properties and providas e 7 al-=
amples of leaktight automata. A full version with proofs is
available in [13].

For each lettera € A, M,(s,t) is the probability to go
from states to statet when reading letter.. Given an input
word w € A*, we denote byw(s,t) the probability to go

Fig. 1. This automaton has valdeif and only if x > %

Il. DEFINITIONS For instance, the automaton depicted on Fig. 1 has value
A. Probabilistic automata if and only if z > 1 and has value less or equal than half

Let @ be a finite set of states. A probability distribution()therwIse (see also [1], [14] for similar results). Notettha

: . - In this example, the value is a discontinuous function of the
Over() s a row vecto of size|Q| whose coefficients are realtransition robabilities. The input alphabet{ig, b}, the initial
numbers from the interval, 1] and such tha}® ., d(¢q) =1 P ) putalp e

A probabilistic transition matrix}/ is a square matrix in state is the central stateand the unique final state is. In

[0,1]2%Q such that every row of/ is a probability distri- order to maximize the probability to readh playing twob’s
bL;tiOI”l overQ in a row is certainly not a good option because from state

this ensures to reach the non-accepting absorbing statih
Definition 1 (Probabilistic automata)A probabilistic automa- probability at least half. A smarter strategy consists mypig
ton A is a tuple (Q, A, (M,)aca,i, F), where@ is a finite oneb, then long sequences afs followed by one lettei. If
set of statesA is the finite input alphabe{(),).c4 are the z < % there is still no hope to have a word accepted with



probability strictly greater than half: starting frobp and after behaviour is complex and depends on the compared speeds of
ab and a sequence afs, the probability to be inR is greater these leaks.

or equal than the probability to be ih, thus playingba™b An automaton without leak is called a leaktight automaton.
from state0 the probability to reach the sink is greater or Our main result is to prove that the value problem is
equal than the probability to reach the final sthteHowever, decidable when restricted to the subclass of leaktightraata.

if z > % then a simple calculation shows that the probability The definition of a leaktight automaton relies on two key

to accept(ba™)?" tends tol asn goes to infinity. notions, idempotent words and word-recurrent states.
A finite word u is idempotentf reading once or twice the
C. Undecidability in a very restricted case word u does not change qualitatively the transition probabili-

As a first step we refine the undecidability result: we shollfs:
that the valuel problem is undecidable even when restrictepefinition 3 (Idempotent words)A finite wordu € A* is
to probabilistic automata having exactly one probabdistidempotent if for every statest € Q,
transition. For such automata, there exists exactly one sta
s and one lettera such that0 < M,(s,t) < 1 for all ¢, u(s,t) >0 <= (u-u)(s,t) >0 .
and the remaining transitions are deterministic: for aplér
(s',a’,t) € S x A x S such that(s’,a’) # (s,a) then
My (s',t) € {0,1}.

Our proof goes by simulating a probabilistic automatokemma 1. For every wordu € A*, the word u/?!' is
A with a probabilistic automatorB which has only one idempotent.

probabilistic transition, satisfying vah) = 1 if and only if A finite word « naturally induces a finite homogeneous

val(B) :_1- . . Markov chain on@*, which splits the set of states into two
As a first attempt, we define the automai8with a larger ¢jasses: recurrent states and transient states. Intyjtivstate

alphabet: wheneved reads a lettex, then’ reads a sequenceis ransient if there is some non-zero probability to leave i

of actionsa corresponding toa, allowing a state-by-state forever, and recurrent otherwise; equivalently from a resmt

simulation of A. The unique probabilistic transition d8 is  gtate the probability to visit it again in the future is one.
used to generate random bits for the simulation. However, th

automatonB cannot check that the sequences of actions dpgfinition 4 (Recurrent states) etu € A* be a finite word. A
well-formed and allow for a faithful simulation. Hence westates is u-recurrentf it is recurrent in the finite Markov chain
modify the construction, such that to simulate the automaté\1. induced byu, with states and transitions probabilities

A on the input wordw, the automator8 now reads(@)” for ~ (u(s,t))s,teq-

arbitrarily largen. Each timeB reads a wordy, it simulates | e case of idempotent words, recurrence of a state can
Aonw W|th_ a smgll yet p03|.t|ve prppablhty anq_“delays” thepe easily characterized:

rest of the simulation, also with positive probability. $tielay

process allows to run on parallel a deterministic automaté@mma 2. Let s be a state and. be an idempotent word.
which checks that the sequences of actions are well-formddtens is u-recurrent if and only if for every state

ensuring a faithful simulation.

This undecidability result illustrates that even very riestd
classes of probabilistic automata may have an undecidabl&he formal definition of a leak is as follows:
value 1 problem. In Section Ill, we introduce a non-trivial
yet decidable subclass of probabilistic automata, defined
the leaktight property.

Idempotent words are everywhere: every word, if iterated a
large number of times, becomes idempotent.

u(s, t) >0 = u(t,s) >0 .

Befinition 5 (Leaks and leaktight automatal\ leak from a
Stater € @ to a stateq € @ is a sequenc€u,)nen Of
idempotent words such that:

D. Informal description of the leaktight property 1) for everys,t € @, the sequencguy(s,t))nen cON-
verges to some value(s,t). We denote byM,, the

One of the phenomena that makes tracking vanishing prob-  \1arqy chain with stateg) and transition probabilities

abilities difficult areleaks A leak occurs in an automaton (u(s,1))s.cc0n

when a sequence of words turns a set of states @ into a 2) ris recu}rent inM.,,,

recurrence cle}gé' on the long run but on the“shorF ru”n,. some 3) forall nin N, up(r, ¢) > 0,

Or: th(T probability of the recurrence class is “leaking” ddes 4) r is not reachable frony in M,,.

t eSl(jcahslséaks occur in the automaton of Fig. 1 with the input A probabilistic automaton is leaktight if it has no leak.
sequencda”b),en. The set of state§L} and {R} are the  The automaton depicted in Fig. 1 is not leaktight wifleq
two recurrence classes on the long run; however there s stil < 1 because the sequen¢e,),cn = (a™ba™b)nen IS @
a positive probability to reach and L, which vanishes as leak fromL to T, and fromR to L. (Note that the word:"b
grows large. We identified two leaks, one fralnto T and is not idempotent, which is why we considetba™b.) The
the other fromR to L. As a consequence, the real asymptotimit Markov chain M, sends staté to statesl. and R with



probability half each, and all other states are absorbireg ( The algorithm repeatedly adds new limit-wordsoThere

loop with probability1). In particular, state. is recurrent in are two ways for that: concatenating two limit-wordsgnor

M., and for everyn, u,, (L, T) > 0 but there is no transition iterating an idempotent limit-word ig.

from T to L in M,,. Concatenation of two limit-wordsThe concatenatiorof
Several examples of leaktight automata are given in Sdwo limit-words u andv is the limit-wordu - v such that:

tion VI. (u-v)(s,t) =1 < Fg€Q,u(s,q) =1andv(g,t)=1 .

IlIl. THE VALUE 1 PROBLEM IS DECIDABLE FOR

In other words, concatenation coincides with the multipli-
LEAKTIGHT AUTOMATA

cation of matrices with coefficients in the boolean semiring

In this section we establish our main result: ({0,1},V, A). The concatenation of two limit-words intu-

titively corresponds to the concatenation of two sequences
(un)nen and (v, )neny Of input words into the sequence
(un, - vn)nen. Note that the identity limit-wordl is neutral

A. The Markov monoid algorithm for the concatenation.

Our decision algorithm for the value problem computes Iteration of an idempotent Iimit-word:lntui'Five.Iy, if.a
iteratively a se@ of directed graphs called limit-words. EacHimit-word u represents a s;eq)uen@en)neN then its iteration
limit-word is meant to represent the asymptotic effect of m* represents a sequenéeﬁ(” ) for an increasing func-

sequence of input words, and some particular limit-words céion f : N — N. el

Theorem 1. The valuel problem is decidable for leaktigh
automata.

witness that the automaton has value The iteration u? of a limit-word u is only defined whem
i : i is idempotent.e whenu - u = u. It relies on the notion of
Algorithm 1 The Markov monoid algorithm. u-recurrent state.

Input: A probabilistic automator.

Output: Decide whetherd has valuel or not. Definition 7 (u-recurrence) Let u be an idempotent limit-

1G+ {alacAYU{1). word. A states is u-recurrent if for every state,
2 repeat _ u(s,t) =1 = u(t,s)=1.
3 if there isu,v € G such thatu-v ¢ G then
4 addu-vto g The iterated limit-word u? removes fromu any edge that
5 if there isu € G idempotent such that’ ¢ G then ~ does not lead to a recurrent state:
# .
e addu' to g u’(s,t) =1 <= u(s,t) = 1 andt is u-recurrent.
7 until there is nothing to add
8 if there is a valud witness inG then This underlying idea is that iterating a great number of ime
9 return true the actionu, the transient states are left forever.
10 else . .
1 return false B. The Markov monoid and valuewitnesses

The setG of limit-words computed by the Markov monoid

. . . . . algorithm is called the Markov monoid.
In the rest of the section, we explain the algorithm in dstalil

— - - . 5 Definition 8 (Markov monoid) The Markov monoid is the

Def|n|t|0n_ 6 (lelt-word). Alimit-word is a mapu : Q% =  gmajjest set of limit-words containing the det | a € A} of

{0,1} satisfying¥s € @, 3t € Q, u(s,¢) = 1. limit-words induced by letters, the identity limit-wold and
As it will be clear from Definition 9 and 10, for a limit- closed under concatenation and iteration.

word u, we interpretu(s,t) = 1 by a positive probability 1,5 ey propertiesconsistencyand completenessensure
to reacht from s. The condition expresses that our automaﬁ;\at the limit-words of the Markov monoid reflect exactly

are complete: whateyer _the Input wor_d, from_ any S‘a‘heT? every possible asymptotic effect of a sequence of input sord
exists some statewhich is reached with positive probability. Consistency ensures that every limit-worddrabstracts the
A limit-word u can be seen as a directed graph with no deagéymptotic effect of an input sequence

end, whose vertices are the states of the automdtowhere )
there is an edge from to ¢ if u(s,t) = 1. Definition 9 (Consistency) A set of limit-wordg; C {0,1}¢
Initially, G only contains those limit-wordsa that are is consistentvith a probabilistic automato if for each limit-
induced by input letterss € A, where the limit-worda is word u € G, there exists a sequence of input wofds, ),cx
defined by: such that for every statest € @ the sequencéu,,(s,t))nen

converges and:
Vs,t € Q,(a(s,t) =1 < a(s,t) >0) ,
_ o _ u(s,t) =1 <= limu,(s,t) >0 . 2
plus the identity limit-wordl defined by(1(s,t) = 1) <= n
(s = t), which represents the constant sequence of the emptyConversely, completeness ensures that every input seguenc
word. reifies one of the limit-words.



Definition 10 (Completeness)A set of limit-wordsG C Definition 12. A sequencéu,,),cn Of input words reifies a
{0, 1}Q is completefor a probabilistic automatond if for  limit-word u if for every states, ¢ the sequencéu,,(s, t))nen
each sequence of input words,,),cy, there existsu € G  converges and

such that for every statest € @: u(s,t) =1 <= Timun(s,t) > 0 (5)

limsupu,(s,t) =0 = u(s,t) =0 . 3) ) o ) ) _
n In particular, a set of limit-wordsj is consistent fotd if each

A limit-word may witness that the automaton has value limit-word in G is reified by some sequence of input words.

Definition 11 (Value 1 witnesses) Let .A be a probabilistic Proof: Letu, v € G. We build a sequencevy )»c Which
automaton. Avalue 1 witnessis a limit-word u such that for 'eifiesu-v. By induction hypothesis on andv, there exists
every states € Q, (un)n and(vy), which reify u andv respectively. Letw,

Up * Un. Then(wy,)nen reifiesu - v, because

wn(s,r) Eun ) - on(t, 1)

Thanks to valuel witnesses, the answer to the valle )
problem can be read in a consistent and complete set of limit-
words:

u(i,s) =1 = seF . (4)

and by definition of the concatenation of two limit-words.
Suppose now that is idempotent, we build a sequence
Lemma 3 (A criterion for valuel) Let A be a probabilistic (z,),en Which reifies u*. By induction hypothesis, there
automaton and; C {0, 119" be a set of limit-words. Supposeexists a sequenc@u,, ),en Which reifiesu. For every states
that G is consistent with4 and complete ford. Then A has s,t we denote byu(s,t) the valuelim, u,(s,t). Sinceu is
valuel if and only if G contains a value witness. idempotent, the Markov chaim, with state space) and
transition probabilitiegu(s, t))s +cq is 1-periodic thus aperi-
there exists a sequende.,).en Of input words such that odic. According to stan_dard results abou_t fi_nite Markov nbai
nimn the sequence of matricés"),cy has a limitz € [0,1]9%¢

Pa(un) = 2 sepun(is f) o L. Since for alln € N, we such that transient states @ff,, have no incoming edges in
have)_ o un(i,q) =1, then for alls ¢ F, up(i,s) — 0. . This implies:

Sinceg is complete, there exists a limit-wond such that 3) .

holds. Thenu is a valuel witness: for every € Q such that Vs,t € Q, (2(s,t) >0 = tis z-recurrent.  (6)
u(z, s) = 1, equation (3) impliedim sup,, u, (i, s) > 0, hence

Proof: Assume first that4 has valuel. By definition,

Since(u,)ren converges ta, and by continuity of the matrix

s € L. i . product, for everyk € N the sequence of matricés” ), cy
Conversely, assume now th@tcontains a valud witness converges tou*. It follows that there exists(k) € N such

u. Sinceg is consistent, there exists a sequefcg),cn such that ||uk _uk ll« < L. As a consequence the sequence of
that (2) holds. It follows from (2) and (4), that for allZ F', we (k) lioe =

) _ matrices(z,, )nen = (u} (n))neN converges ta.
have un (i, 5) o 0. ThusPa(un) = X fep tn(is f) ot Now we prove thatz, ),en reifiesu® because,
and A has valuel.
The following theorem proves that the Markov monoid of a  u’(s,t) = 1 <= ¢ is u-recurrent andi(s, ) = 1
leaktight automaton is consistent and complete, thus dotgpr < t is u-recurrent andu(s,t) > 0

to Lemma 3 it can be used to decide the valugroblem. t is z-recurrent anck(s, £) > 0

Theorem 2. The Markov monoid associated with an automa- — 2(5,t)>0
ton A is consistent. Moreover ifl is leaktight then the Markov

S <= limz,(s,t) >0 ,
monoid is complete. n

The proof of the second part of this theorem relies on a Su\{ghere the first equivalence is by definition of the iteratidne
tle algebraic argument based on the existence of factumzatsecon?j hOIdi bec‘;‘u@”)gEN r:jemeSu the tfyrﬁ bechause the
forests of bounded height [22]. The same kind of argument wii§"ated Markov chain induced by = lim;, «" has the same

used by Simon to prove the decidability of the boundedne igeurrent states _than the I\_/Ia_lr_kov chati,,, the fourth holds
problem for distance automata [23]. by (6), and the fifth by definition of. ]

The proof of completeness will follow from the lower boundc Correctness of the Markov monoid algorithm
lemma, which is the whole concern of Section V. For now ws

show that the Markov monoid is consistent. roposition 1. The Markov monoid algorithm solves the value

1 problem for leaktight automata.
Lemma 4 (Consistency) Let G C {0, 1}Q2 be a set of limit-
words. Suppose thal is consistent. Then for every,v € G
the setG U {u- v} is consistent. If moreoveu is idempotent
thenG U {u’} is consistent as well.

Proof: Termination of the Markov monoid algorithm is
straightforward because each iteration adds a new element i
G and there are at mogt@!” elements ing.

The correctness is a corollary of Theorem 2: since the
The proof uses the notion of reification. Markov monoid is consistent and complete then according to



Lemma 3,4 has valuel if and only if G contains a valud Lemma 6. Letu be an idempotent limit-word. The set of non-
witness, if and only if the Markov monoid algorithm outputdrivial strongly connected componentwfis included in the set
“true”. m of non-trivial strongly connected componentigf. Moreover

In case the Markov monoid algorithm outputs “true”, theif u # u® this inclusion is strict.
for sure the input automaton has valueThis positive result

holds for every automaton, leaktight or not. Since the number of non-trivial strongly connected compo-

nent in a limit-word is bounded byR|, and if we require the
Proposition 2. If the Markov monoid algorithm outputsiteration operation to be applied only to unstable idempipte
“true”, the input probabilistic automaton has value the-height of ag-expression is bounded b§| thus the depth
: ... ofth ion is bounded 1.
Proof: According to Theorem 2, the Markov monoid jg”' 11 expression IS bounde ByQ| + . .
. : i . , Consequently, the valué problem can be decided in
consistent. If it contains a value witness, then according to ) . o
PSPACE: to guess the valug witness, the non-deterministic
the second part of the proof of Lemma.3,has valuel. = . - .
. . . Y Igorithm needs to store at mdsi)| + 1 limit-words which
In case the Markov monoid algorithm outputs “false ang . 9 o L
. : can be done in spad®(|Q|*). Savitch’s theorem implies that
the automaton is leaktight then the value of the automatan o) L o
be bounded from above: e deterministic complexity i®SPACE as well.
' This PSPACE upper bound on the complexity is tight. The
Proposition 3. Let A be a probabilistic automaton whosevalue 1 problem is known to bePSPACE-complete when
minimal non-zero transition probability is denoteg;,,. If the restricted tgi-acyclic automata [14]. The same reduction to the
Markov monoid algorithm outputs “false” and if moreovetr PSPACE-complete problem of intersection of deterministic
is leaktight, then vald) < 1 —pﬁiszy with J = 221Q1° automata can be used to prove completeness of the value
) o ) problem for leaktight automata, relying on the facts that de
The proof of this proposition is a direct corollary of thgerministic automata are leaktight (Proposition 5) anddlass
lower bound lemma presented in Section V. _of leaktight automata is closed under parallel composition
In case the Markov monoid algorithm outputs “false”, ongprgposition 6). The completeness result is also a cogollar
surely wishes to knowwhether_the input automaton is ledktigy Proposition 5: sincé-acyclic automata are a subclass of
or not. Fortunately, the leaktight property is decidable, geaktight automata, the decision problemaifortiori complete
discussed in Section IV. for leaktight automata.

D. Complexity of the Markov monoid algorithm IV. DECIDING WHETHER AN AUTOMATON IS LEAKTIGHT
Proposition 4. The valuel problem for leaktight automata is At first sight, the decidability of the leaktight property is
PSPACE-complete. not obvious: to check the existence of a leak one would need

The termination argument given above only implies al® scan the uncountable set of all possible sequences of inpu
exponential-time algorithm. We improve thsXPTIME up- Words. Still:
per bound toPSPACE; for that we use the same argument§heorem 3. The leaktight property is decidable in polynomial
that Kirsten used to prove that limitedness of desert autama,ce.
can be decided inPSPACE [16]. We avoid the explicit
computation of the Markov monoid and look for valde
witnesses in a non-deterministic way. The algorithm guesslgorithm 2 The leak-finder algorithm.
non-deterministically the valuge witnessu and its decompo- Input: A probabilistic automato.
sition by the product and iteration operations. The alpamnit Output: Decide whethetA is leaktight or not.
computes a-expressionj.e a finite tree with concatenation 1 G, < {(a,a)|a€ A} U{(1,1)}.
nodes of arbitrary degree on even levels and iteration nofles 2 repeat

degree one on odd levels and labelled consistently by limit-3 if there is(u, u), (v,vy) € G4 such thau-u, v, -
words. The depth of this tree is at most twice thbeight vy) € G4 then

(the number of nested applications of the iteration opengti 4 add(u-v,uy -vy)to Gy

plus one. The root of thgeexpression is labelled by and the 5 if there is(u,uy) € G, both idempotents such that
expression is computed non-deterministically from thet ino (uf,u,) ¢ G, then

a depth-first way. 6 add (uf,u;) to G,

For desert automata, the key observation made by Kirsterr until there is nothing to add
is that theg-height is at mostQ|. The adaptation of Kirsten's 8 if there is a leak witness ig, then

proof to probabilistic automata is achieved by the two feHo 9 return false
ing lemmata: 10 else
11 return true

Lemma 5. Let u and v be two idempotent limit-words.
Assumeu <7 v, then there are fewer non-trivial strongly

connected component i than in v. The leak-finder algorithndeciding the leaktight property is

very similar to the Markov monoid algorithm, except for two



differences. First, the algorithm keeps track of those edgef a wordu € A™ for ¢ is a finite unranked ordered tree,
that are deleted by successive iteration operations. Fatr tivhose nodes are labelled by paifs), ¢(w)) wherew is a
purpose, the algorithm stores together with each limitdvomword in AT and such that:

u another limit-wordu, to keep track of strictly positive (j) the root is labelled by(u, ¢(u)),

trz_;msition probabilities. Second, the algorithm looks leak (i) every internal node with two children labelled by
witnesses (u1, d(uy)) and (uz, ¢(uz)) is labelled by(u; - usa, ¢(u; -
uz)),

leaves are labelled by pair, ¢(a)) with a € A,

if an internal nodet has three or more children

Definition 13 (Extended limit-word) An extended limit-word
is a pair of limit-words. The set of extended limit-words(iii)
computed by the leak-finder algorithm is called tagended (IV)

Markov monoid

The extended Markov monoid is indeed a monoid equipped

with the component-wise concatenation operation:

(w,uy)- (V5V+) =(u-v,uy 'V+) )

It follows that an extended limit-worgu, u,.) is idempotent

if both u andu, are idempotent.

Definition 14 (Leak witness) An extended limit-worgu, u.)
is a leak witnessf it is idempotent and there exisisq € @Q
such that:

1) r is u-recurrent,

2) u+(7°, Q) =1,
3) u(g,r) =0.

t1,...,t, labelled by(u1, d(u1)), ..., (tn, d(uy)), then

there existse € M such thate is idempotent and
e = ¢(u1) = P(uz) = ... = ¢(up). In this caset

is labelled by(u; - - - uy,e).

Internal nodes with one or two children amoncatenation
nodes the other internal nodes angeration nodes

Not surprisingly, every wordu € AT can be factorized
in a Ramseyan factorization tree, using only concatenation
nodes: anybinary tree whose leaves are labelled from left to
right by the letters of, and whose internal nodes are labelled
consistently is a Ramseyan factorization tree. Notice that
u has lengthn then such a tree has a height logarithmic in
n, with the convention that the height of a leaf (is As a
consequence, with this naive factorizationupfthe longer the

The correctness of the leak-finder algorithm is a conseword u, the deeper its factorization tree.

guence of:

Theorem 4. An automatonA is leaktight if and only if its
extended Markov monoid does not contain a leak Witness.W

Although we chose to present Theorem 2 and TheoremT4

separately, their proofs are tightly linked.

As a consequence, the leaktight property is qualitative:
does not depend on the exact value of transition probagsiliti

but only on their positivity.

V. THE LOWER BOUND LEMMA

The following powerful result of Simon states that every
word can be factorized with a Ramseyan factorization tree
whose depth is bounded independently of the length of the
ord:

heorem 5([4], [7], [22]). Let.A be a probabilistic automaton
va{hose extended Markov monoid contains no leak witness.

very wordu € A* has a Ramseyan factorization tree of
height at mos8 - | M|.

In [23], Simon used the tropical semirif§fU{ oo}, min, +)
to prove the decidability of the boundedness problem for

The lower bound lemma is the key to both our decidabilityic;~ 0o automata. Similarly to the Markov monoid, the

result (via Proposition 3) and the characterization of figgk
automata (Theorem 4).

tropical semiring is equipped with an iteration operatipn
Following the proof scheme of Simon, we introduce the notion

Lemma 7 (Lower bound lemma)Let A be a probabilistic of d_ecomposition tree relatively to a monaid equipped with
automaton whose extended Markov monoid contains no leaik iteration operatiof.

witness. Lefp,,;, the smallest non-zero transition probability

of A. Then for every word, € A*, there exists a paifu, uy)
in the extended Markov monoid such that, for all statese

Q,
ut(s,t) =1 < u(s,t) >0, (7)
(8)

3.J2
u(s,t) =1 = u(s,t) > pf;in] ,

where J = 221Q1%,

To prove Lemma 7, we rely on the notion of Ramseyan.
factorization trees and decomposition trees introduced b

Simon [22], [23].

Definition 15. Let A be a finite alphabet(/, -, 1) a monoid
and ¢ : A* — M a morphism. ARamseyan factorization tree

Definition 16. Let A be a finite alphabet()/, -, 1) a monoid
equipped with a functioft that maps every idempoteste M
to another idempotent elemeat € M and¢ : A* — M a
morphism. Adecomposition treef a wordu € A™ is a finite
unranked ordered tree, whose nodes have labelgdih, M)
and such that:

i) the root is labelled by, u), for someu € M,

ii) every internal node with two children labelled by, u)

and (UQ, ug) is labelled by(u1 - U9, U7 - U.Q),

ill) every leaf is labelled bya, a) wherea is a letter,

Iv) for every internal node with three or more children, there
existse € M such thate is idempotent and the node is
labelled by (u; ...u,,e") and its children are labelled

by (u1,e),..., (un,e).



Internal nodes with one or two children amoncatenation and for idempotent pairs the iteration operation:
nodes, the other internal nodes aterationnodes. 4 4
An iteration node labelled by, e) is discontinuousf e* (w,up)” = (u',uy)
e. Thespanof a d_ecompo_sition _tree is t_he rr_1axima| length of | ot 4 € A*. (The case of the empty word is easily settled,
a path that contains no discontinuous iteration node. considering the extended limit-word,, 1).) We apply Theo-
Remark that decomposition and factorization trees af@m 6 to the wordy, the extended Markov monoit/ = G
closely related: and the morphismp : A — M defined by¢(a) = (a,a).

According to Theorem 6w has a decomposition trég of

Lemma 8. A Ramseyan factorization tree is a decompositiogban less thaR- |G- |, whose root is labelled bfw, (w, w- ))
tree if and only if it contains no discontinuous iterationdes. ("< me extendea iimit-wor(jw w.) € Gy I

Proof: The definitions 15 and 16 are similar except for According to the second part of Lemma 9, and since there
condition iv). If there are no discontinuous nodes thea ef  are lesg7-classes than there are elements in the mogqid
in iv) of Definition 16. ]
The following theorem is adapted from [23, Lemma 10] and
is a direct corollary of Theorem 5.

the depth ofl" is at most3 - |G, |°. (10)

To complete the proof of Lemma 7, we prove that for every

Theorem 6. Let A be a finite alphabet(1/, -, 1) a monoid \,4e; |abelled (u, (u, u.)) of depthh in the decomposition
equipped with a functiofi that maps every idempoteatc M e and for all states. ¢ © Q

to another idempotent elemeat ¢ M and ¢ : A* — M
a morphism. Every word: € AT has a decomposition tree uy(s,t) =1 <= u(s,t) >0, (11)

whose span is less thah [M|. u(s,t) =1 = uls,t) > pl, - (12)

To obtain the lower bound lemma, we need to bound the
depth of a decomposition tree; now that the span is bounde
thanks to Theorem 6, we need to bound the number of
discontinuous iteration nodes. Simon and Leung noticet tri]é Ids by definiti ¢
this number is actually bounded by the number/etlasses 0ds by de |n|t|9n OPmin-
in the monoid. The notion of7-class of a monoidV/ is a Fpr the mductlo_n, there are two cases.
classical notion in semigroup theory, derived from one ef th First case. t is a concatenation nodelabelled by
four Green's relations called th@-preorder: a7-class is an (% (4, u+)) with two sons labelled byus, (u1, u+.1)) and
equivalence class for this preorder (for details about Esee (42 (12,1 2)).

relations, see [15], [17]). The7-preorder between elements we firsF prove that (11) hOIdSZ _Lett such that, (s, ) =
of a monoid/ is defined as follows: 1. By definition of a decomposition tre@, = u, ;- uy .
Sinceuy(s,t) = 1 then by definition of the concatenation

Va,be M,a <z bif a € MbM , there existg € Q such that, ;(s,¢) = 1 andu; »(q,t) = 1.

where MbM denotes the sefubv | u, v € M}. By induction hypothesis we have, (s, q) - u2(¢,t) > 0; and

The number of discontinuous nodes along a path inS#iCeu = ui - uz thenwu(s,t) > ui(s,q) - ua(g,t), which
decomposition tree can be bounded using the following resiroves the direct implication of (11).

adapted from [23, Lemma 3]. The converse implication is similar: #(s,¢) > 0 then by

. ., definition of matrix product, there existg € @ such that
Lemma 9. Let A be a finite alphabet, and// a monoid ui(s,q) > 0 andu(g,t) > 0, and we use the induction

equipped with a functioft that maps every idempotene M hypothesis to getr, (s,/) = 1. This concludes the proof
to another idempotent element ¢ M. Suppose moreover (11) ’

that for every idempotent € M, Now we prove that (12) holds. Let,t € @ such that
efe=et=c-ef . (9) u(s,t) = 1. By definition of a decomposition trea,= u; -us.

Then for every idempotent element M, eithere? — ¢ or Since u(s,t) = 1 then by definition of the product of two
limit-words there exists; € @ such thatu;(s,¢) = 1 and

el <7 e. h h

As a consequence, the number of discontinuous nodes aléfg; t) = 1. Thenu(s, ) = ua(s, ¢) -uz(q, t) = Pinin Pinin =
a path in a decomposition tree is at mo&t where.J is the Pain Where the first inequality is by definition of the matrix
number of.7-classes of the monoid. product and the second inequality is by induction hypothesi

This completes the proof of (12).
ler:rcr)]v; we are ready to complete the proof of the lower bound Second case: ¢ is an iteration node labelled
’ by (u,(u®,u;)) with k sons ti,...,t; labelled by
Proof of Lemma 7: Let M be the extended Markov

monoid G, associated with4d and equipped with the con- (u1, (W, up)), ..., (ur, (u,uy)). The proof that (11) holds
catenation operation:

e prove (11) and (12) by induction dn
f h = 0 then the node is a leaf, henceis a lettera and
= uy = a. Then (11) holds by definition o and (12)

is similar to the concatenation node case (and relies on the
fact thatu is idempotent). We focus on the proof of (12).
(wug) - (v,vy)=(u-v,uy -vy) Let s, € Q such thatuf(s,r) = 1. By definition of a



decomposition treep = u; ---ug. Sincet is an iteration

4
node,k > 3 thus: 8—8 @—@
u(s,r) > ur(s,r) - > (w2 uk—1) (r,q) - ur(q,r)) - g

q€Q

(13)
To establish (12) we prove that:

ur(8,7) > pliin, (14)
Vg € Q, (ug--up_1)(r,q) >0 = up(q,r) > piin. (15)

b b-af
O 0

Fig. 2. A leaktight automaton and its extended Markov monoid

First we prove (14). Sinca’(s,r) = 1 then by definition
of the iteration operation; is u-recurrent andu(s,r) = 1.

By induction hypothesis applied to, according to (12), it
implies uy (s, r) > p2,. i.e (14).

Now we prove (15). For that we use the hypothesis
that (u,uy) is not a leak witness. Let € @ such that The Markov monoid has too many elements to be represented
(uz -+ -uk_1)(r,q) > 0. Then by induction hypothesis appliedhere. This automaton does not have value
to to,...,tx—1, according to (11),u"3(r,q) = 1. Thus
by idempotency ofuy, ui(r,q) = 1. Since by hypothesis
uf(s,r) = 1 thenr is u-recurrent and sincéu, u, ) is not a
leak witness then necessarili(q, ) = 1. Thus, by induction
hypothesis and according to (12),(q,7) > p?]:in i.e (15).

Now, putting (13), (14) and (15) altogether,

u(s,r) > ui(s,r) - Z(W o uk—1)(r,q) - u(q, )
q€Q
h h
> pin (U uk—1)(r,q) - P
q€Q
h+1
- p12111n )
where the second inequality holds because Fig. 3. A leaktight automaton which does not have value
> qeq(u2 - -uk—_1)(r,q) = 1 by basic property of transition
matrices. This completes the proof of (12).

B. The class of leaktight automata is rich and stable
To conclude, according to (10) the depth of a decomposition ) ]
tree can be bounded by - |G, |2, and sinceG, has less The class of leaktight automata contains all known classes

than J = 2219 elements the depth is less than3 - J2. of probabilistic automata with a decidable valuegroblem,

Then according to (11) and (12) this completes the proof B particular hierarchical automata defined in [3] grakcyclic
Lemma 7. m automata defined in [14].

VI. A FEW LEAKTIGHT AUTOMATA Proposition 5. Deterministic automata, hierarchical proba-
li)ilistic automata andg-acyclic automata are leaktight and

In this section, we present several properties and examples. o inclusions are strict

of leaktight automata.

Another interest of the class of leaktight automata is its
stability under two natural composition operators: pafall
The automaton on Fig. 2 is leaktight. Its extended Mark%mposition and synchronized product. An automatii3

monoid is depicted on the right-hand side (except for thg the parallel composition of two automat and B if its
neutral element(1,1)). Each of the four directed graphsstate space is the disjoint union of the state spaced ahd
represents an extended limit-wofd, u ); the edges marked g pjus a new initial state. For every input letter, the possibl
+ are the edges that are in. but not inu. successors of the initial state are itself or one of theahiti
The initial state of the automaton is st@teand the unique state of 4 and B. An automatonA x B is the synchronized
final state is staté. This automaton has valueand this can product of two automatad and B if its state space is the
be checked using its Markov monoid: there is a single value;grtesian product of the state spacesicind 3, with induced
witnessa’, which correspond to two distinct extended limityransition probabilities.
words labelled bya* andb - a* on Fig. 2.
The automaton on Fig 3 is leaktight. The initial state dProposition 6. The leaktight property is stable by parallel
the automaton is state and the unique final state is stafle Ccomposition and synchronized product.

A. Two basic examples



C. Aboutf-height
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that theg-height of an automaton is at mogd|. A natural
guestion is whether this bound is tight. The answer is pasiti
the only valuel witness of the automaton of Fig. 4 is =
(---((abay)fag)taz)? - - - a,_1)*, whoset-height isn = |Q| —
2.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

Fig. 4. A leaktight automaton with valuk and #-height n.

The above study of-height shows a crucial differencel*%

between leaktight automata afiehcyclic automata, as it is
easy to see thgtacyclic automata havgheight one. 1]

CONCLUSION (12]

We introduced a subclass of probabilistic automata, call
leaktight automata, for which we proved that the value
problem isPSPACE-complete.

) 14

In the present paper we considered automata over finite
words. Next step is the adaptation of our results to infinite
words and probabilistic Buchi automata [1], [3], as well ags
partially observable Markov decision processes.

A natural question is “what does the Markov monoid sal}6l
about a probabilistic automaton (leaktight or not)?”". ﬁinc[ﬂ]
the Markov monoid is independent of the actual values of
transition probabilities (only positivity matters), thésiggests [18l
the two following questions. Given a probabilistic autoorat [19]
whose transition probabilities are unspecified (only pagit
is specified), [20]

1) is it decidable whether the answer to the valygoblem [21]
is the same foany choice of transition probabilities?
2) does the Markov monoid contain a valliewitness if
and only if the automaton has valuefor somechoice

of transition probabilities?

[22]
[23]

[24]
The first question, suggested by a referee of the present,pape

is open, while the answer to the second question seems to be
negative.
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] Hugo Gimbert and Youssouf Oualhadi.
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