
Handlers in Action

Ohad Kammar
University of Cambridge

ohad.kammar@cl.cam.ac.uk

Sam Lindley
University of Strathclyde
Sam.Lindley@ed.ac.uk

Nicolas Oury

nicolas.oury@gmail.com

Abstract
Plotkin and Pretnar’s handlers for algebraic effects occupy a sweet
spot in the design space of abstractions for effectful computation.
By separating effect signatures from their implementation, alge-
braic effects provide a high degree of modularity, allowing pro-
grammers to express effectful programs independently of the con-
crete interpretation of their effects. A handler is an interpretation
of the effects of an algebraic computation. The handler abstraction
adapts well to multiple settings: pure or impure, strict or lazy, static
types or dynamic types.

This is a position paper whose main aim is to popularise the
handler abstraction. We give a gentle introduction to its use, a col-
lection of illustrative examples, and a straightforward operational
semantics. We describe our Haskell implementation of handlers
in detail, outline the ideas behind our OCaml, SML, and Racket
implementations, and present experimental results comparing han-
dlers with existing code.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; F.3.2 [Se-
mantics of Programming Languages]: Operational semantics

Keywords algebraic effects; effect handlers; effect typing; mon-
ads; continuations; Haskell; modularity

1. Introduction
Monads have proven remarkably successful as a tool for abstrac-
tion over effectful computations [4, 30, 46]. However, monads as a
programming language primitive violate the fundamental encapsu-
lation principle: program to an interface, not to an implementation.

Modular programs are constructed using abstract interfaces as
building blocks. This is modular abstraction. To give meaning to
an abstract interface, we instantiate it with a concrete implemen-
tation. Given a composite interface, each sub-interface can be in-
dependently instantiated with different concrete implementations.
This is modular instantiation.

The monadic approach to functional programming takes a con-
crete implementation rather than an abstract interface as primitive.
For instance, in Haskell we might define a state monad:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500590

newtype State s a = State {runState :: s → (a, s)}
instance Monad (State s) where

return x = State (λs → (x , s))
m >>= f = State (λs → let (x , s′) = runState m s in

runState (f x) s′)

This definition says nothing about the intended use of State s a
as the type of computations that read and write state. Worse, it
breaks abstraction as consumers of state are exposed to its concrete
implementation as a function of type s → (a, s). We can of
course define the natural get and put operations on state, but their
implementations are fixed.

Jones [18] advocates modular abstraction for monads in Haskell
using type classes. For instance, we can define the following inter-
face to abstract state computation1:

class Monad m ⇒ MonadState s m | m → s where
get :: m s
put :: s → m ()

The MonadState interface can be smoothly combined with other
interfaces, taking advantage of Haskell’s type class mechanism to
represent type-level sets of effects.

Monad transformers [25] provide a form of modular instantia-
tion for abstract monadic computations. For instance, state can be
handled in the presence of other effects by incorporating a state
monad transformer within a monad transformer stack.

A fundamental problem with monad transformer stacks is that
once a particular abstract effect is instantiated, the order of effects
in the stack becomes concrete, and it becomes necessary to explic-
itly lift operations through the stack. Taming the monad transformer
stack is an active research area [16, 17, 38, 42].

Instead of the top-down monad transformer approach, we take
a bottom-up approach, simply adding the required features as lan-
guage primitives. We want modular abstraction, so we add abstract
effect interfaces, in fact abstract operations, as a language prim-
itive. Abstract operations compose, yielding modular abstraction.
We also want modular instantiation, so we add effect handlers as
a primitive for instantiating an abstract operation with a concrete
implementation. A handler operates on a specified subset of the ab-
stract operations performed by an abstract computation, leaving the
remainder abstract, and yielding modular instantiation.

By directly adding the features we require, we obtain modular
abstraction and modular instantiation while avoiding many of the
pitfalls of monad transformers.

Our first inspiration is the algebraic theory of computational
effects. Introduced by Plotkin and Power [33–35], it complements
Moggi’s monadic account of effects by incorporating abstract effect
interfaces as primitive. Our second inspiration is the elimination
construct for algebraic effects, effect handlers [36]. In Plotkin and
Power’s setting, one defines algebraic effects with respect to an
equational theory. As with other handler implementations [2, 6, 29],

1 From the Monad Transformer Library [12].

in this paper we always take the equational theory to be the free
theory, in which there are no equations.

We argue that algebraic effects and effect handlers provide a
compelling alternative to monads as a basis for effectful program-
ming across a variety of functional programming languages (pure
or impure, strict or lazy, statically typed or dynamically typed). Our
position is supported by a range of handler libraries we have im-
plemented for Haskell, OCaml, SML, and Racket, backed up by a
core calculus of effect handlers with a straightforward operational
semantics. This paper focuses on the Haskell library.

Our key contributions are the following:

• A collection of novel features for practical programming with
handlers in the presence of effect typing, illustrated through a
series of examples.
• A small-step operational semantics for effect handlers.
• A type and effect system for effect handlers.
• Effect handler libraries for Haskell, OCaml, SML, and Racket.
• A performance comparison between our Haskell library and

equivalent non-handler code.

The rest of the paper is structured as follows. Section 2 presents
handlers in action through a series of small examples. Section 3
introduces our core calculus of effect handlers λeff , its effect type
system, and small-step operational semantics. Section 4 presents in
detail the Haskell effect handlers library, and sketches the design
of our libraries for OCaml, SML, and Racket. Section 5 reports on
the baseline performance of handlers in comparison with existing
(less abstract) code. Section 6 discusses related work, and Section 7
concludes.

2. Handlers in Action
We present our examples in a monadic style, using an extension
to Haskell syntax implemented using the Template Haskell [40]
and quasiquote [28] features of GHC. Haskell’s features allow for
a relatively simple, user-friendly and efficient implementation of
effects handlers with effect typing in an existing language. (None
of our other libraries support effect typing.)

However, all of the examples could in fact be implemented with
the same level of expressivity and flexibility in a direct-style, with-
out any monadic boilerplate. Indeed, handlers can be direct-style
with or without effect typing, and provide a natural abstraction for
adding more controlled effectful computations to the ML family of
languages or even to the Lisp family of languages as witnessed by
the libraries we have implemented in OCaml, SML, and Racket. In
Section 4.3 we outline a practical method to prototype an imple-
mentation of handlers for a large set of such languages.

A key reason for focusing on our Haskell library in this paper
is that it is the only one that supports effect typing. Effect typing is
crucial to the termination of our core calculus (Section 3). More im-
portantly, it it is crucial for our notion of soundness, as it statically
ensures that operations do not accidentally go unhandled. Anecdo-
tally, we have observed that such static guarantees are important in
practice: when we added effect typing to an early version of our
Haskell library, it revealed a number of bugs in our test examples.

The code for our effect handler libraries, examples, and bench-
marks is available in the GitHub repository at:

http://github.com/slindley/effect-handlers/

This repository also includes many other other examples. For in-
stance, we have reimplemented Kiselyov and Shan’s HANSEI DSL
for probabilistic computation [22], Kiselyov’s iteratees [21], and
Gonzalez’s Pipes library [14], all using handlers.

Template Haskell and Quasiquotes Template Haskell [40] is a
facility for compile-time meta programming in Haskell. It provides
a data type for manipulating Haskell code as an abstract syntax tree.
It also provides constructs for splicing chunks of Haskell together.

Quasiquotes [28] extend Template Haskell splicing functional-
ity with user-defined syntax. Each syntax extension (also known
as quasiquoter) is associated with a name. To define syntax exten-
sion ext, a library writer supplies a parser for ext expressions as
a function that takes a string and returns a Haskell abstract syn-
tax tree. To invoke the syntax extension, a programmer writes an
expression e in quasiquote brackets [ext | e |], a quasiquote. At
compile-time, GHC runs the parser on e and splices in the resulting
abstract syntax tree in place of the quasiquote brackets.

2.1 State and Handlers
We introduce the primitives for abstract operations and handlers in
our Haskell library through global state.

We define abstract operations for state with the following
operation quasiquotes

[operation | Get s :: s |]
[operation | Put s :: s → () |]

which declare a Get s operation that takes no parameters and
returns values of type s , and a Put s operation that takes a single
parameter of type s and returns values of type (). In general an
abstract operation declaration has the form

[operation | ∀u1 ... ul.Op e1 ... em :: A1 → ...→ An → A |]

where Op is the name of the operation, u1, ..., ul are universal type
variables, e1, ..., em are existential type variables, A1, ...,An are
parameter types, and A is the return type. (We will discuss the role
of universal and existential type variables in Section 2.2.)

The declarations above automatically derive wrappers get and
put for actually invoking the operations. Ideally, we would like
their types to be

get :: Comp′ {Get s } s
put :: s → Comp′ {Put s } ()

where Comp′ ε a is the type of abstract computations that can
perform abstract operations in the set ε and return a value of type
a . But GHC does not have a built-in effect type-system, so we
simulate one, encoding sets of operations as type class constraints.
Thus, get and put actually have slightly more complicated types:

get :: [handles | h {Get s } |]⇒ Comp h s
put :: [handles | h {Put s } |]⇒ s → Comp h ()

We can think of the type variable h as standing for an effect set ε.
Membership of operation Op in ε is denoted by the quasiquotation
[| handles | h {Op} |] (which is desugared into a corresponding
type class constraint). The reason we write handles instead of
contains, and h instead of ε, is that h is more than just an
effect set; it actually ranges over handlers for ε. Thus Comp h
represents computations interpreted by handlers of type h , and the
constraint [| handles | h {Op} |] really means: handler h
handles operation Op. (We will introduce the syntax for handlers
shortly.)

We define the type of abstract state computations as follows2:

type SComp s a =
∀h.([handles | h {Get s } |],

[handles | h {Put s } |])⇒ Comp h a

For example:

2 We would ideally like to write [handles | h {Get s,Put s } |] as a
single constraint, but Template Haskell currently only allows us to generate
one type class constraint per quasiquote.

comp :: SComp Int Int
comp = do {x ← get ; put (x + 1);

y ← get ; put (y + y); get }

Because Haskell is lazy we still require notation for explicitly
sequencing computations. We take advantage of the existing do
notation, and Comp h is implemented as a certain kind of universal
monad (see Section 4).

We can provide many concrete interpretations of stateful com-
putation, which is where handlers come in. First, we interpret state
in the standard monadic way:

1 [handler |
2 RunState s a :: s → (a, s)
3 handles {Get s,Put s } where
4 Return x s → (x , s)
5 Get k s → k s s
6 Put s k → k () s |]

Let us describe the syntax line by line:

Line 1 begins a handler quasiquote.

Line 2 specifies the name, type parameters, and type signature of
the handler. Notice that the type signature s → (a, s) is that of the
state monad. The type signature indicates that this handler takes
one parameter of type s , which is threaded through the handler,
and returns a result of type (a, s).

Line 3 specifies the set of operations handled by the handler.

Line 4 is a return clause. It expresses how to return a final value
from a computation. In general, a return clause takes the form
Return x y1 ... yn → e , where x binds the value returned by
the computation and y1, . . . , yn bind the handler parameters. Here,
the final value is paired up with the single threaded state parameter.

Lines 5 and 6 are operation clauses. They express how to handle
each operation. In general, an operation clause takes the form
Op x1 ... xm k y1 ... yn → e , where x1, . . . , xm bind the operation
parameters, k binds the continuation of the computation, and y1,
. . . , yn bind the handler parameters, here the single threaded state
parameter. The continuation k is a curried function which takes
a return value followed by a sequence of handler parameters, and
yields the interpretation of the rest of the computation. For Get ,
the return value is the current state, which is threaded through the
rest of the computation. For Put s , the existing state is ignored, the
return value is (), and the state parameter is updated to s .

Analogously to abstract operation declarations, a handler decla-
ration generates a convenient wrapper, whose name is derived from
that of the handler by replacing the first letter with its lower case
counterpart.

runState :: s → SComp s a → (a, s)
*Main> runState 1 comp
(4, 4)

If we do not need to read the final contents of the state, then we
can give a simpler interpretation to state [36], using the type that
a Haskell programmer might normally associate with a read-only
state monad:

[handler |
EvalState s a :: s → a handles {Get s,Put s } where

Return x s → x
Get k s → k s s
Put s k → k () s |]

*Main> evalState 1 comp
4

More interestingly, we can give other interpretations:

[handler |
LogState s a :: s → (a, [s])

handles {Get s,Put s } where
Return x s → (x , [])
Get k s → k s s
Put s k ss → let (x , ss) = k () s in (x , s : ss) |]

This handler logs the history of all writes to the state. For instance,
*Main> logState 1 comp
(4, [2, 4])

2.2 State and Open Handlers
The three handlers of Section 2.1 are closed. They each handle
Get and Put , but cannot interpret computations that might perform
other operations. Thus they do not support modular instantiation.

Open handlers extend closed handlers by automatically for-
warding all operations that are not explicitly handled. For instance,
the following defines a handler that forwards all operations other
than Get and Put :

[handler |
forward h.

OpenState s a :: s → a handles {Get s,Put s } where
Return x s → return x
Get k s → k s s
Put s k → k () s |]

The type variable h is an artefact of the Haskell implementation.
It represents an abstract parent handler that will ultimately handle
operations forwarded by OpenState . It is implicitly added as the
first type argument to OpenState (yielding OpenState h s a)
and Comp h is implicitly applied to the return type (yielding
Comp h a). Any operations other than Get or Put will be
automatically forwarded to h .

To illustrate the composability of open handlers, we return to
the logging example. In Section 2.1, we demonstrated how to log
Put operations using a special handler. We now factor the logging
in such a way that we can refine any abstract stateful computation
into an equivalent abstract computation that also performs logging,
such that both logging and state can subsequently be interpreted in
arbitrary ways using suitable handlers.

First we define a new operation for logging each Put :
[operation | LogPut s :: s → () |]

Now we can define an open handler that inserts a LogPut oper-
ation before every Put operation in the original computation, but
otherwise leaves it unchanged:

[handler |
forward h handles {Put s,LogPut s }.

PutLogger s a :: a handles {Put s } where
Return x → return x
Put s k → do { logPut s; put s; k ()} |]

For instance, the computation putLogger comp is equivalent to:
do {x ← get ; logPut (x + 1); put (x + 1);

y ← get ; logPut (y + y); put (y + y); get }
The constraint (h handles {Put s,LogPut s }) asserts that
the parent handler h must also handle the Put s and LogPut s
operations3.

To obtain the original behaviour of LogState , we can define the
following open handler:

[handler |
forward h.

LogPutReturner s a :: (a, [s])
handles {LogPut s } where

Return x → return (x , [])
LogPut s k → do (x , ss)← k (); return (x , s : ss) |]

3 Under the hood this aids GHC type inference.

and compose several handlers together:

stateWithLog :: s → SComp s a → (a, [s])
stateWithLog s comp = (handlePure ◦ logPutReturner ◦

openState s ◦ putLogger) comp

where HandlePure is a canonical top-level closed handler:

[handler |
HandlePure a :: a handles { } where Return x → x |]

which interprets a pure computation as a value of type a .
An alternative interpretation of logging is to output logging

messages as they arrive:

[handler |
forward h handles {Io}.(Show s)⇒

LogPutPrinter s a :: a handles {LogPut s } where
Return x → return x
LogPut s k →

do io (putStrLn ("Put: " ++ show s)); k () |]
Now we can plug everything together:

statePrintLog :: Show s ⇒ s → SComp s a → IO a
statePrintLog s comp = (handleIO ◦ logPutPrinter ◦

openState s ◦ putLogger) comp

where HandleIO is another top-level closed handler for perform-
ing arbitrary operations in the IO monad with the Io operation:

[operation | ∀a.Io :: IO a → a |]
[handler |

HandleIO a :: IO a handles {Io} where
Return x → return x
Io m k → do {x ← m; k x } |]

The universal quantifier in the Io operation declaration indicates
that it must be handled polymorphically in a . This is in contrast to
the declaration of Get , for instance:

[operation | Get s :: s |]

where the type parameter s is existential, in the sense that for
any handler that handles Get , there must exist a fixed type for s .
Correspondingly, Io can be used at arbitrary types whereas Get
must be used at a fixed type s , in an abstract computation.

Comparing the outputs on our sample computation we obtain:

*Main> stateWithLog 1 comp
(4, [2, 4])
*Main> statePrintLog 1 comp
Put: 2
Put: 4
4

The pattern of precomposing one closed top-level handler with
a sequence of open handlers is common when using our library.
The order in which open handlers are composed may or may not
change the semantics. For instance, if we were to swap the order of
openState s and putLogger in statePrintLog then all of the Put
operations would be handled before any PutLog operations could
be generated, so no logging information would ever be output. On
the other hand, if we were to swap the order of logPutPrinter
and openState s then the semantics would be unchanged as their
actions are orthogonal.

Open handlers allow us to handle a subset of the effects in an
abstract computation, thus supporting modular instantiation.

The next three subsections present more involved examples,
demonstrating the interaction of user-defined effects with various
Haskell features.

2.3 Choice and Failure
Consider abstract operations Choose and Failure:

[operation | ∀a.Choose :: a → a → a |]
[operation | ∀a.Failure :: a |]

The idea is that Choose should select one of its two arguments
of type a , and Failure just aborts. Abstract choice computations
are interesting because they admit a range of useful interpreta-
tions. Canonical handlers which we consider include those that
enumerate all choices (AllResults below) and random sampling
(RandomResult below). The former is notable as it takes full ad-
vantage of the ability for an operation clause to invoke the continu-
ation more than once.

The type of abstract computations over Choose and Failure is:

type CF a = ∀h.([handles | h {Choose } |],
[handles | h {Failure } |])⇒ Comp h a

As a simple example, consider the following program:

data Toss = Heads | Tails deriving Show
drunkToss :: CF Toss
drunkToss = do {caught ← choose True False;

if caught then choose Heads Tails
else failure }

drunkTosses :: Int → CF [Toss]
drunkTosses n = replicateM n drunkToss

The abstract computation drunkToss simulates a drunk perform-
ing one coin toss. If the drunk catches the coin then we obtain the
result of tossing the coin (Heads or Tails). If the coin falls into the
gutter, then we do not obtain a result. The drunkTosses function
repeats the process the specified number of times.

We can write a handler that returns all possible results of a CF
computation as a list, providing a model of non-determinism.

[handler |
AllResults a :: [a] handles {Choose,Failure } where

Return x → [x]
Choose x y k → k x ++ k y
Failure k → [] |]

This is the first handler we have seen that uses the continuation
non-linearly. The Choose operation is handled by concatenating
the results of invoking the continuation with each alternative. The
Failure operation is handled by returning the empty list and ignor-
ing the continuation. For example:

*Main> allResults (drunkCoins 2)
[[Heads,Heads], [Heads,Tails], [Tails,Heads], [Tails,Tails]]

Rather than returning all of the results of a CF computation,
we might wish to sample a single result at random. In order to keep
the implementation of randomness abstract, let us declare a new
operation for generating random numbers.

[operation | Rand :: Double |]

We first give a handler for Choose alone.

[handler |
forward h handles {Rand }.

RandomResult a :: a handles {Choose } where
Return x → return x
Choose x y k → do {r ← rand ;

k (if r < 0.5 then x else y)} |]

Unlike in the AllResults handler, the Choose operation is handled
by supplying one of the arguments to the continuation at random.
We can implement randomness using the IO monad.

[handler |
HandleRandom a :: IO a

handles {Rand } where
Return x → return x
Rand k → do {r ← getStdRandom random; k r } |]

Let us now define another open handler for handling Failure ,
interpreting the result of a possibly failing computation with a
Maybe type.

[handler |
forward h.

MaybeResult a :: Maybe a handles {Failure } where
Return x → return (Just x)
Failure k → return Nothing |]

As the body of the handler is pure, there is no need to constrain h
with a handles clause. We now compose the above three handlers:

sampleMaybe :: CF a → IO (Maybe a)
sampleMaybe comp =

(handleRandom ◦maybeResult ◦ randomResult) comp

The sampleMaybe function4 first uses randomResult to handle
Choose using Rand , forwarding Failure . Then it uses maybeResult
to handle Failure , forwarding Rand . Finally, at the top-level, it
uses handleRandom to handle Rand in the IO monad. Here are
some example runs:

*Main> sampleMaybe (drunkTosses 2)
Nothing
*Main> sampleMaybe (drunkTosses 2)
Just [Heads,Heads]

We might decide that rather than stopping on failure, we would like
to persevere by trying again:

[handler |
forward h.

Persevere a :: Comp (Persevere h a) a → a
handles {Failure } where

Return x → return x
Failure k c → persevere c c |]

The parameter to the Persevere handler is a computation that must
be handled recursively by the handler itself. The Failure operation
is handled by reinvoking the handler.

We can now persevere until we obtain a sample.

sample :: CF a → IO a
sample comp = handleRandom (persevere comp′ comp′)

where comp′ = randomResult comp

For instance:

*Main> sample (drunkTosses 5)
[Heads,Tails,Heads,Tails,Heads]

2.4 Word Count
The wc program counts the number of lines, words and characters
in an input stream. We first present the abstract operations required
to implement this functionality:

[operation | ReadChar :: Maybe Char |]
[operation | Finished :: Bool |]

The ReadChar operation reads a character if available. The
Finished operation checks whether the input is finished. Given
these operations, we can implement a function that reads a line:

readLine :: [handles | h {ReadChar } |]⇒ Comp h String
readLine =

do mc ← readChar
case mc of

Nothing → return []
Just ’\n’→ return []
Just c → do cs ← readLine; return (c : cs)

Of course, this implementation does not specify where the input is
to be read from. We define a handler that reads from a string:

4 We cannot η-reduce sampleMaybe as doing so upsets the GHC type
checker.

[handler |
forward h.

StringReader a :: String → a
handles {ReadChar ,Finished } where

Return x → return x
ReadChar k [] → k Nothing []
ReadChar k (c : cs)→ k (Just c) cs
Finished k [] → k True []
Finished k cs → k False cs |]

and another that reads from standard input:

[handler |
forward h handles {Io}.

StdinReader a :: a
handles {ReadChar ,Finished } where

Return x → return x
ReadChar k →

do b ← io (hIsEOF stdin)
if b then k Nothing

else do c ← io getChar ; k (Just c)
Finished k → do b ← io (hIsEOF stdin); k b |]

With the readLine function, we can count the number of lines in
an input stream, but wc additionally provides facilities to count
characters and words. For doing so, we give two handlers, each of
which instruments the readChar operation in a different way. The
first handler counts the number of characters read by enumerating
each call to readChar :

[handler |
forward h handles {ReadChar }.

CountChar0 a :: Int → (a, Int)
handles {ReadChar } where

Return x i → return (x , i)
ReadChar k i → do mc ← readChar

case mc of
Nothing → k mc i
Just → k mc $! i + 1 |]

countChar = countChar0 0

The second handler counts the number of words read by tracking
space characters:

[handler |
forward h handles {ReadChar }.

CountWord0 a :: Int → Bool → (a, Int)
handles {ReadChar } where

Return x i → return (x , i)
ReadChar k i b → do

mc ← readChar
case mc of

Nothing →
(k mc $! (if b then i + 1 else i)) $ False

Just c →
if (c ≡ ’ ’ ∨ c ≡ ’\t’
∨ c ≡ ’\n’ ∨ c ≡ ’\r’) then

(k mc $! (if b then i + 1 else i)) $ False
else k mc i True |]

countWord = countWord0 0 False

Combining these two handlers, we write a general wc function:

wc ::
([handles | h {ReadChar } |], [handles | h {Finished } |])
⇒ Comp h (Int , Int , Int)

wc =
do ((l ,w), c)← countChar (countWord (loop 0))

return (c,w , l)
where loop i = do b ← finished

if b then return i
else do ← readLine; loop $! (i + 1)

Here is a version of wc that takes a string as input:

wcString :: String → IO ()
wcString s =

let (c,w , l) = handlePure (stringReader s wc) in
putStrLn $ (show l) ++ " " ++ (show w) ++ " " ++ (show c)

Here is a version of wc that uses standard input:
wcStdin :: IO ()
wcStdin = do

(c,w , l)← handleIO (stdinReader wc)
putStrLn $ (show l) ++ " " ++ (show w) ++ " " ++ (show c)

In practice, one might define other handlers in order to support file
input, network input, or different forms of buffering.

2.5 Tail
The tail program takes an argument n and prints the last n lines of
a text file. In order to implement the functionality of tail , we make
use of readLine as well as two additional abstract operations: the
first to record a line, and the second to print all recorded lines.

[operation | SaveLine :: String → () |]
[operation | PrintAll :: () |]

With these two operations, implementing an abstract tail computa-
tion tailComp is straightforward.

tailComp ::
([handles | h {ReadChar } |], [handles | h {Finished } |],
[handles | h {SaveLine } |], [handles | h {PrintAll } |])
⇒ Comp h ()

tailComp =
do s ← readLine; saveLine s

b ← finished ; if b then printAll else tailComp

We now just need to handle the SaveLine and ReadLine opera-
tions. A naive handler might store all saved lines in memory, and
print the last n as required. A more efficient implementation might
store only the last n lines, for instance using a circular array.

2.6 Pipes and Shallow Handlers
The behaviour of handlers we have described thus far is such that
the continuation of an operation is handled with the current handler
(though the parameters passed to the continuation may differ from
the current parameters).

Another possible behaviour is for the continuation to return an
unhandled computation, which must then be handled explicitly. We
call such handlers shallow handlers because each handler only han-
dles one step of a computation, in contrast to Plotkin and Pretnar’s
deep handlers. Shallow handlers are to deep handlers as case anal-
ysis is to a fold on an algebraic data type.

Shallow handlers sometimes lead to slightly longer code. For
example, the EvalState handler from Section 2.1 becomes:

[shallowHandler |
EvalStateShallow s a :: s → a

handles {Get s,Put s } where
Return x s → x
Get k s → evalStateShallow (k s) s
Put s k → evalStateShallow (k ()) s |]

The need to call the handler recursively in most clauses is charac-
teristic of the style of program one writes with shallow handlers.

However, in some situations, it is helpful to have access to the
unhandled result of the continuation. Consider pipes as exemplified
by Gonzalez’s pipes library [14]. A pipe is a data structure used
to represent composable producers and consumers of data. A con-
sumer can await data and a producer can yield data. A pipe is both
a consumer and a producer. It is straightforward to provide such an
abstraction with the following operations5:

5 These operations have exactly the same signatures as Get and Put , but
their intended interpretation is different. For instance, yield x ; yield y is
in no way equivalent to yield y .

[operation | Await s :: s |]
[operation | Yield s :: s → () |]

To define a plumbing operator that combines a compatible con-
sumer and producer, we write two handlers: one handles the down-
stream consumer and keeps a suspended producer to resume when
needed, the other handles the upstream producer and keeps a sus-
pended consumer. These two handlers are straightforward to write
using shallow handlers:

[shallowHandler |
forward h.Down s a :: Comp (Up h a) a → a

handles {Await s } where
Return x → return x
Await k prod → up k prod |]

[shallowHandler |
forward h.Up s a :: (s → Comp (Down h a) a)→ a
handles {Yield s } where

Return x → return x
Yield s k cons → down (k ()) (cons s) |]

However, transforming these handlers into deep handlers re-
quires some ingenuity. Indeed, we need to work with continuations
that are fully handled and we cannot keep the simple mutually re-
cursive structure of the two handlers. Instead, we introduce two
mutually recursive type definitions:

data Prod s r = Prod (()→ Cons s r → r)
data Cons s r = Cons (s → Prod s r → r)

which we use to encode the suspended partner of each computation:

[handler |
forward h.Down s a :: Prod s (Comp h a)→ a

handles {Await s } where
Return x → return x
Await k (Prod prod) → prod () (Cons k) |]

[handler |
forward h.Up s a :: Cons s (Comp h a)→ a

handles {Yield s } where
Return x → return x
Yield s k (Cons cons)→ cons s (Prod k) |]

This results in a more complex program. We believe that both deep
and shallow handlers are useful. However, for clarity of presenta-
tion, we focus on deep handlers in the rest of this paper. In Sec-
tion 3.4 and Section 4.2 we outline how shallow handlers differ
from the main presentation.

2.7 Other Perspectives
In this paper we primarily treat handlers as a flexible tool for in-
terpreting abstract effectful computations. Before we proceed with
the rest of the paper we would like to highlight some alternative
perspectives on what handlers are.

Generalised exception handlers. Benton and Kennedy [3] intro-
duced the idea of adding a return continuation to exception han-
dlers. Their return continuation corresponds exactly to the return
clause of an effect handler. Effect handler operation clauses gener-
alise exception handler clauses by adding a continuation argument,
providing support for arbitrary effects. An operation clause that ig-
nores its continuation argument behaves like a standard exception
handler clause.

Taming delimited continuations. A handler invocation delimits
the start of a continuation. Each operation clause captures the con-
tinuation of the computation currently being handled, that is, the
continuation up to the invocation point of the handler. Effect han-
dlers modularise delimited continuations by capturing a particular
pattern of use. As Andrej Bauer, the co-creator of the Eff [2] lan-

(values) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | UEC
(computations) C ::= FA | A→ C | > | C1 & C2

(effect signatures) E ::= {op : A→ B}] E | ∅
(handlers) R ::= A E⇒E′

C
(environments) Γ ::= x1 : A1, . . . , xn : An

Figure 1. Types and Effects of λeff

(values) V,W ::= x | () | (V1, V2) | inji V | {M}
(computations)

M,N ::= split(V, x1.x2.M) | case0(V)
| case(V, x1.M1, x2.M2) | V !
| return V | let x ←M in N
| λx .M |M V
| 〈M1,M2〉 | prjiM
| op V (λx .M) | handleM withH

(handlers) H ::= {return x 7→M} | H] {op p k 7→ N}

Figure 2. Syntax of λeff Terms

guage puts it (personal communication, 2012):

“effects + handlers” : “delimited continuations”
=

“while” : “goto”

Folds over free monads. As we shall see in Section 4, we can
define an algebraic data type for a collection of operations, and a
handler is exactly a fold (otherwise known as catamorphism) over
that data type.

3. The λeff -calculus
In this section, we present a small-step operational semantics and a
sound type and effect system for λeff , a higher-order calculus of ef-
fect handlers. Following related work on effect operations [19], ef-
fect handlers [36], and monadic reflection [11], which takes Levy’s
call-by-push-value [24] as the underlying paradigm, we extend
Levy’s calculus with effect operations and effect handlers. For our
purposes, the important features of call-by-push-value are that it
makes an explicit distinction between values and computations, and
that thunks are first-class objects distinct from functions.

3.1 Syntax and Static Semantics
The types and effects of λeff are given in Figure 1, the terms are
given in Figure 2, and the typing rules are given in Figure 3. In
all figures, the interesting parts are highlighted in grey. The un-
highlighted parts are standard.

Call-by-push-value makes a syntactic distinction between val-
ues and computations. Only value terms may be passed to func-
tions, and only computation terms may compute.

Value types (Figure 1) comprise the value unit type (1), value
products (A1 × A2), the empty type (0), sums (A1 + A2), and
thunks (UEC). The latter is the type of suspended computations.
The effect signature E describes the effects that such computations
are allowed to cause.

Computation types comprise value-returning computations
(FA), functions (A → C), the computation unit type (>), and
computation product types (C1 &C2). Call-by-push-value includes
two kinds of products: computation products, which are eliminated
by projection, and value products, which are eliminated by binding.

An effect signature is a mapping from operations to pairs of
value types, written as a set of type assignments. Each type assign-

ment op : A → B, specifies the parameter type A and return type
B of operation op.

A handler type A E⇒E′
C has a input value type A, output

computation type C, input effect signature E, and output effect
signature E′. A handler of this type handles value-returning com-
putations of type FA that can only perform operations in E. The
body of the handler itself may only perform operations in E′, and
its computation type is C. Type environments are standard.

Value terms (Figure 2) include variables and value introduc-
tion forms. We write {M} for the thunk that represents the sus-
pended computation M as a value. All elimination occurs in com-
putation terms, as is standard for call-by-push-value. We write
split(V, x1.x2.M) for the elimination form for value products,
which binds the components of the product value V to the vari-
ables x1 and x2 in the computation M . We write 〈M1,M2〉 for
a computation pair and prjiM for the i-th projection of M . We
write V ! for the computation that forces the thunk V , that is, runs
the computation suspended in V . A lambda-abstraction λx.M is
not a value, so must be suspended to be passed as an argument.
Function application, products, and projections are standard.

In λeff operation applications are in continuation-passing-style.
An operation application op V (λx .M) takes a parameter V and a
continuation λx .M . The intuition is that the operation op is applied
to the parameter V , returning a value that is bound to x in the
continuation computation M . We restrict the continuation to be a
lambda abstraction in order to simplify the operational semantics.

While programming with effects, it is more convenient to work
with direct-style operation application. Direct-style application
can be defined in terms of continuation-passing-style application:
ôp V = op V (λx .return x), and vice versa: op V (λx .M) =
let x ← ôp V inM . Plotkin and Power call the function λx .ôp x
underlying a direct-style application the generic effect of op [35].

A handled computation handle M with H runs the compu-
tation M with the handler H . A handler H consists of a return
clause return x 7→M , and a set of operation clauses of the form
op p k 7→ N . The return clause return x 7→ M specifies how to
handle a return value. The returned value is bound to x in M . Each
operation clause op p k 7→ N specifies how to handle applications
of the distinct operation name op. The parameter is bound to p and
the continuation is bound to k in N . The body of the continuation
continues to be handled by the same handler.

The typing rules are given in Figure 3. The computation typing
judgement Γ `E M : C states that in type environment Γ the com-
putation M has type C and effect signature E. Only operations in
the current effect signature can be applied. Handling a computation
changes the current effect signature to the output effect signature of
the handler. The effect signature and type of the handled computa-
tion must match up exactly with the input type and effect signature
of the handler.

In the handler typing judgement Γ ` H : R, all clauses must
have the same output type and effect signature. The input type
is determined by the return clause. The effect annotation on the
thunked continuation parameter k in an operation clause op p k 7→
N is annotated with the output effect rather than the input effect.
The reason for this is that when handling an operation, the handler
is automatically wrapped around the continuation.

Syntactic Sugar For convenience, we define syntactic sugar for
projecting out the return clause and operation clauses of a handler.
For any handler

{return x 7→M}] {opi p k 7→ Ni}i

we write

Hreturn ≡ λx .M Hopi ≡ λpi ki.Ni

Value typing Γ ` V : A

(x : A) ∈ Γ

Γ ` x : A Γ ` () : 1

Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 ×A2

Γ ` V : Ai

Γ ` inji V : A1 +A2

Γ `E M : C

Γ ` {M} : UEC

Computation typing Γ `E M : C

Γ ` V : A1 ×A2 Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

Γ ` V : 0

Γ `E case0(V) : C

Γ ` V : A1 +A2

Γ, x1 : A1 `E M1 : C Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

Γ ` V : UEC

Γ `E V ! : C

Γ ` V : A

Γ `E return V : FA

Γ `E M : FA Γ, x : A `E N : C

Γ `E let x ←M in N : C

Γ, x : A `E M : C

Γ `E λx .M : A→ C

Γ `E M : A→ C Γ ` V : A

Γ `E M V : C

Γ `E 〈〉 : >
Γ `E M1 : C1 Γ `E M2 : C2

Γ `E 〈M1,M2〉 : C1 & C2

Γ `E M : C1 & C2

Γ `E prjiM : Ci

(op : A→ B) ∈ E Γ ` V : A Γ, x : B `E M : C

Γ `E op V (λx .M) : C

Γ `E M : FA Γ ` H : A E⇒E′
C

Γ `E′ handleM withH : C

Handler typing Γ ` H : A E⇒E′
C

E = {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : UE′(Bi → C) `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

Figure 3. Typing Rules for λeff

3.2 Operational Semantics
The reduction relation (−→) for λeff is defined in Figure 4. We use
reduction frames as an auxiliary notion to simplify our presenta-
tion. The β-rules are standard: each β-redex arises as an introduc-
tion followed by an elimination. The first three β-rules eliminate
value terms; the last three eliminate computation terms.

The hoist .op-rule hoists operation applications through hoist-
ing frames. Its purpose is to forward operation applications up to
the nearest enclosing handler, so that they can be handled by the
handle.op-rule.

The handle.F -rule returns a value from a handled computation.
It substitutes the returned value into the return clause of a handler

Reduction frames

(hoisting frames) H ::= let x← [] in N | [] V | prji []
(computation frames) C ::=H | handle [] withH

Reduction M −→M ′

(β.×) split((V1, V2), x1.x2.M1) −→M [V1/x1, V2/x2]
(β.+) case(inji V , x1.M1, x2.M2) −→Mi[V/xi]
(β.U) {M}! −→M

(β.F) let x ← return V inM −→M [V/x]
(β.→) (λx .M) V −→M [V/x]
(β.&) prji 〈M1,M2〉 −→Mi

(hoist .op)

x /∈ FV (H)

H[op V (λx .M)] −→ op V (λx .H[M])

(handle.F)

Hreturn = λx .M

handle (return V) withH −→M [V/x]

(handle.op)

Hop = λp k .N x /∈ FV (H)

handle op V (λx .M) withH
−→ N [V/p, {λx .handleM withH}/k]

(frame)

M −→M ′

C[M] −→ C[M ′]

Figure 4. Operational Semantics for λeff

in exactly the same way that β.F -reduction substitutes a returned
value into the body of a let binding.

The handle.op-rule is the most involved of the reduction rules.
A handled operation application handle op V (λx .M) with H
reduces to the body of the operation clause Hop = λp k .N with
the parameter V substituted for p and the continuation λx .M
substituted for k . Any further operation applications should be
handled by the same handler H . Thus, we wrap H around M .

The frame-rule allows reduction to take place within any stack
of computation frames, that is, inside any evaluation context.

The semantics is deterministic, as any term has at most one
redex. Furthermore, reduction on well-typed terms always termi-
nates.

Theorem 1 (Termination). If Γ `E M : C then reduction on M
terminates.

Proof sketch: The proof is by a relatively straightforward adapta-
tion of Lindley’s proof of strong normalisation for sums [26]. The
interesting rule is handle.op, which reinvokes the handler, pos-
sibly many times, but always on a subterm of the original com-
putation. As with Ariola et al.’s normalisation result for delimited
continuations [1], termination depends crucially on the effect type
system.

Theorem 2 (Type soundness). If `{} M : FA then M reduces
to a returned value return V of type A.

Proof sketch: Define a canonical term to be any computation term
of the form: return V , λx .N , 〈〉, 〈V,W 〉, or op V (λx .M).
Induction on typing derivations shows progress: if `E M :
C then, either there exists M ′ such that M −→ M ′, or M is
canonical. By appeal to a substitution lemma, induction on typing

derivations shows preservation: if Γ `E M : C and M −→ M ′

then Γ `E M ′ : C.

3.3 Open Handlers
Our presentation of λeff gives an operational account of closed
handlers. We can adapt λeff to support open handlers by making
two small changes. The typing rule for handlers becomes:

E = E′ ⊕ {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : UE′(Bi → C) `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

The only change to the original rule is that the input effects are now
E′ ⊕ E instead of just E, where E′ ⊕ E is the extension of E′ by
E (where any clashes are resolved in favour of E).

The handle.op-rule is refined by extending the meaning of
Hop, such that it is defined as before for operations that are ex-
plicitly handled by H , but is also defined as λp k .op p(λx .k x)
for any other operation op. This means that any operation that is
not explicitly handled gets forwarded.

In our simply-typed formalism, it is straightforward to translate
any program that uses open handlers into an equivalent program
that uses closed handlers. As any open handler handles a bounded
number of operations, we can simply write down all of the implicit
forwarding clauses explicitly. In practice, it seems desirable to offer
both open and closed handlers, as in our Haskell library.

To take full advantage of open handlers in a typed language,
one inevitably wants to add some kind of effect polymorphism.
Indeed, our Haskell implementation provides effect polymorphism,
encoded using type classes. We believe that effect polymorphism
can be supported more smoothly using row polymorphism.

We briefly outline one path to supporting row polymorphism.
The open handler rule from above can be rewritten as follows:

E = {opi : Ai → Bi}i] Ef

E′ = E′′] Ef

H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : UE′(Bi → C) `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

The key difference is that this version of the rule uses disjoint
union] in place of extension ⊕, explicitly naming the collection
of forwarded effects. One can now instantiate the meta variable
Ef with a row variable. We would likely also wish to support
polymorphism over E′′. This is not difficult to achieve using a
Remy-style [37] account of row typing if we insist that E′′ only
include operations in {opi}i. We leave a full investigation of effect
polymorphism for handlers to future work.

3.4 Shallow Handlers
Our presentation of λeff gives an operational account of deep han-
dlers. In order to model shallow handlers we can make two small
changes. The typing rule for handlers becomes:

E = {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : UE(Bi → FA) `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

The only changes with respect to the original rule are to the types
of the continuations, which now yield FA computations under the
input effect signature E, rather than C computations under the

output effect signature E′. The handle.op-rule is replaced by the
shallow -handle.op-rule:

(shallow -handle.op)

Hop = λp k .N x /∈ FV (H)

handle op V (λx .M) withH −→ N [V/p, {λx .M}/k]

which does not wrap the handler around the continuation. Of
course, without recursion shallow handlers are rather weak.

4. Implementation
Any signature of operations can be viewed as a free algebra and
represented as a functor. Every such functor gives rise to a free
monad (Swierstra [43] gives a clear account of free monads for
functional programmers). This yields a systematic way of building
a monad to represent computations over a signature of operations.

We use our standard state example to illustrate. Concretely we
can define the free monad over state as follows:

data FreeState s a =
Ret a
| Get () (s → FreeState s a)
| Put s (()→ FreeState s a)

instance Monad (FreeState s) where
return = Ret
Ret v >>= f = f v
Get () k >>= f = Get () (λx → k x >>= f)
Put s k >>= f = Put s (λx → k x >>= f)

The type FreeState s a is a particular instance of a free monad. It
can be viewed as a computation tree. The leaves are labelled with
Ret v and the nodes are labelled with Get () and Put s . There is
one edge for each possible return value supplied to the continuation
of Get and Put — a possibly infinite number for Get depending
on the type of the state, and just one for Put . The bind operation
performs a kind of substitution. To compute c >>= f , the tree f v is
grafted onto each leaf Ret v of c.

The generic free monad construction can be defined as follows:
data Free f a = Ret a | Do (f (Free f a))

instance Functor f ⇒ Monad (Free f) where
return = Ret
Ret v >>= f = f v
Do op >>= f = Do (fmap (>>=f) op)

and we can instantiate it with state as follows:
data StateFunctor s a = GetF () (s → a) | PutF s (()→ a)
deriving Functor

where FreeState s is isomorphic to Free (StateFunctor s).
A handler for state is now simply a unary function whose argu-

ment has type Free (StateFunctor s). For instance:

stateH :: Free (StateFunctor s) a → (s → a)
stateH (Ret x) = λs → x
stateH (Do (GetF () k)) = λs → stateH (k s) s
stateH (Do (PutF s k)) = λ → stateH (k ()) s

interprets a stateful computation as a function of type s → a .
A limitation of the above free monad construction is that it is

closed in that it can only handle operations in the signature. A key
feature of our library is support for open handlers that handle a
fixed set of operations in a specified way, and forward any other
operations to be handled by an outer handler. To encode openness
in GHC we take advantage of type classes and type families.

The code for open free monads is given in Figure 5. We split
the type of each operation into two parts: a type declaration that
defines the parameters to the operation, and a type family instance
that defines the return type of the operation. For instance:

[operation | Put s :: s → () |]
generates:

data Put (e :: ?) (u :: ?) where
Put :: s → Put s ()

type instance Return (Put s ()) = ()

The first type argument e encodes the existential type arguments of
an operation, while the second type argument u encodes the uni-
versal type arguments of an operation. In the case of Put there is a
single existential type argument s and no universal arguments. Us-
ing GADTs, we can encode multiple arguments as tuples. Handler
types are generated similarly.

Lines 1–2 of Figure 5 declare type families for operation return
types and handler result types.

Lines 3–6 define a ternary type class (h ‘Handles‘ op) e . Each
instance of this class defines the clause of handler h that handles
operation op with existential type arguments bound to e . Of course,
we do not supply the universal arguments, as the clause should
be polymorphic in them. The functional dependency h op → a
asserts that type a must be uniquely determined by types h and
op. This is crucial for correctly implementing open handlers as we
discuss further in Section 4.1. The handles quasiquoter generates
type class constraints on the Handles type class.

Lines 7–14 define the monad Comp h , which is simply a free
monad over the functor defined by those operations op that are
handled by h (i.e. such that (h ‘Handles‘op) e is defined for some
type e).

Lines 15–17 define the auxiliary doOp function, which realises
an operation as an abstract computation of the appropriate type.
The operation quasiquoter uses doOp to automatically generate
a function for each operation. For instance, the above declarations
for Get and Put generate the following functions:

get :: (h ‘Handles‘ Get) s ⇒ Comp h s
get = doOp Get
put :: (h ‘Handles‘ Put) s ⇒ s → Comp h ()
put s = doOp (Put s)

Finally, Lines 18–21 define only remaining ingredient for the core
library, the handle function, which takes a computation, a return
clause, and a handler, and returns the result of handling the com-
putation. We supply the return clause independently from the type
class mechanism in order to simplify the implementation. The han-
dler is automatically applied to the result of the continuation as
specified in the operational semantics. This behaviour contrasts
with the closed free monad code presented at the beginning of this
subsection, which instead uses explicit recursion as with shallow
handlers.

We are making essential use of the type class mechanism. It is
instructive to read the type of handle as taking a return clause, a list
of operation clauses, one for each op such that (h ‘Handles‘ op) e
for some e , and returning a result. Thus the second argument of
type h , as well as providing parameters to the handler also, albeit
indirectly, encodes the list of operation clauses.

The handler quasiquoter automatically generates a convenient
wrapper meaning that programmers need never directly manipulate
the constructor for a handler type — just as automatically generated
operation wrappers mean that they need never directly manipulate
the constructor for an operation type.

Limitations Our Haskell implementation of handlers has several
limitations. First, because handlers are encoded as type classes and
type classes are not first-class, neither are handlers. Second, be-
cause we abstract over handlers in order to simulate effect typing
the types of the operation wrappers are more complex than neces-
sary. Third, because we explicitly mention a parent handler in the
type of open handlers, the order in which open handlers are com-
posed can leak into types (this is not as bad as with monad trans-
formers, as lifting is never required, but it is still undesirable).

All of these limitations arise from attempting to encode handlers
in Haskell. None is inherent to handlers. We believe that a row-

1 type family Return (opApp :: ?) :: ?
2 type family Result (h :: ?) :: ?
3 class ((h :: ?) ‘Handles‘ (op :: j → k → ?)) (e :: j) | h op → e
4 where
5 clause :: op e u →
6 (Return (op e u)→ h → Result h)→ h → Result h

7 data Comp h a where
8 Ret :: a → Comp h a
9 Do :: (h ‘Handles‘ op) e ⇒

10 op e u → (Return (op e u)→ Comp h a)→ Comp h a

11 instance Monad (Comp h) where
12 return = Ret
13 Ret v >>= f = f v
14 Do op k >>= f = Do op (λx → k x >>= f)

15 doOp :: (h ‘Handles‘ op) e ⇒
16 op e u → Comp h (Return (op e u))
17 doOp op = Do op return

18 handle :: Comp h a → (a → h → Result h)→ h → Result h
19 handle (Ret v) r h = r v h
20 handle (Do op k) r h =
21 clause op (λv h′ → handle (k v) r h′) h

Figure 5. Free Monad Implementation

1 type family Return (opApp :: ?) :: ?
2 type family Result (h :: ?) :: ?
3 class ((h :: ?) ‘Handles‘ (op :: j → k → ?)) (e :: j) | h op → e
4 where
5 clause :: op e u → (Return (op e u)→ h → Result h)→
6 h → Result h

7 newtype Comp h a =
8 Comp {handle :: (a → h → Result h)→ h → Result h }
9 instance Monad (Comp h) where

10 return v = Comp (λk → k v)
11 Comp c >>= f = Comp (λk → c (λx → handle (f x) k))

12 doOp :: (h ‘Handles‘ op) e ⇒
13 op e u → Comp h (Return (op e u))
14 doOp op = Comp (λk h → clause op k h)

Figure 6. Continuation Monad Implementation

based effect type system along the lines of Leroy and Pesaux [23],
Blume et al [5], or Lindley and Cheney [27] would provide a
cleaner design.

The Codensity Monad It is well known that free monad compu-
tations can be optimised by composing with the codensity monad,
which is essentially the continuation monad over a polymorphic
return type [45].

The Continuation Monad We can in fact do even better by using
the continuation monad directly, meaning that the Ret and Do
constructors disappear completely. The continuation monad code is
given in Figure 6. The difference from the free monad code begins
on Line 7. The type constructor Comp h is exactly that of the
continuation monad with return type h → Result h . We choose
not to factor through the continuation monad defined in the standard
library as doing so hurts performance. The handle function is now
exactly the deconstructor for Comp, while the doOp function is
just Comp ◦ clause . We explicitly η-expand doOp because GHC
is unable to optimise the pointless version.

4.1 Open Handlers and Forwarding
The key trick for implementing forwarding is to parameterise a
handler H by its parent handler h . Without this parameter we would

have no way of describing the operations that are handled by both
H and h . Now we can define the following type class instance:

instance (h ‘Handles‘ op) e ⇒ (H h ‘Handles‘ op) e where
clause op k h = doOp op >>= (λx → k x h)

The handler quasiquoter generates this boilerplate automatically
for open handlers.

The functional dependency (H h) op → e is crucial here.
Without it, GHC would be unable to resolve the clause function.
For instance, consider the OpenState handler. This must select
from the following instances for Get :

instance (OpenState h s a ‘Handles‘ Get) s where
clause Get k (OpenState s) = k s (OpenState s)

instance (h ‘Handles‘ op) t ⇒
(OpenState h s a ‘Handles‘ op) t where

clause op k h = doOp op >>= (λx → k x h)

Without the functional dependency the latter is chosen. This is
because GHC tries to ensure that the same version of clause is
used for Get t for any t , and the former is only valid if s is equal
to t . The functional dependency asserts that t must be equal to s .

Because the type variable t does not appear in either of the
types OpenState h s a or op, and there is a functional depen-
dency which states that OpenState h s a and op uniquely de-
termine e , GHC’s default type inference gives up. Enabling the
UndecidableInstances language option fixes this. We believe
that our basic use of UndecidableInstances is well-founded
(and decidable!), because of the type class constraint (h ‘Handles‘
op) t which implies that h and op already uniquely determine t .

4.2 Shallow Handlers
It is relatively straightforward to adapt our free monad implementa-
tion to implement shallow handlers. The key change is to the type
of the continuation argument of the clause function which must
return a computation. It seems less clear how to adapt the continu-
ation monad implementation.

4.3 Delimited Continuations
We now sketch an implementation of (open) effect handlers in
terms of delimited continuations [8, 9]. These ideas underlie our
OCaml, SML, and Racket implementations.

A variety of different delimited continuation operators are cov-
ered in the literature. Shan has recently shown that the four basic
choices are straightforwardly inter-definable [39]6. We choose to
describe our implementation in terms of a minor variant of Danvy
and Filinski’s shift and reset operators [8] called shift0 and
reset0. The behaviour of shift0 and reset0 can be concisely
summarised through the following reduction rule:

reset0 (E [shift0 (λk .M)]) −→M [(λx .reset0 (E [x]))/k]

where E ranges over call-by-value evaluation contexts.
The reset0 operator delimits the start of a continuation, and

the shift0 operator captures the continuation up to the nearest
enclosing reset0. Crucially, the captured continuation is wrapped
in a further reset0. It is instructive to compare the above rule with
the handle.op-rule, where handle−withH plays a similar role
to reset0.

The implementations rely on the following key ingredients:

• A global (or thread-local) variable keeps a stack of handlers in
the current dynamic scope.
• Each handler includes a map from the handled operations to the

corresponding operation clause.

6 These encodings do not preserve memory behaviour, so can sometimes
introduce memory leaks.

To handle an effectful computation handleM withH:

• The handler H is added to the top of the stack.
• We invoke reset0 (Hreturn M).

To apply an operation (in direct style) ôp p:

1. We invoke shift0 to capture the continuation k up to (but
excluding) the next operation handler.

2. The top-most handler H is popped from the stack.

3. We let k ′ = λx .pushH; reset0 (k x), where pushH pushes
H back onto the stack.

4. The clause corresponding to the operation, that is Hop, is ap-
plied to the parameter p and the continuation k ′.

5. If there is no clause corresponding to this operation, it will
be forwarded by the handler. If no other handlers enclose the
operation, an exception is raised.

To support shallow handlers, one replaces shift0 and reset0
with control0 and prompt0, which behave like shift0 and
reset0, except no prompt0 is wrapped around the continuation:

prompt0 (E [control0 (λk .M)]) −→M [(λx .E [x])/k]

4.4 Dynamic and Static Operations
Our Haskell implementation uses one static type per operation. A
program execution cannot dynamically create a new operation. Be-
cause they do not provide effect typing, our other implementations
do support dynamic operations, which can be created, closed upon
and garbage collected. This makes some programs easier to write.
For example, references can be represented as pairs of dynamically
generated Put and Get operations. With only static operations, one
has to parameterise Put and Get by some representation of a ref-
erence, and explicitly manage all of the state in a single handler.

Static effect typing for dynamic operations presents challenges:

• Writing an effect type system for dynamic operations involves
some form of dependent types, as operations are now first-class
objects of the language.
• Dynamic operations are difficult to implement as efficiently as

static operations. In particular, it is not clear how to use the type
system to pass only the relevant effects to each scope.

5. Performance Evaluation
To evaluate the performance of our Haskell library, we imple-
mented a number of micro-benchmarks, comparing handler code
against monadic code that makes use of existing libraries. The code
for the micro-benchmarks can be found in the GitHub repository at:

http://github.com/slindley/effect-handlers/Benchmarks

Detailed performance results can be found in Appendix A.
Our primary goal was to check that the handler abstraction

does not cripple performance. We rely on GHC to optimise away
many of the abstractions we introduce. In the future we envisage
building handlers into the core of a programming language. We
might reasonably hope to do significantly better than in the library-
based approach by tailoring optimisations to be aware of handlers.

The results confirm that the Haskell library performs ade-
quately. The performance of the continuation monad implemen-
tation of handlers is typically no worse than around two thirds
that of baseline code. In some cases the continuation monad im-
plementation actually outperforms existing implementations. The
continuation monad implementation always outperforms the co-
density monad implementation (sometimes by more than an order
of magnitude), which always outperforms the free monad imple-
mentation. Usually standard handlers outperform shallow handlers,

pipes being an exception, where for large numbers of nested sub-
pipes shallow handlers outperform even the continuation monad
implementation of standard handlers.

6. Related Work
Algebraic Effects and Effect Handlers Effect operations were
pioneered by Plotkin and Power [35], leading to an algebraic ac-
count of computational effects [34] and their combination [15].
Effect handlers were added to the theory in order to support ex-
ception handling [36]. Recent work incorporates additional com-
putational effects within the algebraic framework, for example, lo-
cal state [41], and applies the algebraic theory of effects to new
problem domains, such as effect-dependent program transforma-
tions [19], and logical-relations arguments [20].

While mostly denotational in nature, operational accounts of al-
gebraic effects (without handlers) do exist. Plotkin and Power [33]
gave operational semantics to algebraic effects in a call-by-value
setting, and Johann et al. [32] gave operational semantics to alge-
braic effects in a call-by-name setting.

Effect Handler Implementations Bauer and Pretnar’s effectful
strict statically-typed language Eff [2] has built-in support for al-
gebraic effects and effect handlers. Like our ML implementations,
it lacks an effect type system. Eff implements dynamic generation
of new operations and effects, which we only consider statically.
Visscher [44] has implemented the effects library for Haskell
inspired by Eff. The core idea is to layer continuation monads in
the style of Filinski [10], using Haskell type classes to automati-
cally infer lifting between layers. McBride’s language Frank [29]
is similar to Eff, but with an effect system along the lines of ours. It
supports only shallow handlers and employs a novel form of effect
polymorphism which elides effect variables entirely. Brady [6] has
implemented an effect handlers library for the dependently-typed
language Idris. It takes advantage of dependent types for resource
tracking. The current design has some limitations compared with
the other handler implementations. In particular, one has to be care-
ful when composing other effects with non-determinism.

Monadic Reflection and Layered Monads Filinski’s work on
monadic reflection and layered monads is closely related to ef-
fect handlers [11]. Monadic reflection supports a similar style of
composing effects. The key difference is that monadic reflection
interprets monadic computations in terms of other monadic com-
putations, rather than abstracting over and interpreting operations.
Filinski’s system is nominal (an effect is the name of a monad),
whereas ours is structural (an effect is a collections of operations).

Monad Transformers and Inferred Lifting Jaskelioff and Moggi
[17] develop the theory of monad transformers and lifting of effect
operations. Jaskelioff’s Monatron [16] is a monad transformer li-
brary based on this development.

Schrijvers and Oliveira [38] infer lifting in Haskell using a
zipper structure at the level of type classes to traverse the monad
transformer stack. Swamy et al. [42] add support for monads in ML,
inferring not only where and how to lift operations, but also where
to insert return and bind statements. In both approaches, once the
required monad transformers have been defined, the desired lifting
is inferred automatically.

7. Conclusion
Algebraic effects and handlers provide a promising approach for
supporting effectful computations in functional languages. By of-
fering a new form of modularity, they create possibilities for library
design and reusability that are just beginning to emerge. This pa-
per shows that implementing these constructs is within the reach of
current compiler technology.

Acknowledgments
The λeff calculus stemmed from discussions of the first author with
Andrej Bauer and Matija Pretnar in Ljubljana and Swansea.

The authors would like to thank Stevan Andjelkovic, Danel
Ahmen, Bob Atkey, Andrej Bauer, Brian Campbell, James Ch-
eney, Derek Dreyer, Andrzej Filinski, Ben Kavanagh, Neel Kr-
ishnaswami, Conor McBride, James McKinna, Gordon Plotkin,
Matija Pretnar, Alex Simpson, Sam Staton, Phil Wadler, and the
POPL 2013, PLDI 2013, and ICFP 2013 referees, for useful con-
versations, comments and suggestions. We are grateful to Gabriel
Gonzalez for pointing out a flaw in the pipes benchmarks in an ear-
lier draft of this paper. The type system originated from a visit by
the first author to Andrej Bauer and Matija Pretnar in Ljubljana,
supported by the Laboratory for Foundations of Computer Science.
This work was supported by a Google Research Award, EPSRC
grants EP/J014591/1 and EP/H005633/1, a SICSA studentship, an
Edinburgh University Informatics School studentship, and an Isaac
Newton Trust starter grant.

References
[1] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation

of delimited continuations. Higher-Order and Symbolic Computation,
22(3):233–273, 2009.

[2] A. Bauer and M. Pretnar. Programming with algebraic effects and
handlers. CoRR, abs/1203.1539, 2012.

[3] N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Program.,
11(4):395–410, 2001.

[4] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In APPSEM
2000. Springer-Verlag, 2002.

[5] M. Blume, U. A. Acar, and W. Chae. Exception handlers as extensible
cases. In APLAS. Springer-Verlag, 2008.

[6] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In ICFP. ACM, 2013.

[7] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. MRI: Modular
reasoning about interference in incremental programming. J. Funct.
Program., 22(6):797–852, 2012.

[8] O. Danvy and A. Filinski. Abstracting control. In LFP. ACM, 1990.
[9] M. Felleisen. The theory and practice of first-class prompts. In POPL.

ACM, 1988.
[10] A. Filinski. Representing layered monads. In POPL. ACM, 1999.
[11] A. Filinski. Monads in action. In POPL. ACM, 2010.
[12] A. Gill. The mtl package (2.1.2), 2012.

http://hackage.haskell.org/package/mtl.
[13] G. Gonzalez. pipes-2.5: Faster and slimmer, 2012.

http://www.haskellforall.com/2012/10/
pipes-25-faster-and-slimmer.html.

[14] G. Gonzalez. The pipes package (3.2.0), 2013.
http://hackage.haskell.org/package/pipes.

[15] M. Hyland, G. D. Plotkin, and J. Power. Combining effects: Sum and
tensor. Theoret. Comput. Sci., pages 70–99, 2006.

[16] M. Jaskelioff. Monatron: An extensible monad transformer library. In
IFL. Springer-Verlag, 2008.

[17] M. Jaskelioff and E. Moggi. Monad transformers as monoid trans-
formers. Theoret. Comput. Sci., 411(51–52), 2010.

[18] M. P. Jones. Functional programming with overloading and higher-
order polymorphism. In Advanced Functional Programming, 1995.

[19] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In POPL. ACM, 2012.

[20] S. Katsumata. Relating computational effects by >>-lifting. Inf.
Comput., 222, 2013.

[21] O. Kiselyov. Iteratees. In FLOPS. Springer-Verlag, 2012.
[22] O. Kiselyov and C.-c. Shan. Embedded probabilistic programming. In

DSL. Springer-Verlag, 2009.

[23] X. Leroy and F. Pessaux. Type-based analysis of uncaught exceptions.
ACM Trans. Program. Lang. Syst., pages 340–377, 2000.

[24] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[25] S. Liang, P. Hudak, and M. P. Jones. Monad transformers and modular
interpreters. In POPL. ACM, 1995.

[26] S. Lindley. Extensional rewriting with sums. In TLCA. Springer-
Verlag, 2007.

[27] S. Lindley and J. Cheney. Row-based effect types for database inte-
gration. In TLDI. ACM, 2012.

[28] G. Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In
Haskell. ACM, 2007.

[29] C. McBride. Frank (0.3), 2012.
http://hackage.haskell.org/package/Frank.

[30] E. Moggi. Computational lambda-calculus and monads. In LICS.
IEEE Computer Society, 1989.

[31] B. O’Sullivan. The criterion package (0.8.0.0), 2013.
http://hackage.haskell.org/package/criterion.

[32] A. S. Patricia Johann and J. Voigtländer. A generic operational
metatheory for algebraic effects. In LICS. IEEE Computer Society,
2010.

[33] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
FoSSaCS. Springer-Verlag, 2001.

[34] G. D. Plotkin and J. Power. Notions of computation determine mon-
ads. In FoSSaCS. Springer-Verlag, 2002.

[35] G. D. Plotkin and J. Power. Algebraic operations and generic effects.
Appl. Categ. Structures, 11(1):69–94, 2003.

[36] G. D. Plotkin and M. Pretnar. Handlers of algebraic effects. In ESOP.
Springer-Verlag, 2009.

[37] D. Rémy. Type inference for records in a natural extension of ML.
In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics and Language De-
sign. MIT Press, 1993.

[38] T. Schrijvers and B. C. d. S. Oliveira. Monads, zippers and views:
virtualizing the monad stack. In ICFP. ACM, 2011.

[39] C.-c. Shan. A static simulation of dynamic delimited control. Higher-
Order and Symbolic Computation, 20(4):371–401, 2007.

[40] T. Sheard and S. L. P. Jones. Template meta-programming for Haskell.
SIGPLAN Notices, 37(12):60–75, 2002.

[41] S. Staton. Two cotensors in one: Presentations of algebraic theories
for local state and fresh names. Electr. Notes Theor. Comput. Sci.,
249:471–490, 2009.

[42] N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ML. In ICFP. ACM, 2011.

[43] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, 2008.

[44] S. Visscher. The effects package (0.2.2), 2012.
http://hackage.haskell.org/package/effects.

[45] J. Voigtländer. Asymptotic improvement of computations over free
monads. In MPC. Springer-Verlag, 2008.

[46] P. Wadler. Monads for functional programming. In Advanced Func-
tional Programming. Springer-Verlag, 1995.

A. Performance Results
All performance testing was conducted with the -O2 compiler
flag enabled using a PC with a quad-core Intel i7-3770K CPU
running at 3.50GHz CPU and 32GB of RAM, running GHC 7.6.1
on Ubuntu Linux 12.10. We used Bryan O’Sullivan’s criterion
library [31] to sample each micro-benchmark ten times.

The code for the micro-benchmarks can be found in the GitHub
repository at:

http://github.com/slindley/effect-handlers/Benchmarks

A.1 State
As a basic sanity check we tested the following function on state:

count :: SComp Int Int
count =

do i ← get ;
if i ≡ 0 then return i
else do put (i − 1); count

We used 108 as the initial value for the state. We tested implemen-
tations using: the state monad, three different versions of standard
deep handlers, and one implementation of shallow handlers. As a
control, we also tested a pure version of count . In each case we
used open handlers for interpreting state.

Implementation Time (ms) Relative Speed
pure 51 1.00
state monad 51 1.00
handlers (continuations) 77 0.67
handlers (free monad) 5083 0.01
handlers (codensity) 2550 0.02
shallow handlers 5530 0.01

Table 1. State

The results are shown in Table 1. GHC is optimised for monadic
programming, so there is no cost to using a state monad over a
pure program. The continuation monad implementation runs at two
thirds of the speed of the baseline. The free monad implementa-
tion is a hundred times slower than the baseline. Using a codensity
monad gives a two times speed-up to the free monad implementa-
tion. Shallow handlers are implemented using a free monad and are
slowest of all.

A.2 Flat Pipes
We tested our pipes implementation using a flat pipeline previ-
ously used by the author of the pipes library for comparing per-
formance between the pipes library and other libraries [13]. The
pipeline consists of a producer that yields in turn the integers in
the sequence [1 . .n], for some n , connected to a consumer that
ignores all inputs and loops forever. The pipes library optionally
takes advantage of GHC rewrite rules to define special code opti-
misations for pipes code. We tested against pipes with and with-
out the rewrite rules enabled. The results are shown in Table 2 for
n = 108. The continuation monad implementation is nearly twice
as fast as the pipes library without rewrite rules enabled. Enabling
the rewrite rules makes a significant difference. In this case the
pipes library is faster than the continuation monad implementa-
tion. The free monad and codensity implementations are slower
than the pipes library, but the differential is much smaller than
in the case of the count micro-benchmark. Interestingly, shallow
handlers outperform the free monad implementation of standard
handlers.

Implementation Time (ms) Relative Speed
pipes library 3398 1.00
pipes library + rewrites 1304 2.61
handlers (continuations) 1820 1.87
handlers (free monad) 6736 0.50
handlers (codensity) 3918 0.87
shallow handlers 5239 0.65

Table 2. Flat Pipes

A.3 Nested Pipes
To test the scalability of handlers we implemented a deeply-nested
pipes computation constructed from 2n sub-pipes, for a range of

values of n. The results are shown in Table 5. They are intrigu-
ing as the relative performance varies according to the number of
sub-pipes. The relative performance is shown graphically in Fig-
ure 7. The pipes library always out-performs all of our libraries,
even with GHC rewrite rules disabled. The continuation monad im-
plementation is relatively constant at around two thirds the speed of
the pipes library. What is particularly notable is that as the level of
nesting increases, the performance of shallow handlers eventually
overtakes that of the continuation monad implementation.

One possible reason for the pipes library outperforming our
continuation monad implementation on nested pipes is that it is in
fact based on a free monad, and the implementation takes advantage
of the reified representation of computations to optimise the case
where an input is forwarded through several pipes.

We are not sure why shallow pipes perform so well on deeply-
nested pipes, but suspect it may be due to the simpler definition
of pipes for shallow handlers, as compared with that for standard
handlers, opening up optimisation opportunities along the lines of
those explicitly encoded in the pipes library.

We conjecture that the anomalous dip at 211 sub-pipes for the
bottom three lines in Figure 7 is due to cache effects.

2^9 2^10 2^11 2^12 2^13
0.00

0.50

1.00

1.50

2.00

2.50

3.00

library
library+rewrites

handlers (continuations)
handlers (codensity)
handlers (free)
shallow handlers

Number of nested pipes

R
ela
tiv
e
pe
rf
or
m
an
ce pipes

pipes

Figure 7. Relative Performance of Nested Pipes

A.4 The n-Queens Problem
To test the performance of handlers that invoke the continuation
zero or many times, we implemented the classic n-queens problem
in terms of an n-ary Choose operation:

[operation | ∀a.Choose :: [a]→ a |]

We wrote a handler that returns the first correct solution for the n-
queens problem, and tested against a hand-coded n-queens solver.
We tested both algorithms with n = 20.

Implementation Time (ms) Relative Speed
hand-coded 160 1.00
handlers 237 0.67

Table 3. n-Queens

The results are shown in Table 3. The handler version is about
two thirds the speed of the hand-coded version.

A.5 Aspect-Oriented Programming
Effect handlers can be used to implement a form of aspect-
oriented programming. We tested an expression evaluator taken
from Oliveira et al.’s work on monadic mixins [7]. The expression
evaluator is extended to output logging information whenever en-
tering or exiting a recursive call, and to output the environment
whenever entering a recursive call. We compared a hand-coded
evaluator with Oliveira et al.’s mixin-based evaluator and an evalu-
ator implemented using our continuation monad implementation of

standard handlers. We tested each evaluator on the same randomly
generated expression containing 212 leaf nodes.

Implementation Time (ms)
hand-coded 6516
mixins 6465
handlers (continuations) 6526

Table 4. Aspect-Oriented Programming

The results are shown in Table 4. The performance is almost
identical for each of the three implementations, indicating no ab-
straction overhead.

29 sub-pipes
Implementation Time (ms) Relative Speed
pipes library 41 1.00
pipes library + rewrites 23 1.80
handlers (continuations) 57 0.72
handlers (free monad) 103 0.40
handlers (codensity) 81 0.51
shallow handlers 88 0.47

210 sub-pipes
Implementation Time (ms) Relative Speed
pipes library 90 1.00
pipes library + rewrites 49 1.84
handlers (continuations) 131 0.69
handlers (free monad) 275 0.33
handlers (codensity) 206 0.44
shallow handlers 198 0.45

211 sub-pipes
Implementation Time (ms) Relative Speed
pipes library 209 1.00
pipes library + rewrites 111 1.89
handlers (continuations) 336 0.62
handlers (free monad) 990 0.21
handlers (codensity) 716 0.29
shallow handlers 595 0.35

212 sub-pipes
Implementation Time (ms) Relative Speed
pipes library 721 1.00
pipes library + rewrites 274 2.63
handlers (continuations) 1181 0.61
handlers (free monad) 2701 0.27
handlers (codensity) 2178 0.33
shallow handlers 1216 0.59

213 sub-pipes
Implementation Time (ms) Relative Speed
pipes library 1931 1.00
pipes library + rewrites 877 2.20
handlers (continuations) 3147 0.61
handlers (free monad) 6172 0.31
handlers (codensity) 5188 0.37
shallow handlers 2470 0.78

Table 5. Nested Pipes

