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Abstract
We present a general semantic account of Gifford-style type-and-effect systems. These

type systems provide lightweight static analyses annotating program phrases with the

sets of possible computational effects they may cause, such as memory access and

modification, exception raising, and non-deterministic choice. The analyses are used,

for example, to justify the program transformations typically used in optimising com-

pilers, such as code reordering and inlining. Despite their existence for over two

decades, there is no prior comprehensive theory of type-and-effect systems accounting

for their syntax and semantics, and justifying their use in effect-dependent program

transformation.

We achieve this generality by recourse to the theory of algebraic effects, a de-

velopment of Moggi’s monadic theory of computational effects that emphasises the

operations causing the effects at hand and their equational theory. The key observation

is that annotation effects can be identified with the effect operations.

Our first main contribution is the uniform construction of semantic models for type-

and-effect analysis by a process we call conservative restriction. Our construction re-

quires an algebraic model of the unannotated programming language and a relevant

notion of predicate. It then generates a model for Gifford-style type-and-effect anal-

ysis. This uniform construction subsumes existing ad-hoc models for type-and-effect

systems, and is applicable in all cases in which the semantics can be given via enriched

Lawvere theories.

Our second main contribution is a demonstration that our theory accounts for the

various aspects of Gifford-style effect systems. We begin with a version of Levy’s Call-

by-push-value that includes algebraic effects. We add effect annotations, and design

a general type-and-effect system for such call-by-push-value variants. The annotated

language can be thought of as an intermediate representation used for program optimi-

sation. We relate the unannotated semantics to the conservative restriction semantics,

and establish the soundness of program transformations based on this effect analysis.

We develop and classify a range of validated transformations, generalising many ex-

isting ones and adding some new ones. We also give modularly-checkable sufficient

conditions for the validity of these optimisations.

In the final part of this thesis, we demonstrate our theory by analysing a simple

example language involving global state with multiple regions, exceptions, and non-

determinism. We give decision procedures for the applicability of the various effect-

dependent transformations, and establish their soundness and completeness.
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Lay summary
We instruct computers about their tasks using detailed textual descriptions, called “pro-

grams”, encoded in a precisely defined “programming language”. Another program,

the “compiler”, then translates our textual description into a description the machine

can execute. The compiler may change, or “optimise”, the translated program in or-

der to achieve better performance, for example to make the program execute faster,

or extend battery-life. One example for such “transformations” is the reordering of

instructions.

Our programs may cause “computational effects” besides computing their end re-

sults, such as display an image on a monitor, respond to a keyboard stroke, and print

a document. Some transformations become invalid in the presence of effects, causing

tension between the two. For example, consider a program that first displays a message

on the screen and then waits for the user to press a key on the keyboard. Our compiler

must not reorder these two tasks during optimisation, or else the program will wait for

the user to hit the keyboard before it displays the message to do so.

To ensure the optimisation process is correct, some compilers analyse the program

and attach to each part a summary of the effects this part may cause. In the above

example the part of the program that displays the message will be annotated with the

effect “output”, and the part of the program that reads the user’s keystroke will be an-

notated “input”. This annotation is called a “type-and-effect system”. The compiler’s

designers carefully study the programming language at hand and develop conditions

that ensure the optimisations are indeed safe. For example, parts annotated with “out-

put” should never be reordered with parts annotated with “input”. Despite their exis-

tence for over two decades, there is no prior comprehensive account of type-and-effect

systems beyond a case-by-case study. This thesis develops such a general account.

We rely on the theory of “algebraic effects”, which describes many computational

effects through equations and operations. This account combines the abstract “input”

and “output” effects in a fashion reminiscent of how we combine addition and multipli-

cation in elementary school algebra. Our first main contribution is a general mathemat-

ical description of these effect annotations based on such an algebraic description of

the programming language at hand. Our second main contribution is a demonstration

that our theory accounts for the various aspects of type-and-effect systems: it describes

the effect annotations and their meaning; it validates the optimisations; and it justifies

that the optimisation process does not change the meaning of the original program.

Finally, we demonstrate our theory by analysing a simple example language.
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Preface by Andrej Bauer

The following preface was composed using the Up-Goer-Six Text Editor1 and (mostly)

uses the 1,000 most common English words2.

Mr. Ohad is about to become a doctor (the computer kind, not the kind that helps

sick people). But first he must explain to normal people like you and I what he did.

Most soon-to-be doctors find this a very hard thing to do.

Anyway, Mr. Ohad soon-to-be-doctor studied how to tell computers what to do.

You may think there is not much to it, but in fact this is quite hard because computers

do exactly what they are told, so we need to be very, very careful and precise when

we give computers instructions. A good way to do this is to use lots of math, and so

Mr. Ohad did it. He used algebra. Yes, everyone hated algebra in school, but Mr. Ohad

did not, which is why he is about to become a doctor. Let me tell you what he did.

Instructions for computers are called “programs”. There are many different ways

of writing these, and some turn out to be easier to use than others. Since humans are

very sloppy, we try to come up with ways of writing programs that make it easy to spot

errors and figure out what programs do.

Here is where algebra comes up. Mr. Ohad, on the advice of his mentor Dr. Plotkin,

worked on how to turn stuff such as printing, playing music, and generally doing cool

things with computers into good old boring algebra. No, he and his advisor are not in-

sane, they are just mathematicians. Mr. Ohad perfected one angle in the lately popular

idea that playing music and doing stuff with computers is really a lot like standing in

front of a blackboard with a piece of chalk trying to solve an equation. OK, I am being

funny. But seriously, this is the sort of thing he did. If you listened to him for about a

day (and to your algebra teacher before that for about a year), you would understand

why checking that a program works is like checking an equation. Believe it or not,

but hitting the Print button in your word processor is actually the same sort of thing as

adding two numbers. People like Mr. Ohad understand this, and much more.

I am skipping over funky words such as “effect handler” so I cannot really go into

details here. But the gist of the matter is that he used cool math to improve lives of

people who have to instruct computers what to do, and he improved your life by helping

make sure that computers will do what we want them to do faster and better, and all he

asks in return is that when you see him next time you call him Doctor Kammar.

1http://splasho.com/upgoer6/
2The frequency list is taken from:

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/TV/2006/explanation .

http://splasho.com/upgoer6/
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/TV/2006/explanation
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Chapter 1

Introduction

It took me all night

To get hold of the right introduction
—Queen

Pure functional programs are amenable to equational reasoning that can be used

for program optimisation [dMS95]. Practical programs are not pure, involving compu-

tational effects such as memory and file access. Unfortunately, computational effects

violate the validity of equational reasoning. However, not every possible equational

transformation is violated by every computational effect. Code fragments restricted to

a smaller set of effects may be amenable to some of the equational transformations pure

code satisfies. Gifford-style type-and-effect systems [LG88] are a light-weight static

analysis for annotating each code fragment with a set of effects it may cause. These

effect-annotations provide a basis for effect-dependent optimisation [Tol98, BKR98].

This thesis concerns the semantic validity of such effect-dependent optimisations.

The denotational approach to semantics provides a natural setting for validating such

equational optimisations using denotational equivalence. Moggi [Mog89, Mog91] es-

tablished that collections of effects denote monads. Based on his observation, Tol-

mach [Tol98] and Benton et al. [BKR98] independently validate effect-dependent op-

timisations denotationally. However, their approach suffers from the following draw-

back, independently posed by Wadler [Wad98]:

“As hypothesised by Moggi and as born out by practice, most computa-
tional effects can be viewed as a monad. Does this provide the possibility
to formulate a general theory of effects and monads, avoiding the need to
create a new effect system for each new effect?”

In this thesis we propose a general theory of type-and-effect systems, and answer

Wadler’s question in the affirmative.

15



16 Chapter 1. Introduction

1.1 Effect-dependent optimisation

Consider the following illustrative ML-like code:

1 l e t z = 2 in
2 l e t f = fun b −> i f z∗z > 1

3 then x := i f b

4 then z∗z

5 e l s e 4

6 e l s e x := ! y + z∗z in
7 l e t c = g e t c h a r ( ) in
8 f ( c = ’y ’ )

9 f ( c = ’y ’ )

This program mixes functional code with computational effects: lines 3 and 6 update

a global memory location x, line 6 looks-up some global state, and line 7 reads a

character from the user.

An optimising compiler may transform this program to an equivalent program that

is better in some way. The precise nature of the improvement is not the focus of this

thesis, and it may include run-time efficiency, space utilisation, code size, or energy

consumption. For example, the compiler may transform lines 3–6 to the following

code, pre-computing z∗z and reusing the result:

l e t u = z∗z

i f u > 1

then x := i f b

then u

e l s e 4

e l s e x := ! y + u

However, the presence of computational effects introduces subtlety to the optimisation

process. For example, the following two program phrases are not equivalent:

x := ! x+1

x := ! x+1

l e t u = ! x+1 in
x := u

x := u

Fortunately, not all computational effects rule out this optimisation. If y is a differ-

ent global memory location, the following two phrases are equivalent:
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x := ! y+1

x := ! y+1

l e t u = ! y+1 in
x := u

x := u

More generally, if the only effects a program phrase may cause are restricted to

reading from one memory region ρ1 and writing to a different memory region ρ2, this

phrase may be safely reused. Thus, the compiler may first analyse the program to

determine which computational effects each phrase causes. For this purpose, in the

presence of higher-order functions, the simplest such effect analysis is a Gifford-style

type-and-effect system [LG88], which assigns to each phrase both a type and a set of

effects it may cause. Thus, the then branch on lines 3–5 will be assigned the type int

and the effect set
{

readρ1

}
. More formally, Gifford and Lucassen introduced type-and-

effect judgements Γ `M : A!ε, which state that M has type A and effect ε in context Γ.

For example:

b : bool,x : Locρ1 ` x := if b then z∗z else 4 : unit !
{

writeρ1

}
The typing rules then propagate effects, for example:

Γ `M : bool!ε1 Γ ` N : B!ε2 Γ ` K : B!ε3

Γ ` if M then N else K : B!ε1∪ ε2∪ ε3

Note that we gloss over how to slice the global memory locations into regions, as it is

not the focus of this thesis. Henglein et al. [HMN05, Section 3.6] discuss such effect

inference, focussing on Tofte and Birkedal’s inference algorithm [TB98, BT01].

Crucially, type-and-effect systems admit higher-order treatment. We refine func-

tion types A−→ B with effect annotations A ε−→ B that state that the functions may cause

effects in ε during their execution. The rules for abstraction and application propagate

the effects as follows:

Γ,x : A `M : B!ε

Γ ` λx : A.M : (A ε−→ B)! /0

Γ `M : A ε−→ B!ε′ Γ ` N : A!ε′′

Γ `MN : B!ε∪ ε
′∪ ε

′′

Thus, the type-and-effect assigned to the function f in our sample program is:

x : Locρ1,y : Locρ2, z : int ` f : (bool
{writeρ1 ,readρ2}−−−−−−−−−−→ int )! /0
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Using such type-and-effect systems (effect systems for brevity), we can now pre-

cisely describe when it is safe to reuse a piece of code:

Γ `M : A!ε Γ,x : A,y : A ` N : B!ε′

let x= M in

let y= M in

N

=

let x= M in

let y= x in

N

(
for all ρ, {readρ,writeρ}*ε

ε⊆
⋃

ρ′{read
ρ′ ,write

ρ′}

)

Thus, an optimising compiler should implement a decision procedure guaranteeing the

side condition before transforming the source code to an equivalent variant using this

equation. Such a compiler may then transform lines 8–9 in the sample program above

as follows, using the effect-dependent optimisation in the transition marked (∗):

f (c = ’y’)

f (c = ’y’)
=

let u= f (c = ’y’) in

let v= f (c = ’y’) in

v

(∗)

↓
=

let u= f (c = ’y’) in

let v= u in

v

=
let u= f (c = ’y’) in

u
= f (c = ’y’)

This thesis addresses three issues arising from this situation. First, we need to

guarantee that the side conditions on the optimisations are sound: if the side condition

holds, then applying the transformation does result in equivalent code. In order to do

so, we need to relate the syntactic information included in the effect system to the

semantics of the program [Ben96]. Thus, the second issue we address is the semantics

of the effect annotated language, and its relationship to the original, unannotated code.

Finally, we would like the side condition to be complete: if it is safe to apply this

optimisation based on the effect annotations, then the side condition is satisfied. For

example, the computational effects in our source language may also include exceptions.

Then, the side condition given above is not complete: the optimisation is valid in the

presence of exceptions, i.e., ε may contain the ‘throw’ effect.

1.2 Denotational semantics for effect systems

Our goal is to study the validity of equations between annotated program terms. There-

fore, the natural approach to the semantics of effect systems is denotational. Briefly, in
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the denotational approach each program phrase is assigned a mathematical object that

captures its meaning by composing the meanings of its sub-phrases. Thus, such se-

mantics for an effect annotated language makes denotational equality a natural notion

of validity for equations between effect-analysed program phrases.

Historically, the validation of effect-dependent optimisations using the denotational

approach only took place following Moggi’s unification of effectful denotational se-

mantics using monads [Mog89, Mog91], and its popularisation by Wadler [Wad90,

Wad92]. With monads in place, the connection between type-and-effect systems and

monads was independently published during the same year by Wadler [Wad98], Tol-

mach [Tol98], and Benton et al. [BKR98].

To describe the connection concretely, consider a language whose effects are in-

teractions with a single global memory cell capable of storing values from some set

V. We may interact with this memory cell in two ways: we either look-up the stored

value, or update it to store a new value. Languages involving such a memory cell are

modeled by the global state monad TGSX B (V×X)V. Thus, a computation is mod-

eled by a function λv.〈uv,xv〉mapping an initial cell state v to its new state uv following

the execution, and the return value of the computation xv. For example, the function

λv.〈42,True〉 models a computation that modifies the cell contents to 42 and returns

the boolean value True.

One way to model the look-up interaction is by the following family of functions:

O ⟦lookup⟧X : (TGSX)V → TGSX

O ⟦lookup⟧X : λv1.(λv2.〈uv1,v2,xv1,v2〉) 7→ λv.〈uv,v,xv,v〉

The domain of the function, (TGSX)V, models a given family of computations para-

metrised by the value v1 currently stored in the memory cell. Given such a family,

κ = λv1.(λv2.〈uv1,v2,xv1,v2〉), the function O ⟦lookup⟧(κ) looks-up the current value v

to obtain the computation κ(v) = λv2.〈uv,v2,xv,v2〉. As such look-ups do not affect the

value stored in the cell, the execution is modeled by applying the selected computation,

κ(v), to v, resulting in κ(v)(v) = λv.〈uv,v,xv,v〉.
Similarly, updates are modeled by a family of functions

O ⟦update⟧X : TGSX → (TGSX)V

O ⟦update⟧X : λv.〈uv,xv〉 7→ λv0.λv.〈uv0,xv0〉

Thus, given a computation k = λv.〈uv,xv〉 to be executed after the update, and given a

value v0 to update the cell contents to v0, we model the update by ignoring, or over-
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writing, the currently stored value v, and passing to k the new value v0 as the currently

stored state, resulting in k(v0) = λv.〈uv0,xv0〉.
Next, consider a language whose effects are interactions with a single global read-

only memory cell for V. In this scenario, the only interaction of interest is a memory

look-up. This language is modeled by the environment monad TEnvX B XV. The look-

up interaction is modeled by the family:

O ⟦lookup⟧X : (TEnvX)V → TEnvX

O ⟦lookup⟧X : λv1.(λv2.xv1,v2) 7→ λv.xv,v

This time there is no need to return a new state for the cell, as the computation may not

change it.

Similarly, consider a language whose effects are interactions with a single global

write-only cell for V. In this case, the only interaction of interest is a memory update.

This language is modeled by the overwrite monad TOWX B (1+V)×X , a particular

instance of the more general writer monad, also called the complexity monad, and

the monoid monad. These computations, in addition to returning an X-value after

execution, summarise the change in the memory cell. The left injection, ι1?, models

a computation that leaves the cell unchanged. The right injections, ι2v, where v ∈ V,

model computations that change the contents of the cell to v. The update interaction is

modeled by the family:

O ⟦update⟧X : TOWX→ (TOWX)V

O ⟦update⟧A : 〈δ,x〉 7→

λv0.〈ι2v0,x〉 δ = ι1?

λv0.〈ι2v,x〉 δ = ι2v

Finally, in this effectful context, a pure language, i.e. a language without side-

effects, is modeled by the identity monad TidX B X .

In this setting, Wadler, Tolmach, and Benton made the following observation. In

{read,write}

/0

{read} {write}
⊆ ⊇

⊇ ⊆

a language consisting of a single global memory cell, there

are four possible effect sets: /0, {read}, {write}, and

{read,write}. These sets are ordered by inclusion to form

an effect hierarchy. For each effect set ε in the effect hierar-

chy there is a corresponding monad Tε:

T{read,write}B TGS T{read}B TEnv T{write}B TOW T/0B Tid

Corresponding to each effect set inclusion, there is an obvious monad morphism.

For example, the monad morphism from T/0 to T{update} is given by v 7→ 〈ι1?,v〉, which
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lifts a pure computation returning v to a computation that does not change the state and

returns v. As another example, the monad morphism from T{lookup} to T{lookup,update} is

(V× (−))V

−

(−)V (1+V)× (−)

given by k 7→ λv.〈v,kv〉, lifting a read-only computation k

to a computation that inspects the current state, but does not

change it. Thus the effect set hierarchy has a corresponding

hierarchy of monads and monad morphisms. Consequently,

computations only involving the interaction in each effect set ε can be interpreted

within the monad Tε, or lifted to monads above it in the hierarchy.

Wadler’s contribution [Wad98, WT03] is to identify the type-and-effect judgements

M : A!ε in a Gifford-style type-and-effect system for a language with multiple regions

with monadic type judgements M : TεA in a multi-monadic language. He then considers

the two languages as a variants of Moggi’s computational lambda-calculus and the

computational meta-language [Mog89]. His technical contribution shows that Moggi’s

translation from the former to the latter preserves the types, effects, type-and-effect

derivations and inference, and operational semantics of the Gifford-style language.

Wadler concludes by noting the monadic hierarchy sans the monad morphisms, and

conjectures the existence of these morphisms. As Wadler only considers a language

whose effects consist of memory allocation and access, he poses the question regarding

the existence of a general theory of type-and-effect systems.

Tolmach’s contribution [Tol98] consists of a type-and-effect system for a recursive

language with exceptions and state. His effect hierarchy consists of a linearly-ordered

partial order of abstract effects (and not effect sets):

ID6 LIFT 6 EXN 6 ST

which correspond to the effect sets

/0⊆ {diverge} ⊆ {diverge,exception} ⊆ {diverge,exception, read,write}

where ‘exception’ means the program may throw an exception, and ‘diverge’ means

the program may diverge in a loop. Tolmach uses this effect hierarchy to validate some

effect-dependent optimisations using his denotational equivalence. Tolmach outlines

how his approach generalises to the complete lattice of subsets, or, more generally, to

any lattice. However, he reports on the following problem:

“The lack of a generic mechanism for combining monads is rather unfor-
tunate, since it turns the proofs of many transformation laws into lengthy
case analyses.”
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We divide this problem into two causes. The first is Wadler’s question: it is unclear

how to obtain the hierarchy of monads. The second caveat is that the Tolmach-style

models require specifying overwhelming amounts of data. In the small global state

example we gave earlier we had to deal with four monads, four effect interactions and

four monad morphisms. In general, we expect a number of monads, effect interactions,

and monad morphisms exponential in the number of effects. Paired, these two caveats

greatly restrict our ability to present such models for realistic cases, as we will require

lengthy definitions and case-by-case analyses.

Benton et al.’s work in this area began with an optimising compiler from SML to

JAVA bytecodes that uses a monadic intermediate language for effect-dependent op-

timisations [BKR98]. In a continued line of work, Benton et al. [BK99, BKHB06,

BB07, BKBH07, BKBH09] validate the optimisations employed by this compiler us-

ing Tolmach-style models, independently from Tolmach. The key advantage of the

Benton et al. models is their uniformity. For every effect set ε, they define a monad Tε

as a function of ε. This uniform definition saves much repetitiveness and tediousness in

the account for the language and optimisations. For example, a single argument shows

that Tε is a monad, instead of a different argument for each ε. However, Wadler’s

caveat still applies to Benton et al.’s approach: each change to the overall set of effects

requires creating a new effect system with new semantics and new proofs.

Our goal is to address the issues encountered by Wadler, Tolmach, and Benton

et al. by developing a general theory of type-and-effect systems, accounting for all

aspects required by effect-dependent transformations: syntax, type system, effect in-

ference, models, and optimisations and their validation. Moreover, we strive for an

applicable theory that leads to engineering methodologies for optimising compilers.

We thus formulate our thesis:

There exists a general applicable theory of Gifford-style
type-and-effect systems.

1.3 An algebraic solution

Our work relies on Plotkin and Power’s algebraic theory of computational effects [PP03,

PP02]. Plotkin and Power complement Moggi’s monadic account of computational ef-
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fects [Mog91] by revisiting the well-established connection between universal algebra

and monads [HP07]. Briefly, each equational theory gives rise to a monad, and most

monads used in denotational semantics arise from such theories, with the notable ex-

ception of the continuation monad.

For example, the global state monad (V× (−))V for a single memory cell storing

values from a finite set V = {v1, . . . ,vn}, n > 2 arises from the following equational

theory [PP02, Mel10]:

updatev(updateu(x)) = updateu(x) (1.1)

updatevi
(lookup(x1, . . . ,xn)) = updatevi

(xi) (1.2)

lookup(updatev1
(x), . . . ,updatevn

(x)) = x (1.3)

These equations have an operational reading as terms for manipulating computation.

For example, the left side of Equation (1.1) reads: first update the cell to v, then update

it to u, and then proceed with the computation x. Thus Equation (1.1) states that later

updates override earlier updates. As another example, the left side of Equation (1.2)

reads: first update the cell to vi, then look-up the currently stored value, say v j, and

proceed with the computation x j. Thus, Equation (1.2) states that we look-up the most

recently updated value. Similarly, Equation (1.3) states that we do not keep track of

the interaction history if it has no bearing on the rest of the computation.

Plotkin and Power [PP03] define algebraic operations as families of functions that

arise from syntactic terms such as update and lookup. For example, the look-up and

update interactions O ⟦lookup⟧, O ⟦update⟧ defined in the previous section are such al-

gebraic operations for the equational theory for global state. The following observation

is the fundamental idea underlying this thesis:

The annotation effects inside the effect-sets of Gifford-style
type-and-effect systems denote Plotkin and Power’s
algebraic operations.

Thus, the annotation effects ‘read’ and ‘write’ we used above denote effect opera-

tions O ⟦lookup⟧ and O ⟦update⟧. Therefore, in the remainder of the thesis we use the

same name for both annotations and operations.

This observation naturally leads to an algebraic theory of type-and-effect systems.
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1. We begin with an equational theory as semantics to an effectful programming

language.

2. The collection of syntactic constructs for algebraic effect operations in our lan-

guage determines the effect annotations.

3. The effect annotations and their correspondence with the syntactic constructs

determine the syntax, type-and-effect system, and effect inference.

4. By restricting the equational theory to the effect annotations in each effect-set,

we obtain a hierarchy of monads and monad morphisms compatible with the

effect hierarchy. We call this construction the conservative restriction construc-

tion.

5. We now have both syntax and semantics for formulating and validating effect-

dependent transformations.

Note the interplay between structure and property. The only structure we need to

specify is the original, algebraic, semantics of the programming language. The effect

system and the valid optimisations are then a property arising out of our structure,

which we may choose to investigate or ignore. As a result, our account is deeply

coupled with the semantics of the language in question.

1.4 Our advantage

We highlight four key properties of our approach:

rigorous. If annotation effects indeed denote algebraic effect operations, then even a

relatively simple language involving ten different effects will require over a thou-

sand effect sets. A non-rigorous treatment is therefore error-prone. Moreover,

even if such non-rigorous treatment is subject to thorough testing, it is impos-

sible to establish the completeness of the validity decision procedures. Thus

a non-rigorous design of effect-dependent transformations cannot be complete

apart from the most trivial cases.

denotational. Monads provide a mechanism to abstract over effects that is not avail-

able with axiomatic or operational approaches. Moreover, validating the sound-

ness of high-order program equalities using operational methods is inherently
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difficult due to contextual equivalence. In contrast, the axiomatic approach is

inappropriate for establishing the completeness of validity decision procedures.

abstract. As we will see in Chapter 12, our abstract and algebraic treatment hides

many irrelevant details and facilitates delicate algebraic manipulations of sym-

bols. It is implausible that such subtle arguments can be applied rigorously and

without error to large concrete programs.

general. Our generality allows us to present a systematic, rather than ad-hoc, account

of the optimisations. For example, as we will see in Chapter 11, this systematic

account suggested new effect-dependent optimisations not present in the seman-

tics literature.

1.5 Thesis structure

In order to support our thesis, we establish results in two directions. First, we show

that the semantics of effect systems are a property of the algebraic semantics. Then,

we show how this semantics accounts for the spectrum of type-and-effect systems and

related concepts.

To provide a general theory, we must support a wide selection of effects. Even

simply adding recursion to the language forces us to work beyond sets and functions,

for example, with an appropriate notion of domains and continuous functions. For this

reason, we provide evidence that our account can be formulated in category theory, to

encompass the various standard denotational semantics for effects. Such a formulation

encounters two problems.

• First, not all the notions and tools from equational logic have been fully devel-

oped for the level of generality required by our categorical account [Plo06].

• Second, the abstract categorical language hinders the accessibility of our ac-

count.

To address the first problem, we keep the development of new mathematical tools

to a minimum, and reuse existing accounts as much as possible. Thus, we present only

our conservative restriction construction in its full categorical generality. The other

results are formulated using sets and functions, but structured in a manner we believe

may generalise once the required tools are developed.
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To address accessibility, we spread the required background across the thesis and

introduce it as needed. We also highlight the parts of the thesis which require a deeper

knowledge of category theory.

The sections indicated with a “beware cats” sign assume deeper, but standard,

knowledge of category theory. The assumed knowledge includes: (co)limits,

adjunctions, (co)continuity, and monads, as covered by Mac Lane [ML98], and sym-

metric monoidal closed categories, and enrichment, as covered by Kelly [Kel82a].

The “cat-free” parts of this thesis assume only basic categorical notions, which

are common knowledge in the semantics and functional programming commu-

nities. In particular, we assume familiarity with functors, monads, natural transforma-

tions, and monad morphisms. These parts of the thesis are designed to be understood

if read sequentially, skipping over the sections marked with “beware cats”. Of course,

while the statements are formulated in these more accessible terms, their proofs may

rely on categorically involved accounts. The scope of these two modifiers extends to

the end of the literary unit they are introduced in, such as Chapter, Section, or Proof.

The second supporting evidence we present for our thesis is an account of the

various concepts involved in type-and-effect systems and their optimisations. Due to

time and space limitations, we focus on the core concepts required to study effect-

dependent optimisations, namely an annotated source language and its models, and the

optimisations and their validity. For example, we do not study the effect analysis phase

that annotates a given source program with the effect sets.

The thesis is structured as follows:

Part I develops the general semantic foundations of type-and-effect systems.

Chapter 2 reviews Plotkin and Power’s notion of algebraic operations.

Chapter 3 defines hierarchical categorical models for type-and-effect systems.

Chapter 4 refines these models to account for languages with recursion.

Chapter 5 reviews the background on locally presentable categories we require.

Chapter 6 reviews Power’s enrichment of equational logic via enriched Law-

vere theories.

Chapter 7 specialises the categorical models to models arising from Lawvere

theories, and presents our categorical conservative restriction construction.

Chapter 8 presents the conservative restriction construction in terms of equa-

tional logic, sets, and functions.
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Chapter 9 presents logical relations models for relating the semantics of multi-

ple set-theoretic models.

Part II develops the general theory of type-and-effect systems and their effect-dependent

optimisations based on the semantic foundations.

Chapter 10 presents a general type-and-effect intermediate language and its de-

notational semantics.

Chapter 11 develops the notion of effect-dependent optimisations, its validity

conditions, and establishes the soundness and completeness of the conser-

vative restriction construction.

Chapter 12 studies how the validity of optimisations in combined collections

of effects follow from their validity in each component collection.

Chapter 13 demonstrates a use case for analysing an imperative, higher-order

language.

Chapter 14 concludes and discusses future work.

Appendix A summarises our notational conventions for cross-references.
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Chapter 2

Algebraic operations

I’m your operator

—Pink

The key contribution of Plotkin and Power’s theory of effects is to incorporate

into Moggi’s monadic account the language constructs causing the effects, in

the form of algebraic operations, or, equivalently, in the form of generic effects. This

chapter defines the semantics of a call-by-push-value (CBPV) language with the effects

incorporated directly into the model. The key difference between CBPV and traditional

monadic semantics is the use of adjunctions instead of monads. Therefore, the main

technical contribution of this chapter is to generalise Plotkin and Power’s account of

algebraic operations and generic effects [PP01, PP03] from the monadic setting to the

adjunctive setting. In all other respects, this chapter contains only background material.

In Section 2.1 we begin with categorical preliminaries concerning resolutions of

monads, lifting, and exponentials. Then, in Section 2.2, we define our generalisation of

algebraic operations to an arbitrary resolution of a monad. In Section 2.3 we generalise

Plotkin and Power’s equivalence of algebraic operations with generic effects. This

equivalence allows us to further analyse algebraic operations. Finally, in Section 2.4,

we define our CBPV models of interest, and incorporate algebraic operations into the

meta-theory.

2.1 Categorical preliminaries

Let V be a category. Recall that a resolution of a monad T is an adjunction F a
U : C → V such that T =U ◦F and the monadic unit η coincides with the adjunctive

31
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unit. Recall also that every monad has two canonical resolutions, the Eilenberg-Moore,

and Kleisli resolutions. The Eilenberg-Moore category for T , V T , consisting of alge-

bras1B = 〈|B|,B⟦−⟧ : T |B| → |B|〉 for the monad T , and T -algebra homomorphisms

h : B→ B′. The Eilenberg-Moore resolution of T , is the resolution F aU : V T → V
in which the left adjoint maps every object A to its free algebra 〈T A,µ〉. The Kleisli

category for T , V T consists of the V -objects and Kleisli maps f : A→ T B. The Kleisli

resolution of T is the resolution F aU : V T →V in which the left adjoint maps every

object to itself.

Let F aU be any resolution of a strong monad T over a cartesian category V , let

θ : FU → id be the counit for the resolution, and f : Γ×X →UB any V -morphism.

The lifting of f is the morphism f † : Γ×T X →UB given by the composition

Γ×T X str−→ T (Γ×X)
T f−→ TUB Uθ−→UB

Let A, B be objects in a cartesian category V . Recall that an exponential of B by

A consists of a pair
〈
BA,eval

〉
, where BA is a V -object, and eval : BA×A→ B is a

V -morphism, such that, for any other arrow f : C×A→ B, there exists a unique arrow

λA. f : C→ BA for which

C×A

BBA×A

f
(λA. f )×A

eval

=

C

BA

λA. f

Thus exponentials are universal arrows from −×A to B [ML98, Section III.1]. Some

authors use the notation curry( f ) for λA. f . Given f : B→C with B, C exponentiable

by A, we can define a map f A : BA→CA by

f AB λA.
(

BA×A eval−−→ B
f−→C
)

The notion of a cartesian closed category corresponds exactly to a cartesian category

with all exponentials and finite products, where the exponentials and the products are

specified.

Let F aU be any resolution of a strong monad T over a cartesian category V If A

is a V -object for which all exponentials of the form (UB)A exist, we define the arrow

f ‡A : Γ× (T X)A→ (UB)A as

λA.
(

Γ× (T X)A×A Γ×eval−−−−→ Γ×T X
f †

−→UB
)

1We will justify our choice of notation for the algebra map B⟦−⟧ in Chapter 8.
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Example 2-1. Let V be a set with at least two elements denoting storable values. The

global state monad over Set for storing V values is given by:

T X B (V×X)V η : x 7→ λv.〈v,x〉
T f : (V×X)V → (V×Y )V µ : λv.〈uv,kv〉 7→ λv.kv(uv)

T f : λv.〈uv,xv〉 7→ λv.〈uv, f (xv)〉 strX ,Y : 〈x,λv.〈uv,yv〉〉 7→ λv.〈uv,〈x,yv〉〉

An algebra for this monad is a pair Y = 〈|Y |,Y ⟦−⟧〉, satisfying:

Y ⟦λv.〈v,y〉⟧= y Y ⟦λv.
〈
uv,Y ⟦λv′.

〈
wv,v′,yv,v′

〉⟧〉⟧= Y ⟦λv.〈wv,uv,yv,uv〉⟧

Given any f : Γ×X → |Y |, and a set Z direct calculations show that

f † : 〈γ,λv.〈uv,xv〉〉 7→ Y ⟦λv.〈uv , f (γ,xv )〉⟧
f ‡Z : 〈γ,λz.λv.〈uz,v,xz,v〉〉 7→ λz.Y ⟦λv.〈uz,v, f (γ,xz,v)〉⟧

2.2 Algebraic operations

Without further ado, we generalise Plotkin and Power’s definition of algebraic opera-

tions [PP01, PP03].

Definition 2.1 (algebraic operations). Let F aU : C → V be a resolution of a strong

monad T =UF, and A,P be V -objects such that all exponentials of objects UB by A,P

exist. An algebraic operation of type A〈P〉 for F aU is an Ob (C )-indexed family of

morphisms op : (U−)A→ (U−)P satisfying, for all f : Γ×X →UB:

Γ× (T X)A

Γ× (T X)P (UB)P

(UB)A

Γ×opFX

f ‡A

f ‡P

opB=

We call A the arity of op, and P the parameter type of op.

This notion of algebraic operations is relative to any resolution of a strong monad.

In contrast, Plotkin and Power define algebraic operations for the Kleisli and Eilenberg-

Moore resolutions only. Thus, this definition is a minor generalisation of their notion.

As we work with CBPV, we need non-free algebras, so the Kleisli resolution is not

enough for our purposes. For working with effect handlers, Pretnar [Pre09] intro-

duces a special case of this definition for a particular syntactic resolution. As we want
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further work to account for handlers, we do not wish to tie algebraic operations too

closely with the Eilenberg-Moore resolution. Therefore, we formulate our definition

in this level of generality, and later instantiate it to the Eilenberg-Moore resolution.

Example 2-2. We present algebraic operations for global memory cell monad from

Example 2-1. The look-up operation is given by:

lookupY : |Y |V → |Y |1

lookupY : λv.yv 7→ λ?.Y ⟦λv.〈v,yv〉⟧

Note that if X is a free algebra, FX , then lookup is given by:

lookupFX : λv1.λv2.〈uv1,v2,xv1,v2〉 7→ λ?.T X ⟦λṽ.〈ṽ,λv2.〈uṽ,v2,xṽ,v2〉〉⟧
= λ?. µ(λṽ.〈ṽ,λv2.〈uṽ,v2,xṽ,v2〉〉)

= λ?.λṽ.〈uṽ,ṽ,xṽ,ṽ〉

Therefore, the sub-family of these maps indexed by the free algebras FX is the family

lookupFX : (T X)V → (T X)1

lookupFX : λv1.(λv2.〈uv1,v2 ,xv1,v2〉) 7→ λv.〈uv,v,xv,v〉

given in the introduction.

The family lookup forms an algebraic operation of type V〈1〉 for the Eilenberg-

Moore resolution of the global state monad. To see that, take any f : Γ×X → |Y |,
and chase an arbitrary element of Γ× (T X)V around the following diagram, using the

algebra multiplication law.

〈γ,λv1.λv2.〈uv1,v2 ,xv1,v2〉〉 λv1.Y ⟦λv2.〈uv1,v2 , f (γ,xv1,v2)〉⟧

〈γ,λ?.〈uṽ,ṽ,xṽ,ṽ〉〉
λ?.Y ⟦λṽ.〈ṽ,Y ⟦λv2.〈uṽ,v2, f (γ,xṽ,v2)〉⟧〉⟧

|| ← Y is an algebra
λ?.Y ⟦λṽ.〈uṽ,ṽ,xṽ,ṽ〉⟧

f ‡V

Γ× lookupFX
lookupY

f ‡1
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Similarly, the update interaction is given by:

updateY : |Y |1 → |Y |V

updateY : λ?.y 7→ λv0.Y ⟦λv.〈v0,y〉⟧
Again, note that the sub-family of these maps indexed by the free algebras coincides

with the family
updateFX : (T X)1→ (T X)V

updateFX : λ?.k 7→ λv0.λv.k(v0)

given in the introduction. An identical argument shows it is an algebraic operation of

type 1〈V〉 for the Eilenberg-Moore resolution of the global state monad.

Hyland et al. [HPP06, Section 6] describe means to transform every algebraic op-

eration op for T to an algebraic operation op′ for T ′ which they call operation trans-

formers. Hyland et al. showed that operation transformers are in bijection with strong

monad morphisms. We therefore take strong monad morphisms as our primary means

of transforming operations:

Definition 2.2. Let m : T → T ′ be a strong monad morphism over a cartesian category

V , and op, op′ be algebraic operations of type A〈P〉 for any two resolutions F aU,

F ′ aU ′ of T , T ′, respectively. We say that m maps op to op′ if, for all X ∈ Ob (V ):

=

(T X)A (T X)P

(T ′X)P(T ′X)A

mA mP

opFX

op′F ′X

Example 2-3. The environment monad is given by:

TEnv(V)X B XV η : x 7→ λv.x

TEnv(V) f : XV → Y V µ : λv.kv 7→ λv.kv(uv)

TEnv(V) f : λv.xv 7→ λv. f (xv) strX ,Y : 〈x,λv.yv〉 7→ λv.〈x,yv〉

This monad admits an algebraic operation lookupEnv(V) : V, given by:

lookupY : |Y |V → |Y |1

lookupY : λv.yv 7→ λ?.Y ⟦λv.yv⟧
When instantiated to free algebras, it subsumes the lookup operation from the intro-

duction:
lookupFEnv(V)X :

(
TEnv(V)X

)V → (TEnv(V)X)1

lookupFEnv(V)X : λv1.(λv2.xv1,v2) 7→ λv.xv,v
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Let TGS(V) and lookupGS(V) be the global state monad and its associated look-up

operation from Examples 2-1 and 2-2. Then the following map is a monad morphism

from TEnv(V) to TGS(V):

m : TEnv(V)Y → TGS(V)Y

m : λv.xv 7→ λv.〈v,xv〉

This monad morphism maps lookupEnv(V) to lookupGS(V):

λv1.λv2.xv1,v2 λ?.λv.xv,v

λ?.λv.〈v,xv,v〉λv1.λv2.〈v2,xv1,v2〉

lookupEnv(V)

m1mV

lookupGS(V)

Similarly, the overwrite monad is given by:

TOW(V)X B (1+V)×X η : x 7→ λv.x

TOW(V) f : (1+V)×X → (1+V)×Y µ : 〈ι1?,〈δ,x〉〉 7→ 〈δ,x〉
TOW(V) f : 〈δ,x〉 7→ 〈δ, f (xv)〉 〈δ,〈ι1?,x〉〉 7→ 〈δ,x〉

strX ,Y : 〈x,〈δ,y〉〉 7→ 〈δ,〈x,yv〉〉 〈ι2v1,〈ι2v2,x〉〉 7→ 〈ι2v2,x〉

This monad admits an algebraic operation updateOW(V) : 1〈V〉, given by:

updateY : |Y |1 → |Y |V

updateY : 〈ι1? ,y〉 7→ λv.Y ⟦〈v ,y〉⟧
〈ι2v′,y〉 7→ λv.Y ⟦〈v′,y〉⟧

When instantiated to free algebras, it subsumes the update operation from the intro-

duction:
updateFOW(V)X :

(
TOW(V)X

)1→ (TOW(V)X)V

updateFOW(V)X : λ?.〈δ,v〉 7→

λv0.〈ι2v0,x〉 δ = ι1?

λv0.〈ι2v,x〉 δ = ι2v

Let updateGS(V) be the update operation for the global state from Example 2-2.

Then the following map is a monad morphism from TOW(V) to TGS(V):

m : TOW(V)A→ TGS(V)A

m : 〈ι1?,a〉 7→ λv.〈v,a〉
〈ι2v0,a〉 7→ λv.〈v0,a〉

This monad morphism maps updateOW(V) to updateGS(V):
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λ?.〈ι1?,x〉 λv0.〈ι2v0,x〉

λv0.λv̂.〈v0,x〉λ?.λv̂.〈v̂,x〉

updateOW(V)

mVm1

updateGS(V)

λ?.〈ι2v,x〉 λv0.〈ι2v,x〉

λv0.λv̂.〈v,x〉λ?.λv̂.〈v,x〉

updateOW(V)

mVm1

updateGS(V)

2.3 Generic effects

Plotkin and Power [PP03] noted there is another common way to model effects:

Definition 2.3 (generic effects). Let T be a monad over V , and A,P be V -objects. A

generic effect of type A〈P〉 is a V -morphism gen : P→ T A.

Example 2-4. The global state monad has the following two generic effects:

deref! : V set! : 1〈V〉
deref! : 1→ TGS(V)V set! : V → TGS(V)1

deref! : ? 7→ λv.〈v,v〉 set! : v0 7→ λv.〈v0,?〉
Similarly, the environment and overwrite monads have analogous generic effects:

deref! : V set! : 1〈V〉
deref! : 1→ TEnv(V)V set! : V → TOW(V)1

deref! : ? 7→ λv.v set! : v0 7→ 〈ι2v0,?〉

Plotkin and Power [PP03] noted the following bijection between algebraic opera-

tions and generic effects. While they discussed it in the monadic setting, we generalise

the connection to arbitrary resolutions.

Theorem 2.4. Let F a U : C → V be a resolution of a strong monad T , and A, P

be V -objects such that all exponentials (U−)A, (U−)P exist. Algebraic operations

op : A〈P〉 and generic effects gen : A〈P〉 are in bijection via

genopB P
〈λA.η◦π2,P〉−−−−−−−→ (T A)A×P

opFA×P−−−−→ (T A)P×P eval−−→ T A

opgen
B B λP.

(
(UB)A×P

(UB)A×gen−−−−−−→ (UB)A×T A eval†−−−→UB
)
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Example 2-5. In Examples 2-3 and 2-4 we saw, respectively, an algebraic operation

and a generic effect for the environment monad TEnv(V)A = AV:

lookupY : λv.bv 7→ λ?.Y ⟦λv.bv⟧
deref! : ?p 7→ λv.v

Calculating the corresponding generic effect and algebraic operations yields:

genlookup : ?
〈λA.η◦π2,P〉7−−−−−−−→ 〈η,?〉

lookupFEnv(V)
×P

7−−−−−−−−−−→ 〈λ?.µ◦ηF ,?〉
eval7−−→ λv.v

opderef!
Y : λv.yv 7→ λ?.eval†(λv.yv,λv̂.v̂) = λ?.Y ⟦λv.eval(λv̂.yv̂,v)⟧= λ?.Y ⟦λv.yv⟧

Therefore, genlookup = deref! and lookup = opderef!.

Similar calculations show, for the overwrite monad TOW(V)A = (1+ V)×A, we

have genupdate = set! and update = opset!.

Proof

The following calculations show that: (1) opgen is an algebraic operation, i.e., op−

is well-defined; (2) opgenop = op; and (3) genopgen = gen. These calculations become

clearer through string diagrams (see, for example, Baez and Stay [BS11]). However,

we keep to commuting diagrams to avoid the overhead imposed by additional notation.

1. For all f : Γ×X →UB, we have

Γ× (T X)A×P (UB)A×P

Γ× (T X)A×TA (UB)A×TA

Γ×T ((T X)A×A) T (Γ× (T X)A×A) T ((UB)A×A)

Γ×T 2X T (Γ×T X)

T 2(Γ×X) T 2UB TUB

Γ×T X T (Γ×X) TUB

Γ× (T X)P×P (UB)P×P UB

Γ×opgen
FX ×P

Γ× (T X)A×gen

f ‡A×P

f ‡A×TA

str
Γ× str

(UB)A×gen

(UB)P×P

opgen
B ×P

eval

str

str

Γ×T eval

T ( f ‡A×A)

T (Γ× eval)

T eval
str

Γ×µ Γ×Uθ

T str
T 2 f

µ

TUθ

µ Uθ

Uθ
str T f

UθΓ× eval

f ‡P×P eval

Γ× (exponential
universality,

opgen def.)
=

× bifunctoriality
=

str naturality
=

str associativity
=

exponential
universality,

opgen def.
=

str naturality
=

T (exponential universality, f ‡A def.)
=

str multiplication
=

µ naturality
=

exponential universality, f ‡P def.
=

reso-

lution=

reso-

lution=

U(θ naturality)
=
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By appeal to uniqueness from the universal property of exponentials, we deduce:

Γ× (T X)A

Γ× (T X)P (UB)P

(UB)A

Γ×opgen
FX

f ‡A

f ‡P

opgen
B=

Hence opgen is an algebraic operation.

2. Let δ : P→ P×P be the diagonal morphism. For every B ∈ Ob (C ), we have:

(UB)A×P

(UB)A×P

(UB)A×P×P (UB)A× (TA)A×P

(UB)A× (TA)P×P

(UB)A×TA

(UB)P×P

UB

op
genop
B ×P

eval

(UB)P×PopB×P eval

(UB)A×〈λA.η◦π2,P〉

(UB)A×δ

(UB)A×λA.η◦π2×P

π1×P
eval‡A×P

(UB)A×opFA×P
(UB)A× eval

eval‡P×P

eval†

(UB)A×genop

products
=

products
=

(UB)A× (exponential
universality, genop def.)

= exponential universality,
opgen def.

=

eval‡P def.,
exponential universality

=
(alg. op. def.)×P

=

(∗)
=

where (∗) follows by universality from the following diagram
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(UB)A×P×A

(UB)A× (TA)A×A

(UB)A×A(UB)A×A (UB)A×A

UB

UB

(UB)A×TA

T ((UB)A×A)

TUB

(UB)A×λA.η◦π2×A

(UB)A×π2π1×A

eval‡A×A

(UB)A× eval

eval

str
(UB)A×η

η

eval

η

T eval

Uθ

eval

products
=

exponential universality
=

str unit
=

exponential
universality,
eval‡A def.=

µ naturality
=

adjunction
=id

=

Therefore, by universality of exponentials, opgenop = op.

3. Finally, the following diagram shows that genopgen = gen:

P

TA

TAP×TA

(TA)A×TA

T ((TA)A×A)

T (P×A)

(TA)A×P (TA)P×P

T 2A

genopgen

gen

〈P,gen〉

〈λA.η◦π2,P〉

λA.η◦π2×TA

str

π2

(TA)A×gen

opgen
FA ×P

str

T (λA.η◦π2×A)

T π2

T eval

T η

µ

eval† eval

products
=

products
=

str proj.
=

exponential

universality
=

str naturality
=

monad law
=

exponential
universality,

opgen def.
=

genop def.
=

eval† def.
=

�
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A close inspection of Theorem 2.4’s proof shows that every algebraic operation

op : A〈P〉 is uniquely determined by the component opFA:

Corollary 2.5. Let F aU be a resolution of a strong monad T , and A,P be objects such

that all exponentials (U−)A, (U−)P exist. For every morphism g : (T A)A → (T A)P

satisfying

(TA)A× (TA)A

(TA)A× (TA)P (TA)P

(TA)A

(TA)A×g

eval‡A

eval‡P

g=

there exists a unique algebraic operation op : A〈P〉 such that opFA = g.

Proof
For uniqueness, note that genop is completely determined by opFA, which satisfies the

required condition. Therefore, by Theorem 2.4, op is determined uniquely by g. For

existence, given any such g, define a generic effect by

genB P
〈λA.η◦π2,P〉−−−−−−−→ (T A)A×P

g×P−−→ (T A)P×P eval−−→ T A

By Theorem 2.4, opB opgen is an algebraic operation. Part (2) of the proof remains

valid if we replace opFA by g, and genop by gen, showing that opFA = g. �

Thus, algebraic operations are independent of the particular choice of a resolution

of the monad, as opFA depends solely on the monadic structure.

Corollary 2.6. Let F1 a U1, F2 a U2 be resolutions for a strong monad T , and A,P

be objects such that all exponentials (Ui−)A, (Ui−)P exist for i = 1,2. Algebraic

operations op1 : P〈A〉 for F1 aU1 and algebraic operations op2 : P〈A〉 for F2 aU2 are

in bijection via the equation op1
FA = op2

FA.

Proof
The condition in Corollary 2.5 involves only the monadic structure, which coincides

for the two resolutions. �

Therefore, our definition for algebraic operations captures precisely Plotkin and

Power’s notion of algebraic operations [PP03], but is applicable to resolutions other

than the Kleisli and Eilenberg-Moore resolutions. In the sequel we will therefore speak

of algebraic operations for a monad without referring to a particular resolution of that

monad.
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Definition 2.7. Let m : T → T̂ be a strong monad morphism, and gen,gen′ : A〈P〉 be

two generic effects for T, T̂ respectively. We say that m maps gen to gen′ if

P

T ′A

TA

=

gen

gen′

m

Example 2-6. In Example 2-4 we encountered the lookup and update effects for the

environment and global state monad:

deref!GS : ? 7→ λv.〈v,v〉 set!GS : v0 7→ λv.〈v0,?〉
deref!Env : ? 7→ λv.v set!OW : v0 7→ 〈ι2v0,?〉

Recall the two monad morphisms from Example 2-3:

mEnv : TEnv(V)A→ TGS(V)A mOW : TOW(V)A→ TGS(V)A

mEnv : λv.av 7→ λv.〈v,av〉 mOW : 〈ι1?,a〉 7→ λv.〈v,a〉
〈ι2v0,a〉 7→ λv.〈v0,a〉

Straightforward calculation shows that mEnv maps deref!Env to deref!GS, and that mOW

maps set!OW to set!GS.

The bijection between generic effects and algebraic operations preserves the rela-

tion of being mapped by a monad morphism:

Theorem 2.8. Let op,op′ : A〈P〉 be algebraic operations for any resolutions F aU,

F ′ a U ′ of any strong monads T , T ′, respectively, and m : T → T ′ a strong monad

morphism. Then m maps op to op′ if and only if m maps genop to genop′ .

Proof
First, assume m maps op to op′. We have

P

P×P

(TA)A×P (T ′A)A×P

(TA)P×P (T ′A)P×P

TA T ′A

δ

genop genop′

(λA.η◦π2)×P

op×P

eval

λA.η◦π2×P

op′×P

eval

mA×P

mP×P

m

genop def.
=

genop′ def.
=

(∗)×P
=

(m maps op to op′)×P
=

eval naturality
=
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where (∗) follows, by the universal property of exponentials, from

T ′A

TAA

(TA)A×AP×A

(T ′A)A×A(T ′A)A×A

(λA.η◦π2)×A

π2
λA.η′ ◦π2

eval eval

mA×A

η
′

η

eval

m

exponential
universality

=

exponential
universality

=

monad
morphism

=

eval naturality
=

Conversely, assume genB genop is mapped to gen′ B genop′ . We then have, for

every object X :

T ′X

(T ′X)A×P

(T ′X)P×P(T ′X)P×P

(T X)A×P

(T X)A×TA

(T ′X)A×T ′A

T ′2X T X

T ′((T X)A×A)

T ′((T ′X)A×A)

T ((T X)A×A)

(T X)A×T ′A (T X)P×P

T ′T X T 2X

mA×P

(T X)A×gen′ (T X)A×gen

opFX ×P

op′X ×P

(T ′X)A×gen′
mA×T ′A

str′

(T X)A×m

str

eval†

eval

mP×PT ′(mA×A)
T ′eval

m

T eval

T ′eval T ′m
µ

str′

m

evaleval
µ′

m

(T X)A× (m
maps gen to gen′)

=× bifunctoriality
=

exponential
universality,
Theorem 2.4=strong monad morphism

=

m naturality
=

eval† def.
=

monad morphism
=

exponential universality,
Theorem 2.4=

str′

naturality
=

T ′(eval
naturality)

=

eval
naturality

=

Therefore, by the universal property of exponentials, we have:
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=

(T X)A (T X)P

(T ′X)P(T ′X)A

mA mP

opFX

op′F ′X

and m maps op to op′. �

If m maps gen to gen′, then gen is uniquely determined by m and gen: gen′ =

m◦gen. Theorems 2.4 and 2.8 let us transfer this observation to algebraic operations:

Corollary 2.9. Let F aU, F ′ aU ′ be any two resolutions of any pair of strong mon-

ads T , T ′, and m : T → T ′ a strong monad morphism. For every algebraic operation

op : A〈P〉 of F a U, there exists a unique algebraic operation op′ : A〈P〉 of F ′ a U ′

such that m maps op to op′.

Proof
If op′,op′′ : A〈P〉 are two algebraic operations such that m maps op to both op′ and

op′′, then, by Theorem 2.8, m maps genop to both genop′ and genop′′ . Necessarily,

genop′ = genop′′ . By Theorem 2.4 we deduce that op′ = op′′. For existence, by fiat, m

maps genop to gen′B m◦genop. Theorem 2.8 implies m maps op to opgen′ . �

Example 2-7. To demonstrate this corollary, recall we found a strong monad mor-

phism m : TEnv(V) → GS(V) that maps the algebraic operation for look-up of TEnv(V)

to that of TGS(V) (Example 2-3), and the generic effect for look-up of TEnv(V) to that of

TGS(V) (Example 2-6). Finally, recall that the generic effect for look-up corresponds

to the algebraic operation for lookup (Example 2-5). Therefore, by Corollary 2.9,

the generic effect corresponding to the lookup algebraic operation for the global state

monad is the lookup generic effect presented in Example 2-4.

2.4 CBPV models

We now synthesise algebraic operations with CBPV models. In order to accommodate

operations in our meta-theory, we parametrise our definition by a set Π whose elements

we call effect operation names such as ΠB {lookup,update}.

Definition 2.10. Let Π be a set and V a category. A type assignment for Π in V is

an assignment type(op) = 〈A,P〉 of a pair of V -objects to each op ∈Π. We call A the

arity of op, and P the parameter type of op.
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We write op : A〈P〉 when type(op) = 〈A,P〉 and the assignment is clear from the

context. When the parameter type is the terminal object 1, we write op : A instead of

op : A〈1〉.

Example 2-8. Consider ΠB {lookup,update}. Let V be a set denoting storable values.

A set-theoretic type assignment for the global memory V-cell operations is:

lookup : V update : 1〈V〉

Example 2-9. Consider Π B {input,output, raise}. Let Char be a set modeling the

characters in an interactive terminal. For example, we may choose CharB {0,1,2, . . . ,127}
for modeling ASCII characters. Let Str be Char∗, the set of strings, i.e., finite se-

quences of characters. A set-theoretic type assignment for I/O and exceptions is:

input : Char output : 1〈V〉 raise : 0〈Str〉

We restrict our interest to the following notion of a CBPV model:

Definition 2.11. An (Eilenberg-Moore) CBPV model is a pair
〈
V ,T

〉
where:

• V is a distributive category;

• T is a strong monad over V ; and

• V has all exponentials |B|A of all T -algebra carriers |B| by all objects A in V .

General models of CBPV form a properly larger class of adjunctions. In our de-

velopment, we are only going to use Eilenberg-Moore models of CBPV. Therefore,

we restrict attention to those models only. This restriction simplifies the development

considerably. We leave the treatment of arbitrary CBPV models as further work.

We also need a notion of morphisms between CBPV models. For our purposes,

it suffices to consider strong monad morphisms m : T → T ′. There are other possible

choices. For example, one choice of morphisms is as functors Um : V T →V T ′ between

the Eilenberg-Moore categories of the monads that factor the right adjoint U ′ : V T ′ →
V as U ◦Um. Another choice of morphisms is to require that those functors Um to have

a left adjoint. In our cases of interest, in which algebraic semantics is possible, these

choices coincide. Therefore, we choose strong monad morphisms as our morphisms

between CBPV models. Future use of the theory will determine which notion is more

appropriate for applications.



46 Chapter 2. Algebraic operations

Definition 2.12. Let V be a distributive category. The category CBPVV has as objects
CBPV models with F aU : C → V , and as morphisms (F1 aU1)→ (F2 aU2) strong

monad morphisms m : T1→ T2.

The following diagram summrises the relevant data in a morphism between CBPV

models:

C 1

V

C 2

F1

U1

a

F2

U2

a

T1 T2m

The following definition ties all the previous concepts together:

Definition 2.13. Let Π be a set. A CBPV Π-model is a quadruple〈
V , type,T,O ⟦−⟧〉

where:

• V is a distributive category, called the value category;

• type is a type assignment for Π in V ;

•
〈
V ,T

〉
is a CBPV model; and

• O ⟦−⟧ assigns to every op : A〈P〉 in Π an algebraic operation O ⟦op⟧ : A〈P〉 for

T .

Thus, effect operation names op denote algebraic operations O ⟦op⟧.

Example 2-10. Let Π be a two element set {lookup,update}, and V a set denoting

storable values. We present a CBPV Π-model for a global memory V-cell.

We take: V to be Set; type to be the type assignment lookup : V and update : 1〈V〉;
from Example 2-9; T to be the global state monad TGS(V); and O ⟦−⟧ to interpret

lookup and update as the look-up and update operations for TGS(V), as in Examples 2-1

and 2-2.

To summarise, we reviewed Plotkin and Power’s algebraic operations and generic

effects in the adjunctive setting, and their preservation by monad morphisms, and in-

corporated them into the CBPV model structure.
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Models

I’m a model, you know what I mean.

—Right Said Fred

In this chapter we define our notion of models for Gifford-style effect sys-

tems. There is tension inherent in this definition resulting from the degree

of structure these models include. On the one hand, we want to axiomatise the sim-

ilarities in structure between a range of different type and effect analyses and their

semantics, as studied by Tolach [Tol98], Wadler [Wad98, WT03], Kieburtz [Kie98],

Benton et al.[BK99, BKHB06, BB07, BKBH07, BKBH09], and Thamsborg and

Birkedal [TB11]. On the other hand, we want our axioms to capture as much common

structure as possible, allowing us to derive general properties and principles pertaining

to uses of effect analysis, such as validating optimisations.

Our first step is to parameterise the theory over the hierarchy of effect sets in the

chosen Gifford-style effect system of study:

Definition 3.1. An effect hierarchy Σ is a pair 〈Π,E〉 where Π is a set, and E ⊆P (Π).

Given a hierarchy Σ, we call the elements of Π effect operation names, or effect

operations for brevity, ranged over by op. We call the elements of E the effect sets,

ranged over by ε. For example, for a global memory cell, we take the hierarchy to be

the full powerset:

〈{lookup,update},{ /0,{lookup} ,{update} ,{lookup,update}}〉

Ideally, the effect hierarchy includes all finite subsets of effect operations. How-

ever, in that case, the semantics involve exponentially large amount of data. There-

fore, Tolmach [Tol98] and Kierbutz [Kie98] only consider sub-hierarchies of the finite

47
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powerset hierarchy. As a consequence, we do not commit to a particular choice of

hierarchy.

In Section 3.1, we introduce the model class of a given effect hierarchy Σ, and

discuss the exponential quantity of data involved in specifying such models. Then, in

Section 3.2, we utilise generic operations and describe techniques for specifying these

models with smaller, yet still exponential, amounts of data. Finally, in Section 3.3, we

conclude by instantiating our categorical definition to the category of sets and present-

ing a more elementary and accessible definition.

3.1 Categorical models

Withour further ado, we define our notion of models for Gifford-style effect

analysis:

Definition 3.2. Let Σ be a hierarchy. A Σ-model is a quadruple〈
V , type,P,O− ⟦−⟧

〉
where:

• V is a distributive category, called the value category;

• type is a Σ-type assignment in V ;

• P is a functor E → CBPVV , called the model hierarchy;

• O− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε, op : A〈P〉 an algebraic operation

Oε ⟦op⟧ of type A〈P〉 for Pε;

and, for all ε ⊆ ε′, and op ∈ ε, P(ε⊆ ε′) maps Oε ⟦op⟧ to O
ε′ ⟦op⟧. Thus, P(ε⊆ ε′)

preserves the operations.

Note that we considered the poset E as a category in this definition.

Example 3-1. Given any effect hierarchy Σ and any Σ-model〈
V , type,P,O− ⟦−⟧

〉
we have a hierarchy of CBPV models. For every ε ∈ E , we have a CBPV ε-model〈

V , typeε,Pε,Oε ⟦−⟧
〉

where typeε is the restriction of the type assignment type to ε, namely type|
ε
.
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Example 3-2. We illustrate Definition 3.2 by using global state.

The operations of our hierarchy Σ are given by ΠB {lookup,update}, with E given

by the entire powerset P (Π). Let V be a set of storable values. We describe a Σ-model〈
Set, type,P,O− ⟦−⟧

〉
for a single global memory cell of type V.

Assign types to the effect operations as in Example 2-9:

lookup : V update : 1〈V〉

We define the object part of P by the identity, environment, overwrite, and global

state monads:

P /0 B Tid P{lookup} B TEnv(V)

P{update}B TOW(V) P{lookup,update}B TGS(V)

For each ε ⊆ Π, we define P( /0⊆ ε) to be the monadic unit η : id→ Tε. As Tε is

strong, P( /0⊆ ε) is a strong monad morphism. Define:

P({lookup} ⊆Π)X : TEnv(V)X → TGS(V)X

P({lookup} ⊆Π)X : k 7→ λv.〈v,k(v)〉

P({update} ⊆Π)X : TOW(V)X → TGS(V)X

P({update} ⊆Π)X : 〈ι1? ,x〉 7→ λv.Y ⟦〈v ,x〉⟧
〈ι2v′,x〉 7→ λv.Y ⟦〈v′,x〉⟧

These are the two strong monad morphisms from Example 2-3.

The preservation of units under monad morphisms implies the commutativity of

the following diagram.

P |Σ|

P{lookup} P{update}

P /0

η{lookup} η{update}

η|Σ|

P({lookup} ⊆ |Σ|) P({update} ⊆ |Σ|)

monad
morphism
=

monad
morphism
=

Thus, by setting P(ε⊆ ε)B id, we obtain a functor P : E → CBPV Set, and the model

hierarchy component of the model is defined.

We choose the algebraic operations as in Examples 2-2 and 2-3, which show they

are preserved by P.

In conclusion, the quadruple
〈
V , type,P,O− ⟦−⟧

〉
is a Σ-model.
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The last example demonstrates that in order to exhibit a Σ-model, we need to spec-

ify a large amount of data. To illustrate the problem, consider the typical case when

the effect set Π comprises of n different operations, and we take the entire powerset

E B P (Π) for our hierarchy. Then, each Σ-model includes 2n different monads. The

number of monad morphisms we need to specify is

∑
/0 6=ε∈E

∣∣{mε\{op}⊆ε

∣∣op ∈ ε
}∣∣= n

∑
k=1

(
n
k

)
· k = n2n−1

The number of algebraic operations we need to specify is n2n−1 as well:

∑
ε∈E
|ε|= ∑

k=0

(
n
k

)
· k = n2n−1

Besides exhibiting these data, we also have to show it has the appropriate properties.

In particular:

• for each monad, we have to exhibit a strength, which also needs to be preserved

by the monad morphisms, totaling in 4 commutative diagrams for each of the 2n

monads and a commutative diagram for each of the n2n−1 monad morphisms;

• for each of the n2n−1 algebraic operations we need to calculate −† and −‡A, and

establish the commutativity of a diagram; and,

• for each monad morphism mε\{op}⊆ε and op′ ∈ ε\{op}, establish the commuta-

tivity of the diagram for preserving op′:

∑
/06=ε∈E

∑
op∈ε

|ε\{op}|=
n

∑
k=1

(
n
k

)
· k(k−1) = n(n−1)2n−2

In the following sections we will encounter different methods to elaborate the full

model structure from a smaller set of data, and to avoid some of these proof-obligations.

3.2 Generic models

In light of this equivalence of algebraic operations and generic effects, we

can recast our model definition in terms of generic operations. To aid the

presentation, we use asterisks in our numbering. Thus, Definition 3.2* reflects that we

recast Definition 3.2 in terms of generic effects. The shaded text highlights which parts

of Definition 3.2 changed in Definition 3.2*.
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Definition 3.2*. Let Σ be a hierarchy. A generic Σ-model is a quadruple〈
V , type,P,G− ⟦−⟧

〉
where:

• V is a distributive category, called the value category;

• type is a Σ-type assignment in V ;

• P is a functor E → CBPVV , called the model hierarchy;

• G− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε, op : A〈P〉 a generic effect Gε ⟦op⟧ of

type A〈P〉 for Pε;

and, for all ε ⊆ ε′, and op ∈ ε, P(ε⊆ ε′) maps Gε ⟦op⟧ to Gε′ ⟦op⟧. Thus, P(ε⊆ ε′)

preserves the effects.

Example 3-2*. Consider a global state model 〈Set, type,P,G− ⟦−⟧〉 where type and P

are as in Example 3-2, and G− ⟦−⟧ assigns the generic effects from Example 2-4:

G{lookup,update} ⟦lookup⟧ : ? 7→ λv.〈v,v〉 G{lookup,update} ⟦update⟧] : v0 7→ λv.〈v0,?〉
G{lookup } ⟦lookup⟧ : ? 7→ λv.v G{ update} ⟦update⟧ : v0 7→ 〈ι2v0,?〉

The two Σ-model notions are equivalent:

Theorem 3.3. Let Σ be a hierarchy. Σ-models
〈
V , type,P,O− ⟦−⟧

〉
and generic Σ-

models
〈
V , type,P,G− ⟦−⟧

〉
are in bijection given by genOε⟦op⟧ = Gε ⟦op⟧.

Proof
Immediate, in light of Theorems 2.4 and 2.8. �

Generic models allow us to do away with the proof obligations regarding alge-

braic operations. We can simplify our models further by additional assumptions on the

hierarchy Σ. We describe one possible way to simplify them.

Definition 3.4. We say that a hierarchy Σ is reducible if, for every op ∈ Π, the set

{ε ∈ E |op ∈ ε} has a minimum εop.

Example 3-3. Given any set Π, the powerset E B P (Π) is a reducible hierarchy,

with εop = {op}. More generally, any hierarchy that includes all singletons {op} is

reducible.
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Non-example 3-4. For the set ΠB {lookup,update, raise}, the hierarchy given by

E B {{lookup, raise} ,{update, raise} ,{lookup,update, raise}}

is irreducible, as the set: {ε ∈ E |raise ∈ ε}= E has no minimum.

Definition 3.5. Let Σ be a reducible hierarchy. A reduced Σ-model is a quadruple

〈
V , type,P,Gε− ⟦−⟧

〉
where:

• V is a distributive category, called the value category;

• type is a Σ-type assignment in V ;

• P is a functor E → CBPVV , called the model hierarchy;

• Gε− ⟦−⟧ assigns to each op ∈Π a generic effect Gεop ⟦op⟧ of type A〈P〉 for

Pεop;

(and that is all).

In other words, we no longer have to supply effect operations for every set in the

hierarchy, merely to εop, for every effect operation op. Thus, just as in Example 3-2*, a

reduced model for global state only includes the definitions for the lookup and update

generic effects. The rest of the model structure can be elaborated from the reduced

model:

Theorem 3.6. Let Σ be a reducible hierarchy. Reduced Σ-models
〈
V , type,P,Gε− ⟦−⟧

〉
and generic Σ-models

〈
V , type,P,G− ⟦−⟧

〉
(and hence Σ-models) are in bijection

given by the factorisation of G− ⟦−⟧ through Gε− ⟦−⟧ as

Gε− ⟦−⟧= G− ⟦−⟧◦ 〈ε−,−〉

Proof

Given a generic Σ-model, the corresponding assignment Gε− ⟦−⟧ is completely de-

termined from G− ⟦−⟧. Conversely, preservation of generic effects implies that any

Σ-model has to satisfy: Gε ⟦op⟧= P(εop ⊆ ε)◦Gεop ⟦op⟧. By Corollary 2.9, this choice

uniquely determines the generic effect Gε ⟦op⟧ preserved by P. �
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Using generic effects, we succeeded in discharging the n2n−1 proof obligations re-

quired in the definition for algebraic operations. We also demonstrated how the struc-

ture of the hierarchy can simplify the model structure further: our reduced models do

away with nn−1−n operations and discharge all of the n(n−1)2n−2 proof-obligations

dealing with effect preservation. However, we are still left with the burden of speci-

fying the 2n monads and n · 2n−1 monad morphisms between them. Our definition of

reducible hierarchies is not the only way to reduce the burden of model specification

using the correspondence of generic effects and algebraic operations, but merely illus-

trates one way to do so. For example, we can also reduce the specification of models

for the hierarchy from Non-example 3-4 by specifying lookup and update in their re-

spective sets εop, specifying raise in the two subsets {lookup, raise}, {update, raise},
and requiring that they are mapped to the same effect by the monad morphisms in P.

Such techniques are present in the functional programming community. In the

Haskell programming language, such hierarchies of monads arise with modular de-

composition of effectful programs, and are specified manually by the programmer.

The requirement to also specify the operations manually in each level led to several

methods for lifting the operations from the lower monads to the higher monads in the

hierarchy. For example, Guts et al. [SGLH11] use a reduced model (as in Defini-

tion 3.5) and deduce from a given hierarchy of monads and monad morphisms how

to lift the operations. As another example, Schrijvers and Oliveira [SO11] specify the

operations at the lowest levels of the hierarchy and develop a domain specific language

for choosing the appropriate monad morphism used to map the operation to a monad

higher in the hierarchy.

3.3 Set-theoretic models

To aid accessibility, we remove some of the categorical scaffolding of our ac-

count. We instantiate our general categorical models to the category of sets. To

aid the presentation, we use the (revisited) suffix to the reformulated categorical result.

Thus, Definition 2.10 (revisited) is the set-theoretic specialisation of Definition 2.10.

Definition 2.10 (revisited). Let Σ be a hierarchy. A set-theoretic type assignment for

Σ is an assignment type(op) = 〈A,P〉 of a pair of sets to each op ∈ Π. We call A the

arity of op, and P the parameter type of op.

We write op : A〈P〉 when type(op) = 〈A,P〉 and the assignment is clear from the
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context. When the parameter type is a singleton 1 = {?}, we write op : A instead of

op : A〈1〉.

Example 2-9 (revisited). A set-theoretic type assignment for the global memory cell

hierarchy is:

lookup : V update : 1〈V〉

Definition 3.2* (revisited). Let Σ be a hierarchy. A set-theoretic Σ-model is a quadru-

ple

〈type,T−,m−,G− ⟦−⟧〉
where:

• type is a set-theoretic type assignment for Σ;

• T− assigns to each ε in E a monad Tε;

• m− assigns to each ε⊆ ε′ in E a monad morphism mε⊆ε′ : Tε→ Tε′;

• G− ⟦−⟧ assigns to each ε ∈ E , and op : A〈P〉 in ε a function Gε ⟦op⟧ : P→ TεA;

(Such functions are called generic effects for Tε.)

• for all ε⊆ ε′ ⊆ ε′′ in E:

mε⊆ε = id, mε′⊆ε′′ ◦mε⊆ε′ = mε⊆ε′′

i.e., m− is functorial;

and, for all ε⊆ ε′ in E and op : A〈P〉 in ε:

P

Tε′A

TεA

=

Gε ⟦op⟧

Gε′ ⟦op⟧

mε⊆ε′

Thus, m− preserves the generic effects.

Example 3-2* (revisited). We construct a set-theoretic model for global state.

The global state hierarchy is given by ΠB {lookup,update} and E B P (Π).

Let V be a set of storable values. We describe a set-theoretic Σ-model for a single

global memory cell of type V, 〈type,T−,m−,G− ⟦−⟧〉.
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First, we assign types to the effect operations:

lookup : V update : 1〈V〉

Next, we choose the following monads:

T/0 X B Tid X B X

T{lookup} X B TEnv(V)X B XV

T{update} X B TOW(V)X B X B (1+V)×X

T{lookup,update}X B TGS(V) X B (V×X)V

i.e., the identity, environment, overwrite, and global state monads.

For each ε⊆Π, we define m /0⊆ε to be the monadic unit ηε : id→ Tε.

Define:
m{lookup}⊆Π : (−)V→ (V× (−))V

m{lookup}⊆Π : k 7→ λv.〈v,k(v)〉

Calculation shows m{lookup}⊆Π is a monad morphism from Tlookup to TΠ . Define:

m{update}⊆Π : (1+V)× (−)→ (V× (−))V

m{update}⊆Π : 〈δ,x〉 7→

λv.〈v ,x〉 δ = ι1?

λv.〈v′,x〉 δ = ι2v′

Calculation shows m{update}⊆Π is also a monad morphism, this time from Tupdate to TΠ .

The preservation of units under monad morphisms implies the commutativity of

the following diagram.

T|Σ|

T/0

T{lookup} T{update}

η{lookup} η{update}

η|Σ|

m{lookup}⊆|Σ| m{update}⊆|Σ|

monad
morphism
=

monad
morphism
=

Thus, by setting mε⊆εB id, we obtain a functorial family m−.

We choose the generic effects:

G{lookup,update} ⟦lookup⟧ : ? 7→ λv.〈v,v〉 G{lookup,update} ⟦update⟧ : v0 7→ λv.〈v0,?〉
G{lookup } ⟦lookup⟧ : ? 7→ λv.v G{ update} ⟦update⟧ : v0 7→ 〈ι2v0,?〉

Finally, we show preservation of operations by m. It amounts to chasing two dia-

grams:
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? ∈ 1

λv.〈v,v〉 ∈ T|Σ|V

λv.v ∈ T{lookup}V
G ⟦lookup⟧

G ⟦lookup⟧

m{lookup}⊆|Σ| v0 ∈ V

λv.〈v0,v〉 ∈ T|Σ|1

〈ι2v0,?〉 ∈ T{update}1
G ⟦update⟧

G ⟦update⟧

m{update}⊆|Σ|

In conclusion, the quadruple 〈type,T−,m−,G− ⟦−⟧〉 is a set-theoretic Σ-model.

Example 3-5. We construct a set-theoretic model for exceptions and input/output in-

teractions with a terminal (terminal I/O).

We choose the hierarchy as ΠB {raise, input,output}, and set E B P (Π).

Let Char be a set modeling the characters in an interactive terminal. For example,

we may choose CharB {0,1,2, . . . ,127} for modeling ASCII characters. Let Str be

Char∗, the set of strings, i.e., finite sequences of characters.

The model 〈type,T−,m−,G− ⟦−⟧〉 is given as follows.

The type assignment is given by

raise : /0〈Str〉 input : Char output : 1〈Char〉

Given any ε ∈ E , any set X , and any three different sets I,O,R /∈ X , we define TεX

inductively as follows:

• if x ∈ X , then x is in TεX ;

• if raise ∈ E , and s ∈ Str, then 〈R,s〉 is in TεX .

• if input ∈ ε, and for all c ∈ Char, tc ∈ TεX , then
〈
I,〈tc〉c∈Char

〉
is in TεX ;

• if output ∈ ε, c ∈ Char, and t ∈ TεX , then 〈O,c, t〉 is in TεX ;

In other words, TεX is the set of labeled trees, whose leaves are X-elements. If

input ∈ ε, then these trees may contain nodes, labeled by I, whose branches are in-

dexed by Char. If output ∈ ε then these trees may contain nodes, labeled by a pair of

labels 〈O,c〉 (where c ∈ Char), with a single branch stemming from them. If raise ∈ ε,

then these trees may also have leaves from Str, and these strings are distinguishable

from the X-elements.

In terms of universal algebra, TΠX , for example, is the free algebra for the follow-

ing signature σ::{
raises : 0, input : |Char| ,outputc : 1

∣∣c ∈ Char,s ∈ Str
}

We can also model the set TΠX using the SML algebraic datatype
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I

〈O, ’a’〉 〈O, ’b’〉 〈O, ’c’〉〈R,”cabab”〉

1 〈O, ’b’〉

2

〈O, ’c’〉

〈O, ’c’〉

3

’\0’
’a’ ’b’

’c’

Figure 3.1: An example element of TΠN

- datatype ’a T = Just of ’a

= | Raise of string

= | Input of char -> ’a T

= | Output of char * ’a T

We can present these trees diagrammatically. See Figure 3.1 for an example ele-

ment of TΠN, when Char = {’\0’, ’a’, ’b’, ’c’}.
The monadic unit is given by the inclusion ηε : X ⊆ TεX . The monadic multiplica-

tion is given inductively:

• µε(t)B t;

• If raise ∈ ε, µε 〈R,s〉B 〈R,s〉.

• If input ∈ ε, µε

〈
I,〈tc〉c∈Char

〉
B
〈
I,〈µε(tc)〉c∈Char

〉
;

• If output ∈ ε, µε 〈O,c, t〉B 〈O,c,µε(t)〉;

i.e., by collapsing the nested tree structure. Figure 3.2 demonstrates the action of

the multiplication. The monad 〈TΠ,η,µ〉 is the free algebra monad for the universal

algebra signature σ we described above. It is also the free monad for the functor:

FX B Str+XChar +Char×X

Similarly, the other monads Tε are free algebra monads for analogous signatures and

free monads for analogous functors.
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I

(0)






(〈R,”bacbac”〉)〈O, ’c’〉

42

〈O, ’a’〉

〈O, ’b’〉

8

’\0’
’a’ ’b’

’c’

µε

I

0 〈R,”bacbac”〉〈O, ’c’〉

42

〈O, ’a’〉

〈O, ’b’〉

8

’\0’
’a’ ’b’

’c’

Figure 3.2: monadic multiplication

Thus we specified the monad hierarchy T−.

The monad morphisms are given by inclusion: (mε⊆ε′)X : TεX ⊆ Tε′X , hence func-

torial.

The generic effects are given by:

• if input ∈ ε:
Gε ⟦input⟧ : 1→ TεChar

Gε ⟦input⟧ : ? 7→
〈
I,〈c〉c∈Char

〉
• if output ∈ ε:

Gε ⟦output⟧ : Char→ Tε1

Gε ⟦output⟧ : c 7→ 〈O,c,?〉

• if raise ∈ ε:
Gε ⟦raise⟧ : Str→ Tε /0

Gε ⟦raise⟧ : s 7→ 〈R,s〉

Note that the inclusions m− preserve the generic effects, as G− ⟦−⟧were identically

defined for every ε.

In conclusion, 〈type,T−,m−,G− ⟦−⟧〉 is a set-theoretic Σ-model.
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Contrast the last two examples. For global state, we explicitly defined an ad-hoc

monad for each effect set ε. For exceptions and I/O, our definition was uniform for all

effect sets: we define a single monad TΠ , and omit the irrelevant elements according

to the effect set. The same idea applies to the generic effects: they are defined in the

same manner for all ε. Specifying Σ-models in this manner dramatically decreases

the amount of data we have to specify: as we have 3 effects, instead of specifying 9

monads, 12 monad morphisms, and 12 generic effects, we specify, uniformly, 1 monad,

1 monad morphism, and 3 generic effects. We will see in Chapters 7 and 8 that this

process can be generalised to arbitrary algebraic models, including the global state

model.

To conclude this section, we show that set-theoretic models coincide with cat-

egorical models with V = Set:

Proposition 3.7. Let Σ be a hierarchy. Set-theoretic Σ-models 〈type,T−,m−,G− ⟦−⟧〉
and (categorical) Σ-models 〈Set, type,P,G− ⟦−⟧〉 are in bijection given by

• for all ε ∈ E , Pε = Tε; and

• for all ε⊆ ε′ in E , P(ε⊆ ε′) = mε⊆ε′ .

Proof
Functoriality of m− guarantees the functor P is uniquely determined by the bijection.

It remains to show well-definedness, by equipping each monad Tε with a strength to

form a strong monad Pε, such that P(ε⊆ ε′) is a strong monad morphisms with respect

to the strengths of Pε and Pε′.

The following result follows directly from Kock [Koc72]: every monad over Set
has a unique strength, given by strA,B : 〈a,k〉 7→ T (λb.〈a,b〉)(k). Thus Pε is a well-

defined strong monad.

For all ε ⊆ ε′ in E , mε⊆ε′ is also a strong monad morphism, by chasing a diagram

using the naturality of mε⊆ε′:

〈a,k〉 Tε (λb.〈a,b〉)(k)

〈a,m(k)〉

m(Tε (λb.〈a,b〉)(k))

Tε′ (λb.〈a,b〉)(m(k))

strε

mε⊆ε′

A×mε⊆ε′

strε′

← mε⊆ε′ naturality

Thus P is uniquely determined by T− and m−, and we are done. �
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In summary, we defined the notion of an effect hierarchy, and categorical hier-

archical models. We saw that in order to specify a complete hierarchy we need

to produce exponential amounts of data. We managed to do away with some of this

burden, but we could not go below an exponential amount.
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Recursion

A scar on my arm that says: Domain

—Lou Reed

In this section we isolate a subclass of our categorical models suitable for mod-

elling languages with recursion. To achieve this, we refine the definitions from

the previous chapters by requiring additional structure.

Programs involving recursive functions may fail to terminate. Thus they exhibit

divergence as an effect. Therefore, effect hierarchies for recursive languages have

divergence as a distinguished effect:

Definition 3.1ω. A recursion effect hierarchy is a pair 〈Σ,diverge〉 where Σ is an effect

hierarchy with a specified effect operation diverge ∈ΠΣ.

To aid the presentation, we use the ω suffix to reflect that the revisited unit is a

modification of a previously presented unit to accommodate recursion. Thus, Defini-

tion 3.1ω modifies Definition 3.1.

We treat a recursion hierarchy 〈Σ,diverge〉 as a hierarchy Σ, and always denote

the specified operation by “diverge”. For example, a recursion hierarchy Σ for non-

determinism consists of two operations ΠB {choose,diverge} and the full powerset.

For the more semantic aspects of our models, we turn to domain theory. Domain

theory provides the standard mathematical machinery needed to model recursion. The

simplest type of domain sufficient for our purposes is an ω-complete partial order (ω-

cpo). We refine our models to account for recursion by demanding them to be suitably

enriched in the category of ω-cpos. For this purpose, we review the key concepts from

the previous chapters and define their enriched counterparts.

61



62 Chapter 4. Recursion

We proceed as follows. We first recapitulate some standard domain-theoretic con-

cepts and notation. Then, we recall how to incorporate recursion into (Eilenberg-

Moore) CBPV models, and enrich the notions of algebraic operations for an enriched

monad. Next, we refine the structure of our categorical models to accommodate recur-

sion. Finally, we specialise to the category of ω-cpos, removing many of the categori-

cal concepts, for a more accessible account.

4.1 Domain-theoretic preliminaries

An ω-complete partial order (ω-cpo) is a partial order W = 〈|W |,6〉, closed un-

der suprema
∨

n∈N wn of increasing ω-chains 〈wn〉n∈N. A (Scott) continuous function

f : W →W ′ between ω-cpos is a monotone function preserving such suprema, i.e.,

f (
∨

n wn) =
∨

n f (wn) for every increasing ω-chain 〈wn〉.
A discrete ω-cpo is a set ordered by equality 〈X ,=〉. The empty ω-cpo 0 is 〈 /0,=〉.

The singleton ω-cpo 1 is 〈{?},=〉. We write n for the discrete domain over n elements.

The product W1×W2 of two ω-cpos is the component-wise partial order over their

cartesian product |W1|× |W2|:

〈w1,w2〉6
〈
w′1,w

′
2
〉

if and only if w1 6 w′1 and w2 6 w′2

This order does give rise to an ω-cpo, with suprema taken componentwise.

The exponential WW1
2 of two ω-cpos is the ω-cpo consisting of all continuous func-

tions from W1 to W2, ordered pointwise:

f 6 g if and only if, for all W ∈W1, f (w)6 g(w)

This order does give rise to an ω-cpo, with suprema taken pointwise. The evaluation

map is the continuous function eval : WW1
2 ×W1→W2 given by 〈 f ,w〉 7→ f (w).

An ω-cpo W is pointed if it has a least element ⊥. If W is pointed, then, for all V ,

WV is pointed, with λv.⊥ its least element. A continuous function f : V →W between

pointed domains is called strict if f (⊥) =⊥.

In categorical terms, the category ωCPO has ω-cpos as objects, and Scott contin-

uous functions between them as morphisms. An endofunctor F : ωCPO→ ωCPO
is locally continuous if, for every pair of ω-cpos V ,W , the morphism map F , send-

ing a continuous function f : V →W to T f : FV → FW , is a continuous function

F : WV → (FW )FV . An endofunctor F over ωCPO is called pointed if, for every

ω-cpo W , FW is pointed. A pointed functor is called strict, if, for all f : V →W ,
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(F f )(⊥V ) = ⊥FW , i.e., if every F f is strict, even when f is not necessarily strict. A

locally continuous monad is a monad whose underlying functor is locally continuous.

We define pointed monads and strict monads similarly.

The evident forgetful functor |−| from ωCPO to Set has a left adjoint, assign-

ing to each set X the discrete ω-cpo with carrier X , 〈X ,=〉. The empty ω-cpo

0 is the initial object in ωCPO. Binary sums are given by disjoint union:

W1 +W2 ∼=
〈
|W1|+ |W2|,

{〈
ιiw, ιiw′

〉∣∣i = 1,2,w6i w′
}〉

The singleton domain 1 is the terminal object. As left adjoints preserve coproducts,

we indeed have

n =

n summands︷ ︸︸ ︷
1+ . . .+1

The product W ×V described earlier is the categorical product. In fact, ωCPO is

complete. If D : J→ωCPO is any small diagram, the limit LimD = 〈L,σ〉 is given by:

• |L| and |σ| form the limit of the underlying set-theoretic diagram:

LimSet |D|= 〈|L|, |σ|〉

• the partial order is given by

w6 v if and only if, for all j ∈ Ob (J): σ j(w)6 σ jv

and

• suprema are given by the following property:

w =
∨
n

wn if and only if, for all j ∈ Ob (J): σ j(w) =
∨
n

σ j(wn)

The exponential WV is the categorical exponential of W by V , and the evalua-

tion map is the categorical evaluation morphism. Given a Scott continuous function

f : U×V →W , the map λV . f is given by currying u 7→ λv. f (u,v), just as in Set.
Therefore, ωCPO is cartesian closed, hence a distributive category.

An ωCPO-enriched category is a category V such that, for all objects W,V in

Ob (V ), the homset V (W ,V ) is equipped with a specified partial order making it an

ω-cpo, also denoted by V (W ,V ), and, for all W,V,U ∈Ob (V ), composition is a Scott

continuous function:

◦ : V (V ,W )×V (U ,V )→ V (U ,W )
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Let V be an ωCPO-enriched category, I a set, and Wi ∈ Ob (V ) an I-indexed

family of objects. An ωCPO-enriched product ∏i∈I Wi is an ordinary product ∏i∈I Wi

in the underlying ordinary category of V such that, for all V ∈ Ob (V ), the evident

tupling map is continuous:

〈−〉i∈I : ∏i∈I V (V ,Wi)→ V (V ,∏i∈I Wi)

Similarly, an ωCPO-enriched coproduct ∑i∈I Wi is an ordinary coproduct ∑i∈I for

which, for all V ∈ Ob (V ), the evident cotupling map is continuous:

[−]i∈I : ∏
i∈I

V (Wi,V )→ V (∑
i∈I

Wi,V )

Thus, an ωCPO-enriched distributive category is an ωCPO-enriched category with all

finite ωCPO-enriched products and coproducts such that finite products distribute over

finite coproducts.

Let W,V ∈ V be two objects in an ωCPO-enriched category. An ωCPO-enriched

exponential WV is an ordinary exponential WV for which, for all U ∈ Ob (V ), the

currying map is continuous:

λV .− : V (U×V ,W )→ V (U ,WV )

Let V , V ′ be ωCPO-enriched categories. An ωCPO-enriched functor F : V →V ′

is a functor F : V → V ′ between the underlying ordinary categories, such that, for all

A,B ∈ Ob (V ), the induced morphism map is Scott continuous:

F : V (A,B)→ V ′ (FA,FB)

Thus, a locally continuous functor is exactly an ωCPO-enriched endofunctor over

ωCPO. We note that there is no need to differentiate between ωCPO-enriched natural

transformations and ordinary natural transformations between ωCPO-enriched func-

tors. Thus, an ωCPO-enriched (strong) monad is an ordinary (strong) monad whose

underlying functor is ωCPO-enriched. Similarly, an ωCPO-enriched adjunction is an

ordinary adjunction F a G : C → V between the underlying ordinary functors of two

ωCPO-enriched functors F and G. The bijection ϕ : C (FA,B)∼= V (A,GB) of the ad-

junction is then Scott continuous as, by naturality, ϕ( f ) =G( f )◦η. Finally, an ωCPO-

enriched resolution of an ωCPO-enriched monad is an ωCPO-enriched adjunction

whose underlying ordinary adjunction resolves the underlying ordinary monad. A
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direct consequence of Kock’s work [Koc72] is that every endofunctor (monad) over

ωCPO has a unique candidate for strength, i.e., the map:

str : V ×FW → F(V ×W )

str : 〈v, t〉 7→ F(λw.〈v,w〉)(t)

If this candidate is indeed Scott-continuous, this functor (monad) is locally continuous

(strong).

The cartesian closed structure of ωCPO itself is an ωCPO-enriched cartesian

closed category. In particular, it is an ωCPO-enriched distributive category.

Lemma 4.1. Let V be an ωCPO-enriched category, and let A∈Ob (V ) be any object

such that, for all Γ ∈ Ob (V ), the ωCPO-enriched exponential AΓ exists. If, for all

Γ ∈ Ob (V ), V (Γ,A) is pointed, then, for all ∆ ∈ Ob (V ), V
(
∆,AΓ

)
is pointed, and

⊥∆,AΓ = λΓ.⊥∆×Γ,A.

Proof
By fiat, λΓ.(−) : V (∆×Γ,A)

∼=−→ V
(
∆,AΓ

)
is a continuous isomorphism. As ⊥∆×Γ,A

is the least element of V (∆×Γ,A), λΓ.⊥∆×Γ,A is the least element of V
(
∆,AΓ

)
. Thus,

V
(
∆,AΓ

)
is pointed. �

4.2 ωCPO-enriched CBPV models

We turn to incorporate recursion into CBPV. The following notion appears in

Levy’s work [Lev01, Lev04]:

Definition 4.2. Let T be a strong monad over a cartesian category V , let B, B′ in

Ob (V T
) be two algebras, and let Γ ∈ Ob (V ) be any V -object. A T -algebra homo-

morphism from B to B′ over Γ is a morphism h : Γ×|B| → |B′|, satisfying:

Γ×T |B| T
∣∣B′∣∣

∣∣B′∣∣Γ×|B|

T (Γ×|B|)str

Γ×B⟦−⟧

T h

B′ ⟦−⟧

h

=

We will make use of the following properties of algebras:

Lemma 4.3. Let T be a strong monad over a cartesian category V , and B, C be any

T -algebras.
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1. If h : B→C is a T -algebra homomorphism in the usual sense, then, for all Γ, the

following morphism is an algebra homomorphism over Γ:

Γ×|B| π2−→ |B| h−→ |C|

2. If the exponential |C|Γ exists in V , then there is a T -algebra structure over |C|Γ,

denoted by CΓ, given by:

λΓ.

(
T (|C|Γ)×Γ

costr−−→ T (|C|×Γ)
T eval−−−→ T |C| C⟦−⟧−−−→ |C|

)
In this case, every algebra homomorphism over Γ, h : Γ×|B| → |C|, gives rise

to a (unique) algebra homomorphism from B to CΓ:

λΓ.
(
|B|×Γ

swap−−−→ Γ×|B| h−→ |C|
)

3. For all morphisms f : Γ×A→ |B|, the lifting f † : Γ×T A→ |B| is the unique

T -algebra homomorphism from FA to B over Γ, satisfying

Γ×A

Γ×TA

|B|
f

Γ×η
f †

=

Proof
The following diagram proves part 1:

Γ×T |B| T |C|

|C|Γ×|B|

T (Γ×|B|) T |B|

|B|

str T π2

π2

T h

C ⟦−⟧Γ×B⟦−⟧

π2 h

B⟦−⟧

str proj.
=

π2 naturality
=

algebra
homomorphism

=

In part 2, the fact that CΓ is a T -algebra is well-known, and follows by routine cal-

culation. The fact that λΓ.(h◦ swap) is a homomorphism follows, by the exponential

universal property, from the following diagram:
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(T |B|)×Γ (T (|C|)Γ)×Γ

|C||B|×Γ

T (|B|×Γ) T (|C|Γ×Γ)

T |C|T (Γ×|B|)

Γ×T |B|

Γ×|B|

|C|Γ×Γ

|C|Γ×Γ

T (λΓ.(h◦ swap))×Γ

CΓ ⟦−⟧×Γ

eval

B⟦−⟧×Γ

(λΓ.(h◦ swap) eval

swap

costr

T swap

T (λΓ.(h◦ swap)×Γ)

str

T h

T eval

C ⟦−⟧
swap

h

Γ×B⟦−⟧

costr

swap naturality
=

costr naturality
=

costr def.
=

homomorphism over Γ

=

T (exponential
universality)

=

exponential universality
=

exponential
universality

=

The uniqueness proof is also straightforward, but we omit it, as we will not make use

of it in the sequel.

Finally, the following diagram proves part 3:

Γ×T 2A T |B|

|B|Γ×TA

T 2(Γ×A) T 2 |B|

T |B|T (Γ×A)

T (Γ×TA)str T f †

B⟦−⟧Γ×µ

f †

T str

T 2 f

µ

T f
str

µ

T B⟦−⟧

B⟦−⟧

str multiplication
=

µ naturality
=

T ( f † def.)
=

f † def.
=

T -algebra
=

Straightforward calculation shows that
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Γ×A

Γ×TA

|B|
f

Γ×η
f †

=

and that f † is the unique such homomorphism, but we omit these calculations as we

will not make use of them in the sequel. �

Definition 2.11ω. An ωCPO-enriched (Eilenberg-Moore) CBPV model is a pair
〈
V ,T

〉
where:

• V is an ωCPO-enriched distributive category;

• T is an ωCPO-enriched strong monad over V ; and

• V has all ωCPO-enriched exponentials |B|A of all T -algebra carriers |B| by all

objects A in V .

A recursion CBPV model is an ωCPO-enriched model
〈
V ,T

〉
for which:

• for all objects Γ ∈ Ob (V ) and algebras B ∈ Ob
(

V T
)

, V (Γ, |B|) is pointed;

and,

• for all f : ∆→ Γ in V and homomorphisms h from B to C over Γ:

⊥Γ,B ◦ f =⊥∆,B h◦ 〈Γ,⊥Γ,B〉=⊥Γ,C

Example 4-1. Recall the collection of monads T− for exceptions and terminal I/O

from Example 3-5, and let ε ⊆ {raise, input,output} be any effect set. If W is an ω-

cpo, then Tε |W | inherits an ω-cpo structure, by inductively taking the smallest partial

order satisfying:

• if w6 w′ in W then w6TεW w′;

• if input ∈ ε, and for all c ∈ Char, tc 6TεW t ′c, then〈
I,〈tc〉c∈Char

〉
6TεW

〈
I,
〈
t ′c
〉

c∈Char

〉
• if output ∈ ε, c ∈ Char, and t 6 t ′, then

〈O,c, t〉6TεW
〈
O,c, t ′

〉
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As trees, two elements of TεW are comparable if they have the same shape, and

corresponding leaves are compatibly comparable in W . Thus, an ω-chain of such trees

is a sequence of trees with the same shape, whose corresponding leaves form ω-chains.

Hence, the suprema of such an ω-chain is the same tree, with the suprema of each leaf

ω-chain in its corresponding leaf.

The monadic structure of Tε is ωCPO-enriched, and 〈ωCPO,Tε〉 is an ωCPO-

enriched CBPV model. If W is not pointed, then clearly TεW is not pointed. Therefore

this model is not a recursion model.

Example 4-2. The lifting monad T⊥ is given by

|T⊥W |B {⊥}+ |W | w6 w′ ⇐⇒ w = ι1⊥, or

T⊥ f B {⊥}+ f w = ι2ŵ,w′ = ι2ŵ′, and ŵ6W ŵ′

η : w 7→ ι2w µ : ι1 ⊥ 7→ ι1⊥
strW ,V : 〈w, ι1⊥〉 7→ ι1⊥ µ : ι2ι1⊥ 7→ ι1⊥
strW ,V : 〈w, ι2w〉 7→ ι2 〈w,v〉 µ : ι2ι2w 7→ ι2w

Note that a monad T is strict if and only if there is a monad morphism T⊥→ T .

The morphism map

T⊥ = {⊥}+−= [ι1, ι2 ◦−]

is continuous, hence T⊥ is an ωCPO-enriched strong monad. Thus 〈ωCPO,T⊥〉 is an

ωCPO-enriched CBPV model.

The T⊥-algebras are precisely the pointed ω-cpos. Indeed, let B be any T⊥-algebra.

By fiat, ι1⊥ is the least element of T⊥ |B|. Thus, for all b ∈ ||W || :

W ⟦ι1⊥⟧

W ⟦−⟧-continuity

↓
6W ⟦ι2w⟧=W ⟦η(w)⟧

algebra

↓
= w

We have shown that every T⊥-algebra is pointed. Therefore, γ 7→W ⟦ι1⊥⟧ is the least

element of ωCPO(Γ, |W |). Conversely, if W is pointed with a least element ⊥W then

the algebra structure over W is given by

W ⟦w⟧B
⊥W w = ι1⊥

w′ w = ι2w

If f : ∆→ Γ, then ⊥Γ,B( f (δ)) = W ⟦ι1⊥⟧ = ⊥(δ), hence ⊥◦ f = ⊥. Let h be a

homomorphism from |V | to |W | over Γ. By the definition of homomorphisms over Γ,

we have:
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〈γ,V ⟦ι1⊥⟧〉 ι1⊥

W ⟦ι1⊥⟧〈γ,V ⟦ι1⊥⟧〉

ι1⊥

h(γ,V ⟦ι1⊥⟧)

str

Γ×V ⟦−⟧

T h

W ⟦−⟧

h

Thus, h◦ 〈Γ,⊥〉=⊥. In conclusion, we have a recursion CBPV model.

In light of Lemma 4.3, we can replace the condition on homomorphisms over ob-

jects with homomorphisms in the usual sense:

Theorem 4.4. Let
〈
V ,T

〉
be an ωCPO-enriched CBPV model. It is a recursion model

if and only if:

• for all objects Γ ∈ Ob (V ) and algebras B ∈ Ob (V T
), V (Γ, |B|) is pointed;

and

• for all f : ∆→ Γ and homomorphisms h from B to C:

⊥Γ,B ◦ f =⊥∆,B h◦⊥Γ,B =⊥Γ,C

Proof

We show that the two homomorphism conditions are equivalent:

=⇒ Take any object Γ ∈ Ob (V ) and homomorphism h from B to C in the usual

sense. By Lemma 4.3(1), h◦π2 is a homomorphism from B to C over Γ, hence:

⊥= (h◦π2)◦ 〈Γ,⊥〉= h◦⊥

⇐= Take any object Γ ∈ Ob (V ) and homomorphism h from B to C over Γ. As〈
V ,T

〉
is an ωCPO-enriched CBPV, the ωCPO-enriched exponential |C|Γ exists

in V . By Lemma 4.3(2), λΓ.(h◦ swap) is an algebra homomorphism from B to

CΓ, therefore:

(λΓ.(h◦ swap))◦⊥Γ,B =⊥
Γ,|C|Γ

Lemma 4.1

↓
= λΓ.⊥Γ×Γ,|C| : 1→ |C|Γ (∗)

The commutativity of the following diagram completes the proof:
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Γ

Γ×|B| |C|

|B|×Γ

Γ×Γ

|C|Γ×Γ

〈Γ,⊥〉

δ

⊥×Γ

λΓ.(h◦ swap)×Γ

(λΓ.⊥)×Γ

eval

h

swap

⊥

⊥
(∗)×Γ

=

exponential universality
=

products
=

exponential
universality

=

assumption
=

�

Example 4-3. We present a recursion model for exception raising computations.

Let T{raise} be the monad for exception raising from Example 4-1, and T⊥ the lifting

monad from Example 4-4. Define T B T⊥ ◦T{raise}. Let W be any ωCPO, then

|TW |= {⊥}+Str+ |W |

and the ω-cpo structure is given by x6 y if and only if either:

(⊥). x =⊥; or

(raise). x = y = 〈R,s〉, s ∈ Str; or

(W ) x = w ∈W , y = v ∈W and w6 v.

and suprema are given by:

∨
xn =


⊥ for all n, xn =⊥

〈R,s〉 for some n0, for all n> n0, xn = 〈R,s〉∨
wn for some n0, for all n> n0, xn = wn ∈W

Consider T{raise} ◦ T⊥W . Its carrier set is also {⊥}+ Str+ |W |, and the ω-cpo

structure is given by x6 y iff either:

(raise). x = y = 〈R,s〉, s ∈ Str; or

(⊥′). x =⊥, y = w ∈W ; or
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(W ). x = w ∈W , y = v ∈W and w6 v.

and least upper bounds given by:

∨
xn =


〈R,s〉 for some n0, for all n> n0, xn = 〈R,s〉, for some n0

⊥ for all n, xn =⊥∨
wn for some n0, for all n> n0, xn = wn ∈W

Therefore, the map λx.x from T{raise} ◦ T⊥W to T⊥ ◦ T{raise}W is continuous. Direct

calculation shows it yields a distributive law of T⊥ over T{raise}.

Thus, T has a strong monad structure, given by the inclusion η : W ⊆ TW and

µ :⊥ 7→ ⊥ str : 〈γ,⊥〉 7→ ⊥
µ : 〈R,s〉 7→ 〈R,s〉 str : 〈γ,〈R,s〉〉 7→ 〈R,s〉
µ : x 7→ x str : 〈γ,w〉 7→ 〈γ,w〉

If B is any T -algebra, then |B| is pointed, with B⟦⊥⟧ the least element. Therefore,

ωCPO(Γ, |B|) is pointed with λγ.⊥ the least element.

Given any function f : ∆→ Γ and T -algebra homomorphism h : B→C, we have:

(h◦ (λγ.⊥)◦ f )(δ) = h(⊥) = h(B⟦⊥⟧)
T -algebra homomorphism

↓
=C ⟦(T h)(⊥)⟧=C ⟦⊥⟧

hence h◦⊥◦ f =⊥, and, by Theorem 4.4, 〈ωCPO,T 〉 is a recursion model.

Finally, we define our category of CBPV models:

Definition 2.12ω. Let V be an ωCPO-enriched distributive category. The category

ωCPO-AdjV has as objects CBPV models with F aU : C → V , and as morphisms
(F1 aU1)→ (F2 aU2) strong monad morphisms m : T1→ T2.

C 1

V

C 2

F1

U1

a

F2

U2

a

T1 T2m
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4.3 ωCPO-enriched algebraic operations

In the ωCPO-enriched case, enriched algebraic operations coincide with the

ordinary ones:

Definition 2.1ω (enriched algebraic operations). Let F a U : C → V be an ωCPO-

enriched resolution of an ωCPO-enriched strong monad T = UF, and A,P be V ob-

jects such that all ωCPO-enriched exponentials of objects UB by A,P exist. An ωCPO-

enriched algebraic operation of type A〈P〉 for F aU is an an algebraic operation for

the underlying ordinary resolution F aU.

Similarly, the definition of an enriched monad morphism mapping an enriched op-

eration to an enriched operation coincides with its ordinary counterpart.

Example 4-4. Consider the lifting monad T⊥ from Example 4-4. Given any T⊥-algebra

B, define:
⊥B : B0→ B1

⊥B : ? 7→ λ?.⊥

To see that⊥ is an algebraic operation of type⊥ : 0, consider any f : Γ×W → |B|. By

Lemma 4.3(3), f † : Γ×T⊥W → |B| is a homomorphism over Γ. As 〈ωCPO,T⊥〉 is a

recursion model, we deduce that f †(γ,⊥) =⊥ for every γ ∈ Γ. Therefore:

〈γ,?〉

〈γ,λ?.⊥F⊥W 〉 ⊥

?

λ?. f †(γ,⊥)

Γ×⊥FX

f ‡0

f ‡1

⊥B

Hence ⊥ : 0 is an ωCPO-enriched algebraic operation for T⊥.

The argument in the last example can be generalised to arbitrary recursion models:

Lemma 4.5. Let
〈
V ,T

〉
be a recursion model. Then there is an algebraic operation

diverge : 0 for the Eilberg-Moore resolution of T , given by:

divergeBB λ1.⊥|B|0×1 : |B|0→ |B|1

The corresponding generic effect is then given by

gendivergeB⊥1,F0 : 1→ T0
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Proof

As
〈
V ,T

〉
is a recursion model, V (1,T0) is pointed, hence the generic operation

genB⊥1,F0 : 1→ T0

is well-defined. Define diverge B opgen and obtain, by Theorem 2.4, an algebraic

operation diverge : 0 satisfying: gendiverge =⊥. Note that the enriched model structure

guarantees diverge is an enriched operation.

Let B be any algebra. We have:

|B|0×1

|B|0×1

|B|0×T0

|B|0

|B|

|B|×gen ⊥

eval†

|B|×⊥

〈|B|0, !〉

〈|B|0,⊥〉

〈|B|0,⊥◦ !〉

π1

⊥

gen def.
=

recursion model
=

recursion model,
Lemma 4.3(3)

=

recursion model
=

products
=

terminality
=

Thus, by Theorem 2.4, divergeB = λ1.⊥|B|0×1, and we are done. �

Example 4-5. Recall the monads for exceptions and terminal I/O from Example 4-1.

Using Theorem 2.4 we obtain enriched algebraic operations for Tε:

• if raise ∈ ε:
raise : 0

raiseB : ? 7→ λs.B⟦〈R,s〉⟧

• if input ∈ ε:

input : Char

inputB : λc.bc 7→ λ?.B⟦〈I,〈bc〉c∈Char

〉⟧
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• if output ∈ ε:

output : 1〈Char〉
outputB : λ?.b 7→ λc.B⟦〈O,c,b〉⟧

For each ε⊆ ε′, the inclusions are continuous.

The following definition ties all the previous concepts together:

Definition 2.13ω. Let Π be a set. An ωCPO-enriched CBPV Π-model is a quadruple

〈
V , type,T,O ⟦−⟧〉

where:

• V is an ωCPO-enriched distributive category, called the value category;

• type is a type assignment for Π in V ;

•
〈
V ,T

〉
is an ωCPO-enriched CBPV model; and

• O ⟦−⟧ assigns to every op : A〈P〉 in Π an ωCPO-enriched algebraic operation

O ⟦op⟧ : A〈P〉 for T .

We say that an ωCPO-enriched CBPV Π-model
〈
V , type,T,O ⟦−⟧〉 is a recursion

CBPV Π-model if Π has a distinguished effect operation diverge such that:

•
〈
V ,T

〉
is a CBPV recursion model; and

• O ⟦diverge⟧ is the divergence operation (see Lemma 4.5).

Example 4-6. The monads Tε for exceptions and terminal I/O from Example 4-1 give

rise to ωCPO-enriched ε-CBPV models, as 〈ωCPO,Tε〉 is an enriched CBPV model

(see Example 4-1), and the operations are interpreted as the enriched operations from

Example 4-5. This model is not a recursion model.

Example 4-7. The lifting monad T⊥ gives rise to a recursion {diverge}-CBPV model,

as 〈ωCPO,T⊥〉 is a recursion CBPV model (see Example 4-4), and we interpret the

distinguished (and only) diverge operation as the divergence algebraic operation.
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4.4 Recursion models

We are finally ready to incorporate recursion into our models for effect analy-

sis:

Definition 2.10ω. Let Σ be a recursion hierarchy and V an ωCPO-enriched distribu-

tive category. A recursion Σ-type assignment in V is a Σ-type assignment in the un-

derlying ordinary category of V , such that diverge : 0, i.e., diverge : 0〈1〉.

Example 4-8. A recursion type assignment in ωCPO for non-determinism is:

choose : 2 diverge : 0

We are now ready to define recursion Σ-models:

Definition 3.2ω. Let Σ be a recursion hierarchy. A recursion Σ-model is a quadruple〈
V , type,P,O− ⟦−⟧

〉
where:

• V is an ωCPO-enriched distributive category, called the value category;

• type is a recursion Σ-type assignment in V ;

• P is a functor E → ωCPO-AdjV , called the model hierarchy, such that, for

all ε ∈ E with diverge ∈ ε, Pε is a recursion model;

• O− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε, op : A〈P〉 an (enriched) algebraic

operation Oε ⟦op⟧ of type A〈P〉 for Pε, such that, for all ε ∈ E with diverge ∈ ε,

Oε ⟦diverge⟧ is the divergence operation (see Lemma 4.5);

and P(ε⊆ ε′) preserves the operations;

Example 4-9. We construct a domain-theoretic model for exceptions, terminal I/O,

and recursion.

To keep this example simple, we choose the recursion hierarchy by setting Π to be

{raise, input,output,diverge}, and

E B P ({raise, input,output})∪P ({diverge, raise})

We will extend this model to the full powerset hierarchy in Section 4.5 (Example 3-

5ω).
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Take Char and Str be the discrete ω-cpos whose carriers are the corresponding

sets Char and Str from Example 3-5.

The recursion model
〈
ωCPO, type,P,O− ⟦−⟧

〉
is given as follows.

The type assignment is given by

raise : /0〈Str〉 input : Char output : 1〈Char〉 diverge : 0

Recall the enriched models 〈ωCPO,T−〉 for exceptions and terminal I/O from Ex-

ample 4-1, the recursion model
〈
ωCPO,T{diverge}

〉
from Example 4-4 given by the

lifting monad, and the recursion model
〈
ωCPO,T{raise,diverge}

〉
for exceptions from

Example 4-3. Note that, for every ε⊆ ε′ in E , we have a continuous inclusion

mε⊆ε′ : Tε ⊆ Tε′

Thus, by choosing Pε to be 〈ωCPO,Tε〉 and P(ε⊆ ε′) to be mε⊆ε′ , we obtain a functor

from E to ωCPO-AdjωCPO, and in the cases where diverge ∈ ε, namely {diverge}
and {raise,diverge}, we have a recursion model.

For every ε ∈ E , we define:

if raise ∈ ε, define: Oε ⟦raise⟧B : ? 7→ λs.B⟦〈R,s〉⟧
if input ∈ ε, define: Oε ⟦input⟧B : λc.bc 7→ λ?.B⟦〈I,〈bc〉c∈Char

〉⟧
if output ∈ ε, define: Oε ⟦output⟧B : λ?.b 7→ λc.B⟦〈O,c,b〉⟧
if diverge ∈ ε, define: Oε ⟦diverge⟧B : ? 7→ λs.B⟦⊥⟧

Note how Oε ⟦diverge⟧ is the operation from Lemma 4.5, that Oε ⟦raise⟧ does indeed

define an algebraic operation for T{raise,diverge}, and that the inclusions Pε⊆ ε′ do in-

deed preserve the operations.

Thus
〈
V , type,P,O− ⟦−⟧

〉
is a recursion Σ-model.

As in Section 2.3, we define models in terms of generic effects:

Definition 3.2*ω. Let Σ be a hierarchy. A generic recursion Σ-model is a quadruple〈
V , type,P,G− ⟦−⟧

〉
where:

• V is an ωCPO-enriched distributive category, called the value category;

• type is a recursion Σ-type assignment in V ;
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• P is a functor E → ωCPO-AdjV , called the model hierarchy, such that, for

all ε ∈ E with diverge ∈ ε, Pε is a recursion model;

• G− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε, op : A〈P〉 a generic effect Gε ⟦op⟧
of type A〈P〉 for Pε, such that, for all ε ∈ E with diverge ∈ ε, Gε ⟦diverge⟧ is the

generic divergence effect (see Lemma 4.5);

and P(ε⊆ ε′) preserves the effects.

As ωCPO-enrichment for algebraic operations, generic effects, and their preser-

vation coincides with the preservation of their ordinary counterparts, we obtain the

following theorem:

Theorem 3.3ω. Let Σ be a recursion hierarchy. Recursion Σ-models〈
V , type,P,O− ⟦−⟧

〉
and generic recursion Σ-models 〈

V , type,P,G− ⟦−⟧
〉

are in bijection given via genOε⟦op⟧ = Gε ⟦op⟧.

Finally, recursion models are a subclass of our categorical models:

Theorem 4.6. Let 〈Σ,diverge〉 be a recursion hierarchy. Every recursion 〈Σ,diverge〉-
model can be seen as a Σ-model, by forgetting the enriched structure and non-distin-

guishing diverge.

4.5 Domain-theoretic models

We now specialise to the category of ω-cpos. The following definition charac-

terises all categorical recursion models of this category:

Definition 2.10 (revisited)ω. Let Σ be a recursion hierarchy. A domain-theoretic recursion

type assignment for Σ is an assignment type(op) = 〈A,P〉 of a pair of ω-cpos to each

op ∈Π, such that diverge : 0.

Example 4-8 (revisited). A recursion type assignment in ωCPO for non-determinism

is:

choose : 2 diverge : 0
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Definition 3.2* (revisited)ω. Let Σ be a recursion hierarchy. A domain-theoretic recursion

Σ-model is a quadruple

〈type,T−,m−,G− ⟦−⟧〉
where:

• type is a domain-theoretic recursion type assignment for Σ;

• T− assigns to each ε in E a locally continuous monad Tε, such that, for all ε ∈ E
with diverge ∈ ε, Tε is strict;

• m− assigns to each ε⊆ ε′ in E a monad morphism mε⊆ε′ : Tε→ Tε′;

• G− ⟦−⟧ assigns to each ε ∈ E , and op : A〈P〉 in ε a continuous generic effect

Gε ⟦op⟧ : P→ TεA, such that Gε ⟦diverge⟧ : ? 7→ ⊥;

• m− is functorial;

and m− preserves the generic effects.

Example 3-5ω. We construct a domain-theoretic model for exceptions, terminal I/O,

and recursion.

We choose the hierarchy by Π B {raise, input,output,diverge}, and set E to be

P (Π).

Take Char and Str be the discrete ω-cpos whose carriers are the corresponding

sets Char and Str from Example 3-5.

The recursion model 〈type,T−,m−,G− ⟦−⟧〉 is given as follows.

The type assignment is given by

raise : /0〈Str〉 input : Char output : 1〈Char〉 diverge : 0

First, we define Tε for ε ⊆ Π \ {diverge}. Let W be any ω-cpo, and take any

ε ⊆ {raise, input,output}. We take carrier set |TW | to be |Tε| |W |, where |Tε| is the

set-theoretic monad for exceptions and terminal I/O from Example 3-5.

The set |Tε| |W | inductively inherits an ω-cpo structure from W :

• if w6 w′ in W then w6 w′ in Tε;

• for all s ∈ Str, 〈R,s〉6 〈R,s〉;

• if input ∈ ε, and for all c ∈ Char, tc 6 t ′c, then〈
I,〈tc〉c∈Char

〉
6
〈

I,
〈
t ′c
〉

c∈Char

〉
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• if output ∈ ε, c ∈ Char, and t 6 t ′, then

〈O,c, t〉6
〈
O,c, t ′

〉
As trees, two elements of TεW are comparable if they have the same shape, and

corresponding leaves are compatibly comparable in W . Thus, an ω-chain of such trees

is a sequence of trees with the same shape, whose corresponding leaves form ω-chains.

Thus, the suprema of such an ω-chain is the same tree, with the suprema of each such

ω-chain in that leaf. Inductive calculations show that the unit and multiplication of |Tε|
are continuous, hence define a monad Tε over ωCPO. An additional calculation shows

Tε is locally continuous.

Next, we define Tε for ε with diverge ∈ ε. This time, we proceed co-inductively.

Let W be any ω-cpo. We define |TεW | as the largest set X such that if t ∈ X then

either:

(⊥) t =⊥; or

(W) t ∈W ; or

when raise ∈ ε: (raise) t = raise; or

when input ∈ ε: (input) t =
〈
I,〈tc〉c∈Char

〉
, where, for all c ∈ Char, tc ∈ X ; or

when output ∈ ε: (output) t = 〈O,c, t ′〉, where t ′ ∈ X .

Thus |TεW | is the set of finite and infinite trees whose nodes are labeled by R, I,

and O, depending on whether raise, input, and output are in ε, and whose leaves are

either the bottom element ⊥, or a W element. In co-algebraic terms, |TεW | is the final

co-algebra for the following polynomial functor:

{⊥}+ |W |+Str+(−)Char +Char× (−)

where each of the last three summands is included depending on whether raise, input,

and output are in ε.

As any final co-algebra, |TεW | is equipped with a co-induction principle. A bisim-

ulation is a binary relation R over |TεW | for which 〈t,s〉 ∈ R implies:

(⊥bis) t = s =⊥; or

(Wbis) t = s = w, w ∈W ; or
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when raise ∈ ε: (raisebis) t = s = 〈R,s〉, s ∈ Str; or

when input ∈ ε: (inputbis) t =
〈
I,〈tc〉c∈Char

〉
, s =

〈
I,〈tc〉c∈Char

〉
, where, for all c in

Char, 〈tc,sc〉 ∈ R ; or

when output ∈ ε: (outputbis) t = 〈O,c, t ′〉, s = 〈O,c,s′〉, where 〈t ′,s′〉 ∈ R .

The co-induction principle states that all bisimulations are subsets of the equality

relation on |TεW |, i.e., if R is a bisimulation, and 〈t,s〉 ∈ R then t = s.

The partial order structure on |TεW | is also defined co-inductively. We define 6 as

the largest relation R over |TεW | for which 〈t,s〉 ∈ R implies either:

(⊥6) t =⊥; or

(W6) t = w, s = v, w,v ∈W , w6 v; or

when raise ∈ ε: (raise6) t = s = 〈R,s〉, s ∈ Str; or

when input ∈ ε: (input6) t =
〈
I,〈tc〉c∈Char

〉
, s =

〈
I,〈sc〉c∈Char

〉
where, for all c ∈

Char, 〈tc,sc〉 ∈ R ; or

when output ∈ ε: (output6) t = 〈O,c, t ′〉, s = 〈O,c,s′〉 where 〈t ′,s′〉 ∈ R .

Informally, we have t 6 s when s can be obtained from t by substituting the leaves

w with larger leaves w′ > w, and by substituting ⊥ with any other term. Using this

informal description, the order is ω-complete: the least upper bound of an ω-chain is

obtained by taking the least upper bounds on the leaves from W , and adding infinite

branches where the shape of the term does not stabilise.

We establish that 6 equips |TεW | with an ω-cpo structure more formally.

Proposition. The relation 6 is a partial order.

Proof

Case analyses show that the diagonal relations ∆ B {〈t, t〉|t ∈ |TεW |} and 62 both

satisfy the condition in 6’s definition, hence ∆ ⊆ 6 and 62 ⊆ 6, ergo 6 is reflexive

and transitive. Case analysis shows that 6 ∩> is a bisimulation, hence (6 ∩>)⊆ =,

ergo 6 is anti-symmetric. �
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Given a poset P, denote by ωChains(P) its set of ascending ω-chains. Note we may

conduct the following case analysis on any ω-chain 〈tn〉n∈N in ωChains(|T |
ε
W ):

(⊥∨) for all n, t = ⊥; otherwise, there is a least n0 for which

tn0 6=⊥, and either:

(W∨) tn0 = w; then, for all n> n0, tn > wn0 , hence tn = wn ∈W ,

and wn is an ω-chain in W ; or

when raise ∈ ε: (raise∨) tn0 = 〈R,s〉; then, as in the previous case, for all n > n0,

tn = 〈R,s〉; or

when input ∈ ε: (input∨) tn0 =
〈

I,
〈
tc
n0

〉
c∈Char

〉
; then, for all n> n0,

tn =
〈
I,〈tc

n〉c∈Char

〉
and, for all c ∈ Char, 〈tc

n〉n>n0
is an ω-chain; or

when output ∈ ε: (output∨) tn0 =
〈
O,c, t ′n0

〉
; then, for all n > n0, tn = 〈O,c, t ′n〉, and

〈t ′n〉n>n0
is an ω-chain.

Using this case analysis, finality of |TεW | implies there exists a unique function∨
: ωChains(|TεW |)→|TεW | satisfying the following conditions. For all 〈tn〉n∈N, using

the previous notation:

(⊥∨)
∨
〈tn〉 =⊥;

(W∨)
∨
〈tn〉 =

∨
n>n0

wn;

when raise ∈ ε: (raise∨)
∨
〈tn〉 = 〈R,s〉;

when input ∈ ε: (input∨)
∨
〈tn〉 =

〈
I,
〈∨

n>n0
tc
n
〉

c∈Char

〉
;

when output ∈ ε: (output∨)
∨
〈tn〉 =

〈
O,c,

∨
n>n0

t ′n
〉
.

More explicitly, the above case analysis gives ωChains(|TεW |) a co-algebra struc-

ture, and finality yields
∨

.

Proposition. For all ω-chains 〈tn〉 in ωChains(|TεW |),
∨

n tn is the least upper bound

of 〈tn〉.
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Proof
Define the following two relations:

R boundB
{
〈tm,

∨
n

tn〉
∣∣〈tn〉n∈N ∈ ωChains(|TεW |),m ∈ N

}
R leastB

{
〈
∨
n

tn,s〉
∣∣〈tn〉n∈N ∈ ωChains(|TεW |), for all n ∈ N, s> tn

}
Case analyses on 〈tn〉 show that R bound and R least satisfy the condition in the definition

of 6, hence R bound ⊆ 6, hence
∨

n tn is an upper bound of 〈tn〉, but then R least ⊆ 6
shows

∨
n tn is the least upper bound. �

Thus, TεW is an ω-cpo.

We define the morphism map structure of Tε by mapping each f : V →W to the the

unique function Tε f : TεV → TεW satisfying:

(⊥mor) Tε f (t) =⊥;

(Wmor) Tε f (t) = f (w);

when raise ∈ ε: (raisemor) Tε f (t) = 〈R,s〉;

when input ∈ ε: (inputmor) Tε f (t) =
〈
I,〈Tε f (tc)〉c∈Char

〉
;

when output ∈ ε: (outputmor) Tε f (t) = 〈O,c,Tε f (t ′)〉.

Proposition. Tε is a strict functor over ωCPO.

Proof
Case analyses on t show that the following two relations are bisimulations:

{〈t,Tεid(t)〉|t ∈ |TεW |} , {〈Tε( f ◦g)(t),(Tε f ◦Tεg)(t)〉|t ∈ |TεW |}

Thus, Tε is a functor. Case analysis on t shows, by 6’s definition, that if f 6 g, for any

f ,g : V →W , then

{〈Tε f (t),Tεg(t)〉|t ∈ |TεW |} ⊆ 6

Thus, Tε is locally monotone. Note that, by the definitions of 6 and
∨

, the maps

〈tc〉 7→ 〈I,〈tc〉〉 and t 7→ 〈O,c, t〉 are continuous. For any ω-chain of functions 〈 fn〉, we

use this continuity within further case analysis on t to show that the following relation

is a bisimulation:

{〈Tε(
∨
n

fn(t)),
∨
n
(Tε fn(t))〉|t ∈ |TεW |}

Thus, Tε is a locally continuous functor.

Note Tε is pointed, with ⊥ ∈ TεW is the least element, and by fiat Tε f preserves ⊥.

Thus Tε is strict. �
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Next, we equip Tε with a monad structure. The unit is given by the inclusion

W ⊆ Tε. The definition of the multiplication map µε(t) is given co-inductively, by case

analysis on any t ∈ T 2
ε W :

(⊥) ⊥;

(W) s, where t = s;

when raise ∈ ε: (raise) 〈R,s〉;

when input ∈ ε: (input) 〈I,〈µε(tc)〉〉;

when output ∈ ε: (output)
〈
O,c,µε(t ′)

〉
.

Note that some care is needed in the case (W ), and it requires further case analysis

on s to properly define the required co-algebra structure.

Straightforward calculations show that these maps are indeed continuous natural

transformations that satisfy the monad laws.

To summarise, we defined the monads T− required in the definition of domain-

theoretic recursion models.

Note that if diverge ∈ ε⊆ ε′, then, by definition, TεW ⊆ Tε′W , and the inclusion is

continuous. Also, if diverge /∈ ε, then TεW is the subset of Tε∪{diverge}W that includes

only the finite trees containing no ⊥. In this case, the inclusion TεW ⊆ Tε∪{diverge}W is

continuous. In both cases, the inclusions in fact form monad morphisms. Therefore,

for all ε⊆ ε′ ∈ E , we choose mε⊆ε′ as the inclusions, and obtain a functorial family of

(continuous) monad morphisms.

We choose the following generic effects, whenever they belong to the effect set ε:

Gε ⟦diverge⟧ : 1→ Tε0 Gε ⟦raise⟧ : Str → Tε0

Gε ⟦diverge⟧ : ? 7→ ⊥ Gε ⟦raise⟧ : s → 〈R,s〉

Gε ⟦input⟧ : 1 7→ TεChar Gε ⟦output⟧ : Char 7→ Tε1

Gε ⟦input⟧ : ? 7→
〈
I,〈c〉c∈Char

〉
Gε ⟦output⟧ : c 7→ 〈O,c,?〉

As the definitions of the generic effects are uniform in ε, they are preserves by the

inclusions.

In summary, 〈type,T−,m−,G− ⟦−⟧〉 is a domain-theoretic recursion Σ-model.
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Note that in the last example our treatment was only semi-uniform. It was uniform

for all ε without diverge, and separately uniform for all ε containing diverge. However,

when moving between the two cases, some care was required. Also, the two cases

were different in nature: when diverge was not present, the treatment was completely

inductive. With diverge present, the natural models become co-inductive. Compare

this account to Example 4-1, in which our account of exceptions and divergence was

also inductive. This phenomena is a well-known consequence of the limit-colimit

coincidence [Sco72, PS82]. In particular, despite their co-inductive appearance, the

models can still be viewed as initial algebras. The conservative restriction construction

we will present in Chapter 7 construct these hierarchical models for I/O, Exception,

recursion, and global state in a uniform manner.

We conclude this section by establishing that domain-theoretic recursion mod-

els indeed characterise all recursion models over ωCPO.

Lemma 4.7. An ωCPO-enriched CBPV model 〈ωCPO,T 〉 is a recursion model if and

only if T is strict.

Proof
First, assume the model is a recursion model. For any ω-cpo W , TW is pointed, as

TW ∼= ωCPO(1,TW ) via w 7→ λ?.w. Given any f : V →W , T f : TV → TW is a

homomorphism, hence:

⊥= (λ?.⊥)(?)

Theorem 4.4

↓
= (T f )◦ (λ?.⊥)(?) = (T f )(⊥)

Thus T is strict.

Conversely, assume T is strict. Let B be any T -algebra. As T is pointed, |T | has a

least element ⊥. For any b ∈ |B|, we have ⊥6 η(b). Therefore:

B⟦⊥⟧

continuity

↓
6 B⟦η(b)⟧

T -algebra

↓
= b

Hence |B| is pointed with B⟦⊥⟧ the least element. By Lemma 4.1, for all Γ∈Ob (ωCPO),

ωCPO(Γ, |B|) is pointed, with λγ.⊥ the least element.

If f : ∆→ Γ is any function and h : B→C any T -algebra homomorphism, we have:

(h◦ (λγ.⊥)◦ f )(δ) = h(B⟦bot⟧)
T -algebra homomorphism

↓
=C ⟦T h(⊥)⟧

T is strict

↓
=C ⟦⊥⟧=⊥

Hence, by Theorem 4.4, 〈ωCPO,T 〉 is a recursion model. �
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Proposition 3.7ω. Let Σ be a recursion hierarchy. Domain-theoretic recursion Σ-

models 〈type,T−,m−,G− ⟦−⟧〉 and (categorical) recursion Σ-models 〈Set, type,P,G− ⟦−⟧〉
are in bijection given via

• for all ε ∈ E , Pε = Tε; and

• for all ε⊆ ε′ in E , P(ε⊆ ε′) = mε⊆ε′ .

Proof
From Kock’s work [Koc72] follows that all locally continuous monads over ωCPO
have a unique continuous strength. By Lemma 4.7, the conditions on recursion models

and strict monads are equivalent. The rest of the proof is analogous to that of Proposi-

tion 3.7. �

To summarise, we defined recursion effect hierarchies, recursion models, and des-

ignated the specified divergence effect.



Chapter 5

Locally presentable categories

This presentation of my ploy

—No Doubt

This chapter is a brief interlude, in which we define locally presentable cat-

egories. The locally presentable categories include Set and ωCPO, our cat-

egories of interest. These categories form a central ingredient of Power’s enriched

Lawvere theories, as they ease the construction of limits and adjoint functors, which

Power needs in abundance. This introduction is by no means exhaustive, we refer to

Adámek and Rosický [AR94] for a full account of locally presentable categories. This

chapter contains mostly background and folklore material, with the exception of Sec-

tion 5.4 which contains a correction of a slight mistake in the literature, complicating

our account.

In Section 5.1, we begin by defining directed colimits and their set-theoretic and

domain-theoretic characterisations. Next, in Section 5.2, we define the central notion

of presentable objects. We characterise them in Set, and provide a counterexample to

Adámek and Rosický’s characterisation of the countably presentable domains. In Sec-

tion 5.3, we define the locally presentable categories and state their relevant properties.

Finally, in Section 5.4, we characterise the countably presentable domains and show

that ωCPO is indeed locally countably presentable.

5.1 Directed colimits

A regular cardinal is an infinite cardinal λ such that, for all cardinals α < λ, and α-

indexed family of cardinals 〈λi〉i<α
satisfying λi < λ for all i<α, we have ∑i<α λi < λ.

87
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We will be concerned with the first two regular cardinals λ = ℵ0 and λ = ℵ1, but the

definitions below apply to arbitrary regular cardinals.

Definition 5.1. A λ-directed poset is a poset I such that for every X ⊆ I with |X |< λ,

there exists some i ∈ I with i> x, for all x ∈ X. In other words, every subset of I whose

cardinality is less than λ has an upper bound in I.

The term ‘finitely directed’ is interchangeable with ‘ℵ0-directed’. Similarly, ‘count-

ably directed’ is interchangeable with ‘ℵ1-directed’.

Example 5-1. Let X be any set. Let Pℵ0(X) be the collection of finite subsets of X ,

ordered by inclusion. Given any finite family F of X-subsets, their union
⋃

F is again

a finite X-subset. As
⋃

F bounds every set in F , we deduce that Pℵ0(X) is finitely

directed.

For the next example, we recall a few domain theoretic concepts. We write V ⊆W

when V is a subdomain of W . That is, V consists of an ω-chain-closed subset |V | ⊆ |W |,
with the ordering induced by W . Given any subset X ⊆W , its closure is the smallest

subdomain ClX ⊆W containing X . The closure can also be given predicatively by

transfinite recursion:

X0 B X

Xn+1 B Xn∪{
∨

xk|〈xk〉 is an ω-chain from Xn}
Xλ B

⋃
i<λ Xi

Regularity of ℵ1 implies this sequence stabilises at step ω1. Indeed, if 〈xk〉 is an ω-

chain from Xω1 , then for every k < ℵ0, xk ∈ Xλk , for λk < ω1. Regularity of ℵ1 implies

that for λB ∑k<ω0 λk, λ+ 1 < ℵ1. But then xk is an ω-chain in Xλ, hence
∨

xk is in

Xλ+1 ⊆ Xω1 . Thus, Xω1+1 = Xω1 , and the process stabilises. In particular, Xω1+1 is a

subdomain of W containing X , and transfinite induction shows it is contained in every

subdomain of W containing X . Thus, ClX = Xω1 . An immediate consequence of this

construction is an upper bound on the cardinality of the closure:

|ClX |6max{2, |X |}ℵ0

Indeed, if we denote κBmax{2, |X |}, then transfinite induction establishes this bound:

|X0|= |X |6 κ
ℵ0

|Xn+1|6 |Xn|+ |Xn|ℵ0 6 κ
ℵ0 +

(
κ

ℵ0
)ℵ0

= κ
ℵ0 +κ

ℵ0×ℵ0 = κ
ℵ0 +κ

ℵ0 = 2 ·κℵ0 6 κ
1+ℵ0 = κ

ℵ0
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and, for a limit ordinal λ6 ω1:

|Xλ|6 ∑
i<λ

|Xi|= ∑
i<λ

κ
ℵ0 = λ ·κℵ0

λ6ℵ1 6 2ℵ0 6 κℵ0

↓
6 κ

ℵ0 ·κℵ0 = κ
ℵ0+ℵ0 = κ

ℵ0

A subset X ⊆W is dense if and only if ClX = W . A separable domain is one with

a countable dense subset. From the upper bound of ClX we established, it follows

that for every cardinal λ, there is, up to isomorphism, only a set of domains with a

dense subset of cardinality λ. In particular, there is a set of separable domains, up to

(continuous) isomorphism.

Example 5-2. Let W be any ωCPO. Let Dℵ1(W ) be the set of W ’s separable subdo-

mains, ordered by inclusion, i.e.

Dℵ1(W )B {V ⊆W |V has a dense subset B with |B|< ℵ1}

Given a countable collection F of separable subdomains, we then have a countable

collection B consisting of the dense subsets of each of the countably many separable

domains in F . Consider the domain V B Cl
⋃

B . The countable union
⋃

B of count-

able dense subsets is then a countable dense subset of V , hence V ∈ Dℵ1(W ). As V

bounds every U ∈ F , we deduce that Dℵ1(W ) is a countably directed poset.

Definition 5.2. Let C be any category. A λ-directed diagram in C is a diagram

D : I→ C with I a λ-directed poset considered as a category. A λ-directed colimit

is a colimit for a λ-directed diagram.

The following lemma characterises the finitely directed colimits in Set.

Lemma 5.3 (see Adámek and Rosický [AR94, Exercise 1.a(2)]). Let D : I→ Set be a

finitely directed diagram. A compatible cocone 〈C,c〉 is colimiting if and only if:

1. the cocone is collectively epi: C =
⋃

i∈I ci[Di]; and

2. if ci′(d′) = ci(d), then there exists some j > i, i′ such that

D( j > i′)(d′) = D( j > i)(d)

Example 5-3 (see Adámek and Rosický [AR94, Example 1.10(1)]). Every set is the

finitely directed colimit of its finite subsets. Indeed, given any set X , consider the

finitely directed diagram Pℵ0(X) of X’s finite subsets (see Example 5-1). Consider the
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cocone consisting of the inclusions n⊆ X for every finite subset of X . Due to the sin-

gleton inclusions, this cocone is collectively epi. As the cocone comprises of injections

and the diagram is finitely directed, condition 2 also holds. Thus, by Lemma 5.3, X is

the colimit.

Similarly, we characterise the countably directed colimits in ωCPO.

Lemma 5.4. Let D : I→ωCPO be a countably directed diagram. A compatible cocone

〈C,c〉 is colimiting if and only if:

1. the cocone is collectively epi: |C|=
⋃

i∈I ci[Di]; and

2. if ci′(d′)> ci(d), then there exists some j > i, i′ such that

D( j > i′)(d′)> D( j > i)(d)

Proof
(=⇒) First, assume 〈C,c〉 is colimiting. Let S be the Sierpinski space {⊥6>}.

Given any d0 ∈ Di0, define an I-indexed family of functions ei : Di→ S by:

ed0
i (d)B


⊥ there is some j > i, i0 such that

D( j > i0)(d0)> D( j > i)(d)

> otherwise

This function is Scott-continuous. Indeed, if d1 6 d2 in Di, and if ei(d2) = ⊥, then

there is some j > i, i0 satisfying:

D( j > i0)(d0)> D( j > i)(d2)

monotonicity

↓
> D( j > i)(d1)

Therefore, ei(d1) = ⊥, and ei is monotone. Next, take any ω-chain 〈dn〉 in Di such

that, for all n, ei(dn) =⊥. Therefore, for every n, we have some jn > i, i0 for which

D( jn > i0)(d0)> D( jn > i)(dn)

As I is countably directed, there is an upper bound j for all the jn. We then have, for

every n:

D( j > i0)(d0) = D( j > jn)◦D( jn > i0)(d0)

> D( j > jn)◦D( jn > i )(dn) = D( jn > i)(dn)
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Therefore,

D( j > i0)(d0)>
∨

D( j > i)(dn)

continuity

↓
= D( j > i)(

∨
dn)

Thus, ei(
∨

dn) =⊥=
∨

ci(dn), and ei is continuous.

Next, e forms a compatible cocone. Indeed, take any i 6 i′, any d in Di, and set

d′B D(i′ > i)(d). If ei(d) =⊥, then we have some j > i, i0 for which:

D( j > i0)(d0)> D( j > i)(d)

As I is countably directed, we have some j′ > j, i′. For this j′, we then have:

D( j′ > i′)(d′) = D( j′ > i)(d) = D( j′ > j)◦D( j > i)(d)6 D( j′ > i0)(d0)

Therefore, ei′(d′) = ⊥. Conversely, if ei′(d′) = ⊥, then we have some j′ > i′, i0 for

which:

D( j′ > i0)(d0)> D( j′ > i′)(d′) = D( j′ > i)(d)

Therefore, ei(d) = ⊥. Thus, for every i 6 i′ we have ei′ ◦D(i′ > i) = ei. Thus 〈S,e〉
is a compatible cocone, and we have a unique Scott-continuous function fd0 : C→ S,

factoring e through c.

Given any d ∈ Di and d′ ∈ Di′ with ci(d)6 ci′(d′), we then have

ed′
i (d) = fd′(ci(d))6 fd′(ci′(d

′)) = ed′
i′ (d

′) =⊥

with jB i′ witnessing the last equality. Therefore there exists some j > i, i′ for which:

D( j > i′)(d′)> D( j > i)(d)

and condition 2 holds.

Next, let C′ be the union
⋃

i∈I ci[Di] inheriting the partial order from C. Consider

any ω-chain 〈cin(dn)〉 in C′. For every n, by condition 2, we have some jn > in, in+1

such that:

D( jn > in+1)(dn+1)> D( jn > in)(dn)

Then, by considering an upper bound j > jn, we have that d′n B D( j > jn)(dn) is an

ω-chain in D j. Set d′ =
∨

d′n, and we have:

c j(d′) = c j(
∨

d′n) =
∨

c j(d′n) =
∨

c j(D( j > jn)(dn)) =
∨

c jn(dn)

Therefore,
∨

c jn(dn) is also in C′, hence C′ is a (sub)domain. By restricting the

codomains of each ci to c′i : Di→ C′, we obtain a compatible cocone 〈C′,c′〉. The

couniversally induced function f : C→ C′ post-composed with the inclusion C′ ⊆ C

then factors c′ through c, hence ⊆ ◦ f = id, and C′ =C, and condition 1 follows.
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D C C ′ C

c

c

f ⊆

c′

c

c′
c

=

==

=

(⇐=) Conversely, assume conditions 1 and 2 hold. If 〈E,e〉 is any compatible

cocone, define a map f :C→E by f (w)B ei(d), where i, d are any such that ci(d)=w.

The existence of such a function follows from condition 1. The choice of i and d does

not matter: if i′, d′ also satisfy ci′(d′) = w, then by condition 2 and countable direction,

there is some j > i, i′ such that D( j > i)(d) = D( j > i′)(d′), hence:

ei(d) = e j(D( j > i)(d)) = e j(D( j > i′)(d′)) = ei(d′)

Note that f is Scott-continuous. Indeed, if w′ B ci′(d′) > ci(d) C w, then, by

condition 2, there is some j > i, i′ such that D( j > i′)(d′)> D( j > i)(d). Therefore,

f (w′) = e j(D( j > i′)(d′))> e j(D( j > i)(d)) = f (w)

Therefore, f is monotone. Continuity follows similarly, by additional appeal to count-

able direction.

By definition, e factors as c ◦ f . Consider any other function f ′ which factors e

as c ◦ f ′. Then f ′ satisfies f ’s definition, and we have uniqueness. Thus, 〈C,c〉 is a

colimiting cocone. �

We use the last lemma to establish directly that ωCPO is countably directed co-

complete:

Corollary 5.5. All countably directed colimits exist in ωCPO.

Proof
Let D : I → ωCPO be any countably directed diagram. Let X B ∑i∈I |Di|. Define a

relation on X by ιid w ιi′d′ if and only if there exists some j > i, i′ such that

D( j > i)(d)> D( j > i′)(d′)

and set the relation ≡ to be w ∩ v. The relation ≡ is an equivalence relation, with

transitivity following from countable directedness of I. The relation v then factors

through ≡, and makes X/≡ into a poset, which we denote by C. Given any ω-chain
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〈wn〉 in C, by countable directedness, there is a j such that D j contains an ω-chain

〈dn〉 of representatives corresponding to 〈wn〉, i.e., wn = [ι jdn]. Then,
∨

wn = [ι j
∨

dn],

hence C is an ω-cpo.

For every i, define ci(d)B [ιid]. Direct calculation shows that ci is a Scott-conti-

nuous, collectively epi, compatible cocone. By definition, condition 2 of Lemma 5.4

holds, hence 〈C,c〉 is a colimiting cocone. �

We also use Lemma 5.4 to present an ω-cpo as a colimit of a diagram of a subclass

of its poset of subdomains SubW B 〈{V ⊆W},⊆〉.

Theorem 5.6. Let W be an ω-cpo, and D : I→ SubW a countably directed diagram.

Then, in ωCPO, we have ColimD = 〈
⋃

i∈I Di,⊆〉.

Proof
Countable direction guarantees the union is an ω-cpo. The two conditions in Lemma 5.4

hold immediately. �

As the singletons {w} are seperable, we obtain the following result:

Corollary 5.7. For every ω-cpo W, we have ColimDℵ1(W ) = 〈W ,⊆〉.

5.2 Presentable objects

The central notion in locally presentable categories is that of a presentable object.

Definition 5.8. Let C be a category. A C -object K is λ-presentable if, for every λ-

directed diagram D : I→ C , colimiting cocone 〈C,c〉, and morphism f : K→C:

• there exist i ∈ I and g : K→ Di that factorises f as

f : K
g−→ Di

ci−→C

• and if g′ : K→Di′
ci′−→C is any other factorisation, then there exists some j> i, i′

such that D( j > i)◦g = D( j > i′)◦g′

This definition is equivalent to requiring that the representable functor induced

by K, i.e., C (K,−) : C → Set, preserves λ-directed colimits. A λ-small colimit of

a diagram whose objects are all λ-presentable objects is also λ-presentable [AR94,

Proposition 1.16]. In particular, a finite coproduct of λ-presentable objects is also λ-

presentable.
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Example 5-4 (see Adámek and Rosický [AR94, Example 1.2(1)]). In Set, the finitely

presentable objects are precisely the finite sets. Note that, indeed, a finite disjoint union

of finite sets is a finite set.

Example 5-5. Every finite ω-cpo is countably presentable. Let K be any finite ω-

cpo, 〈C,c〉 a colimiting cocone for a countably directed diagram D : I→ ωCPO, and

f : K→C any continuous function.

Given k ∈K, Lemma 5.4(1) implies there is some dk ∈Dik such that cik(dk) = f (k).

For any two k> k′, we have f (k)> f (k′). Lemma 5.4(2) then implies that there is some

ik,k
′
> ik, ik′ such that

D(ik,k
′
> ii)(dk)> D(ik,k

′
> ik′)(dk′)

As K is finite, the set
{

ik, ik,k
′
∣∣∣k,k′ ∈ K

}
is finite, hence there is an upper bound i in I.

Define g : K→Di by g(k)BD(i> ik)(dk). This function is Scott-continuous. For

monotonicity, take any k > k′ and calculate:

g(k) = D(i> ik)(dk) = D(i> ik,k
′
)◦D(ik,k

′
> ik)(dk)

> D(i> ik,k
′
)◦D(ik,k

′
> ik′)(dk′) = g(k′)

As g has a finite domain, monotonicity implies continuity.

By definition g factors ci through f , as:

ci ◦g(k) = ci ◦D(i> ik)(dk) = cik(dk) = f (k)

Let g′ : K→ Di′ be any other such factorisation. For every k ∈ K, we have:

ci(g(k)) = f (k) = ci′(g
′(k))

By Lemma 5.4(2) and countable direction, there is some jk > i, i′ such that:

D( jk > i)(g(k)) = D( jk > i′)(g′(k))

Thus there is some upper bound j for { jk|k ∈ K}. This bound satisfies, for all k ∈ K:

D( j > i)(g(k)) = D( j > i′)(g′(k))

Therefore, the factorisation is essentially unique, and we have that K is countably

presentable.
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The above argument fails if we consider countable domains instead of merely finite

domains. Indeed, when the domain is infinite, it potentially has uncountably many ω-

chains. The crucial step is to establish the continuity of the factorisation map g. Unfor-

tunately, some sources in the literature incorrectly overlook this subtlety. For example,

Adámek and Rosický [AR94, Example 1.14(4)] correctly state that “each finite ω-cpo

is ℵ1-presentable”, but incorrectly state that “an infinite ω-cpo is λ-presentable iff it

has cardinality smaller than λ.” Lack and Power [LP09] partially correct the mistake,

and state that “the countably presentable objects of ωCPO include [. . .] uncountable

ω-cpos that have a countable presentation.” Unfortunately, they also overlooked the

subtlety mentioned above1, and state that “all countable ω-cpos [are countably pre-

sentable].”

Example 5-6. We present an ω-cpo with countably many elements that is not count-

ably presentable. Consider the infinitely branching binary tree with a single limit point.

0

00

...
000

...
001

01

...
010

...
011

1

10

...
100

...
101

11

...
110

...
111

ε

∞

More formally, the carrier set of this domain is given by |W |B {0,1}∗+{∞}, with the

order given by w6 w′ if and only if w′ = ∞, or w, w′ are finite binary words and w is a

prefix of w′.

Consider the following countably directed poset:

I B
{

A⊆ {0,1}ℵ0
∣∣∣A is countable

}
For any A ∈ I, consider the infinitely branching binary tree WA where only the se-

quences in A are identified with the infinity point, and the rest of the sequences remain

separate:

1John Power, private communication, 2012.
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0

00

...
000

...
001

01

...
010

...
011

1

10

...
100

...
101

11

...
110

...
111

ε

∞

More formally, |WA|B {0,1}∗+{∞}+A{, where A{B {0,1}ℵ0 \A. The order is given

by w6 w′ if and only if w′ = ∞ and w is a prefix of some w∗ ∈ A, or w′ ∈ {0,1}∗+A{

and w is a prefix of w′. This WA is an ω-cpo.

The function WA⊆A′ is given by collapsing the points in A′ \A to ∞:

WA⊆A′(w)B

∞ w ∈ A′

w otherwise

It is Scott-continuous.

We define a compatible cocone into W :

cA(w)B

w w ∈ {0,1}∗

∞ otherwise

This cocone is collective epi. If cA(w)6 cA′(w′), then case analysis shows that for

ÂB (
{

w,w′
}
∩{0,1}ℵ0)∪A∪A′ ⊇ A,A′

we have WÂ⊇A′(w
′)>WÂ⊇A(w). By Lemma 5.4, 〈W ,c−〉 is a colimiting cocone for the

countably directed diagram W−.

The identity id : W →W is Scott-continuous. Take any potential factorisation

id =W
g−→WA

cA−→W

For every w in {0,1}∗, we have:

w = id(w) = cA(g(w))

Therefore, by c’s definition, g(w) = w. As A is countable and {0,1}ℵ0 is uncountable,

there are some w,w′ ∈ A{. Set 〈wn〉, 〈w′n〉 to be the corresponding sequences of finite

prefixes. We have
∨

wn = ∞ =
∨

w′n in W , whereas in WA we have:∨
g(wn) =

∨
wn = w 6= w′ =

∨
g(w′)
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Thus, no factorisation of the identity is continuous. Therefore, W is not countably

presentable.

Thus, not every countable domain is countably presentable. We will later see that

the converse also holds: there are countably presentable domains with uncountably

many elements. We defer the characterisation of the countably presentable domains

to the end of the chapter, after we finish reviewing the relevant background on locally

presentable categories.

5.3 Locally presentable categories

The main rôle of presentable objects is in relation to the following two notions (see

Adámek and Rosický [AR94]):

Definition 5.9. A category is called λ-accessible if:

• it has all λ-directed colimits; and

• it has a set A of λ-presentable objects such that every object is a λ-directed

colimit of objects in A .

A λ-accessible category is called locally λ-presentable if it is cocomplete.

Example 5-7 (see Adámek and Rosický [AR94, Example 1.10(1)]). The category Set
is locally finitely presentable. Indeed, every set is a directed colimit of its finite subsets

(see Example 5-3). Thus, by taking A B ℵ0, we deduce that Set is locally finitely

presentable.

We can characterise locally presentable categories using completeness:

Theorem 5.10 (Adámek and Rosický [AR94, Corollary 2.47]). A λ-accessible cate-

gory is cocomplete if and only if it is complete. In this case, it is (by definition) locally

λ-presentable.

We summarise the required properties of locally presentable categories.

Proposition 5.11 (Adámek and Rosický [AR94, Remarks 1.9 and 1.19]). In a locally

λ-presentable category, there is, up to isomorphism, a set of λ-presentable objects.

Theorem 5.12 (Adámek and Rosický [AR94, Theorem 1.46]). A category is locally

λ-presentable if and only if it is equivalent to a full, reflective subcategory of SetA for

some small category A .
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If A is small, then SetA is a locally small category, and so is every subcategory

thereof. As local smallness is preserved under equivalence, we deduce:

Corollary 5.13. Every locally presentable category is locally small.

Proposition 5.14 (Adámek and Rosický [AR94, Remark 1.56(1)]). Every locally pre-

sentable category is well-powered, i.e., for every object A there is a set Sub(A) of

non-isomorphic representative subobjects B ↪→ A.

Definition 5.15. Let B , C be accessible categories. A functor F : B → C is of rank

λ, or λ-ary if it preserves λ-directed colimits. A monad is of rank λ if its underlying

functor is of rank λ.

Example 5-8. All monads encountered so far, i.e., the monads for modelling I/O, ex-

ceptions, and global state have a rank [HPP06]. When λ > ℵ0 and |V| < λ, then the

global state, environment, and overwrite monads TGS(V), TEnv(V), TOW(V), respectively,

are λ-ranked. Similarly, when |Char|< λ, the set theoretic monads for I/O and excep-

tions are λ-ranked.

Example 5-9. The powerset monad P (−) and the continuation monad XX− , for every

set |X |> 1, have no rank.

Indeed, consider an arbitrary regular cardinal λ. Recall that a strong limit cardinal

is a cardinal that cannot be reached via powersets of smaller cardinals. There exists a

strong limit cardinal λ′> λ, for example, by using the iλ+ω construction. We therefore

have λ′ = supµ<λ′ µ, but for all µ < λ′, |P (µ)|< λ′. Thus:

sup
µ<λ′
|P (µ)|6 λ

′ <
∣∣P (λ′)∣∣

Hence the powerset monad is not λ-ranked. A similar argument shows the continuation

monad has no rank.

Theorem 5.16 ([AR94, Corollary 2.45]). Let B , C be λ-accessible categories. Every

λ-ranked functor F : B → C satisfies the solution set condition.

Theorem 5.17 ([AR94, Proposition 2.23]). A left or right adjoint between λ-accessible

categories is λ-ranked.

Corollary 5.18. A λ-ranked functor between λ-accessible categories has a left adjoint

if and only if it is continuous.
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Theorem 5.19 ([AR94, Section 2.H, final remark]). Let T be a λ-ranked monad over

a locally λ-presentable category C . Then the Eilenberg-Moore category C T is locally

λ-presentable.

Every λ-ranked functor is determined, up to a natural isomorphism, by its be-

haviour over the λ-presentable objects and the morphisms between them [AR94, Re-

mark 2.18(1)]). In what follows, we will require the construction more explicitly,

therefore we briefly spell it out. Recall the functor category C S = C ↓C , where S is the

category of two objects and a single non-trivial arrow between them, i.e., the Sierpinski

space considered as a category.

Proposition 5.20. [AR94, Example 1.55(1) and Excercise 2.c(1)] Let C be a category.

• The λ-presentable objects of C S are precisely the arrows K
f−→ K′ between λ-

presentable objects

• If C is λ-accessible, then so is C S.

• If C is locally λ-presentable, then so is C S.

Recall that colimits (and limits) in C S are given pointwise (see, for example, Mac

Lane [ML98, Section V.3]). Explicitly, consider a diagram D : J → C S. For every

j ∈ Ob (J), denote D j : D0 j
f j−→ D1 j. A colimiting cocone for this diagram is de-

termined uniquely by two colimiting cocones
〈
C0,c0〉, 〈C1,c1〉. The arrow in this

colimiting cocone is the unique arrow f : C0→C1 satisfying, for every j ∈ Ob (D):

D0 j

D0 j

C0

C1

f j f

c0
j

c1
j

=

We can now describe how a λ-ranked functor is determined by its behaviour over

the λ-presentable objects and arrows:

Proposition 5.21. Let F : B→ C be a λ-ranked functor. For every B-arrow f : A→ B

and λ-directed diagram D : I→ BS, if f = ColimD then F f = ColimFS ◦D.
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Recall that the functor FS : BS → C S acts by functor post-composition, i.e., by

applying F componentwise: given a BS-object f : A→ B, we have

FS 〈A,B, f 〉= 〈FA,FB,F f 〉

and given a BS-morphism 〈g : A→ B,g′ : A′→ B′〉,

FS 〈g,g′〉= 〈Fg,Fg′
〉

Note that, as C is λ-accessible, so is C S, hence there always exists a λ-directed

diagram D, whose vertices are all λ-presentable objects, satisfying f = ColimD. The

proposition states that any such diagram can be used to calculate F f .

Proof
Consider any colimiting cocone for D with f as vertex. Then, for all i ∈ I, we have the

following diagram:

FD0 j

FD0 j

FA

FB

F fi F f

Fc0
i

Fc1
i

=

Because F preserves the components D0, D1, the top and bottom arrows are the com-

ponents of the colimiting cocones for F ◦D0 and F ◦D1. Thus F f is the colimit of

FS ◦D. �

Similarly, natural transformations between λ-ranked functors are uniquely deter-

mined by their behaviour over the λ-presentable objects:

Proposition 5.22. Let F,G : B → C be λ-ranked functors. Given a natural transfor-

mation m : F→G, and a diagram D : I→ C , denote by Dm : I→ C S the diagram given

by

Dmi : FDi
mDi−−→ GDi i ∈ Ob (I)

Dm f =
〈

FDi
FD f−−→ FD j,GDi

GD f−−→ GD j
〉

f : i→ j in I

If D is a λ-directed diagram such that ColimD = A, then mA = ColimDm.

Proof
The naturality of m implies that Dm is indeed a well-defined functor into C S.
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Let 〈A,c〉 be a colimiting cocone for D. The components of Dm are F ◦D and G◦D.

As F and G are accessible, we have 〈FA,Fc〉, 〈GA,Gc〉 as their colimiting cocones,

respectively. Thus, they form a colimiting cocone in C S. For every i ∈ I, we have

FD j

GD j

FA

FC1

mDi mA

Fci

Gci

m naturality
=

Thus mA = ColimDm. �

5.4 Countably presentable domains

We return to characterise the countably presentable domains and establish the local

presentability of ωCPO. The following syntactic characterisation of the countably

presentable domains is based on a technique from Bridge’s thesis [Bri12]. Bridge

uses this technique to present a direct proof for the equivalence between essentially

algebraic categories and locally presentable categories [AR94, Theorem 3.36]. We will

not present this technique, and refer interested readers to the thesis [Bri12, Section 2.2].

Definition 5.23. A domain presentation P consist of a triple 〈B, I,v〉 where:

• B is a poset, which we call the basis;

• I is a countable set of ω-chains over B, whose elements we call constrained

chains; and

• v is a relation over I, whose elements we call constraints.

We say that a domain presentation is countable when the basis B and the set of con-

strained chains I are countable.

Plotkin, in unpublished work, uses a different form of constraints that relate a single

element of the poset with an ω-chain, wv 〈vn〉.
Let P = 〈B, I,v〉 be a domain presentation, and W a domain. We say that a mono-

tone function f : B→W satisfies the constraint 〈bn〉 v 〈b′n〉 when

∨
f (bn)6

∨
f (b′n)
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Definition 5.24. Let P = 〈B, I,v〉 be a domain presentation. A P -model W is a pair

〈|W |,W ⟦−⟧〉 consisting of an ω-cpo |W | and a monotone function W ⟦−⟧ : B→ |W |
satisfying all the constraints in v.

A P -homomorphism h from W to W ′ is a Scott-continuous function h : |W | → |W ′|
factoring W ′ ⟦−⟧ as

B

|W |

∣∣W ′∣∣W ⟦−⟧ h

W ′ ⟦−⟧
=

We denote by Mod(P ,ωCPO) the category of P -models and P -homomorphisms

between them.

Using this terminology, we present our central class of domains:

Definition 5.25. We say an ω-cpo K has a countable presentation if there exists a

countable domain presentation P such that K is the carrier for an initial P -model.

Example 5-10. Every finite domain W has a countable presentation, with B BW ,

I B /0, and W ⟦−⟧B id. As W is finite, any monotone map is also continuous, hence

W is the initial model.

More generally, every ω-continuous ω-cpo W has a countable presentation. Recall

that a domain W is called ω-continuous if there exists a countable set B, such that for

every w in W there exists an ω-chain 〈bn〉 in B such that:
∨

bn =w, and for any ω-chain

satisfying w6
∨

wm, for every n there exists an m for which bn 6 wm.

For example, any finite poset is an ω-continuous domain, as well as any closed

interval [a,b] with the arithmetic ordering on real numbers.

We can understand the ω-continuous domains categorically as follows. Consider

the forgetful functor |−| : ωCPO→ Pos. This functor has a left adjoint F a |−| (for

example, by appeal to Freyd’s adjoint functor theorem). The ω-continuous domains are

precisely the free objects FB for a countable poset B. The unit η : B→ |FB| induces

the countable subset η[B]⊆ FB. We sketch the proof as follows.

Consider any continuous poset B. Routine calculation shows that Clη[B] = FB.

An additional routine calculation using the Sierpinski space shows that if
∨

η(bn) 6∨
ηb′m then for every n there exists an m such that η(bn) 6 η(bm). This implies that

if we have an ω-chain 〈
∨

m η(bn,m)〉n we can construct an ω-chain η(bk,mk) such that∨
n
∨

m η(bn,m) =
∨

k η(bk,mk). Therefore, the iterative construction of Clη[B] stabilises
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in the first step:

(η[B])2 =

{∨
n

∨
m

η(bm,n)

∣∣∣∣∣bm,n ∈ B

}
=

{∨
k

η(ak)

∣∣∣∣∣ak ∈ B

}
= (η[B])1

Consequently, FB = Clη[B] = {
∨

k η(ak)|ak ∈ B}. Therefore, for every element w in

FB there is a chain ηbn in η[B] such that w =
∨

bn, and if w 6
∨

k
∨

m b′k,m, then for

every n there exist k, m for which bn 6 bk,m. Thus FB is ω-continuous.

Conversely, consider any ω-continuous domain W , and let B be the countable sub-

set exhibiting it as an ω-continuous domain, considered as a poset. If V is any other

domain and f : B→ |V | any monotone function, extend f to a continuous function

f † : W →V by setting

f † :
∨

bn 7→
∨

f (bn)

The definition of ω-continuous domains implies f † is independent of the choice of ω-

chain 〈bn〉, monotone, and continuous. By fiat, f factors as f †◦ ⊆, and any other such

factorisation f = g◦ ⊆ implies that g = f †. Therefore, W ∼= FB. Another way to show

that W ∼= FB is to use a rounded ideal completion argument2 (see, e.g., Keimel [Kei10]

for the definition of rounded ideal completion).

In summary:

Example 5-11 (Hyland et. al [HPP06, Section 2]). All ω-continuous domains have a

countable presentation. Given any FB, the required presentation is 〈B, /0, /0〉, and the

initial model is 〈FB,η〉.

Initiality implies that all domains with a countable presentation are seperable:

Lemma 5.26. If K has a countable presentation P = 〈B, I,v〉, then K ⟦−⟧ [B], the im-

age of B under the map K ⟦−⟧, is dense in |K|. Consequently, domains with a countable

presentation are separable.

Proof
Set B′ B K ⟦−⟧ [B]. As B is countable, so is B′. Consider the model K′ given by ClB′

with the restriction of K ⟦−⟧ to a function from B to ClB′, and obtain by initiality that

B

|K| |K|∣∣K′∣∣ ⊆

K ⟦−⟧ K′ ⟦−⟧ K ⟦−⟧
= =

=

Consequently, ClB′ = |K′|= |K|. �

2Gordon Plotkin, private communication, 2012.
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We can always construct a couniversal pair for any domain presentation:

Lemma 5.27. Every (not necessarily countable) domain presentation has an initial

model.

Proof
Using the forgetful functor |−| : ωCPO→ Pos, note that Mod(P ,ωCPO) is the full

subcategory of the comma category B↓ |−|, whose objects consist of all the P -models.

We use Freyd’s existence theorem [ML98, Theorem V.6.1] to establish that the cate-

gory Mod(P ,ωCPO) has an initial object.

Having a left adjoint, |−| is continuous, hence B↓ |−| is complete, and the projec-

tion functor from B↓ |−| to ωCPO is continuous.

Let D : J→Mod(P ,ωCPO) be any small diagram and 〈W , f 〉 its limit as a diagram

in B ↓ |−|, with a limiting cone c. The projection W is then a limit of the projected

diagram |D| : J→ωCPO with c limiting cone again. For every constraint 〈bn〉 v 〈b′n〉,
and for every j ∈ J, we know that D j satisfies the constraint, hence:

c j(
∨

f (bn)) =
∨

c j ◦ f (bn) =
∨

D j ⟦bn⟧6
∨

D j ⟦b′n⟧= c j(
∨

f (b′n))

This inequation holds for every j ∈ J, hence from basic properties of limits in ωCPO
(see Section 4.1),

∨
f (bn)6

∨
f (b′n) in W , thus f satisfies the constraint 〈bn〉 v 〈b′n〉.

Hence, f satisfies all the constraints, and 〈W , f 〉 is a P -model. Therefore, the subcat-

egory Mod(P ,ωCPO) is closed under limits in B ↓ |−|, and thus complete. It is also

locally small.

For the solution set condition, let P = 〈B, I,v〉, and take I to be the following set:{
W ∈ Ob (Mod(P ,ωCPO))

∣∣∣|W | is a cardinal less than or equal to min{2, |B|}ℵ0
}

For any P -model W in Mod(P ,ωCPO), consider the P -model W ′ induced by the sub-

domain Cl(W ⟦−⟧ [B]) and restricting W ⟦−⟧’s codomain. As we noted in Section 5.1,

Cl(W ⟦−⟧ [B]) can have at most min{2, |B|}ℵ0 elements, hence it is isomorphic to some

W ′′ ∈ I. Therefore, we have the following P -homomorphism:

W ′′ W ′ W

B

∼= ⊆
= =

Thus, the solution set condition is satisfied, hence Mod(P ,ωCPO) has an initial object,

as required. �
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All domains are countably directed colimits of domains with a countable presenta-

tion:

Lemma 5.28. Let W be any domain.

1. The following set is countably directed

I B
{〈

B, I′
〉∣∣ B⊆W a subposet, I′ ⊆ ωChains(B), and B, I′ countable

}
where the order is given componentwise by inclusion. Moreover, if, for every

〈B, I〉, we define 〈bn〉 v 〈b′n〉 if and only if
∨

bn 6
∨

b′n, then P〈B,I〉B 〈B, I,v〉 is

a domain presentation.

2. There is a countably directed diagram W− : I → ωCPO where W〈B,I〉 is the

initial P〈B,I〉-model, and the morphism map W〈B,I〉6〈B′,I′〉 is the unique P〈B,I〉-
homomorphism satisfying:

B

W〈B,I〉

W〈B′,I′〉B′
W〈B,I〉 ⟦−⟧

W〈B,I〉≤〈B′,I′〉

⊆
W〈B′,I′〉 ⟦−⟧

=

3. There is a colimiting cocone 〈W ,c〉 induced by the inclusions:

B

W〈B,I〉

W

W〈B,I〉 ⟦−⟧
c〈B,I〉

⊆
=

Proof
Given a countable collection 〈〈Bn, In〉〉 in I, the union 〈

⋃
Bn,

⋃
In〉 is also in I. Thus I

is countably directed, and we proved 1.

Next, by Lemma 5.27 we can choose an initial P〈B,I〉-model W〈B,I〉 for each 〈B, I〉 in

I. Thus, the object map W〈B,I〉 is well-defined. By our choice of the corresponding v,

W〈B′,I′〉 satisfies all the constraints in v. Therefore, by initiality, there exists a unique

P〈B,I〉-homomorphism W〈B,I〉6〈B′,I′〉 satisfying

B

W〈B,I〉

W〈B′,I′〉B′
W〈B,I〉 ⟦−⟧

W〈B,I〉≤〈B′,I′〉

⊆
W〈B′,I′〉 ⟦−⟧

=
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Routine arguments show that W− : I→ ωCPO is a functor, and we proved 2.

Compatibility of the cocone 〈W ,c〉 follows by routine initiality arguments. Given

any w ∈W , take 〈{w}, /0〉 ∈ I, and calculate:

w

W〈B,I〉 ⟦w⟧

w
W〈B,I〉 ⟦−⟧

c〈B,I〉

⊆
=

Therefore c is collectively epi.

Next, take any i1, i2 in I, and w1 ∈Wi1 , w2 ∈Wi2 , such that

ci1(w1)6 ci2(w2)

Denote i1 = 〈B1, I2〉, and i2 = 〈B2, I2〉.
By Lemma 5.26, Wi1 ⟦−⟧ [B1] is dense in Wi1 , hence there exists a sequence

〈
b1

n
〉

over B1 such that
〈
Wi1 ⟦b1

n⟧
〉

is an ω-chain, and
∨

Wi1 ⟦b1
n⟧= w1. But then〈

ci1(Wi1 ⟦b1
n⟧)
〉
=
〈
b1

n
〉

is an ω-chain in W , hence
〈
b1

n
〉

is an ω-chain in B1. Similarly, there exists an ω-chain〈
b2

n
〉

in B2 such that
∨

Wi2 ⟦b2
n⟧= w2.

Choose

jB
〈
B1∪B2, I1∪ I2∪

{〈
b1

n
〉
,
〈
b2

n
〉}〉
∈ I

We have that j > i1, i2, and moreover, that
〈
b1

n
〉
v j
〈
b2

n
〉

, as:

∨
b1

n = ci1(
∨

Wi1 ⟦b1
n⟧) = ci1(w1)6 ci2(w2) =

∨
b2

n

But Wj satisfies the constraint
〈
b1

n
〉
v j
〈
b2

n
〉

, hence:

Wj>i1(w1) =
∨

Wi1 ⟦b1
n⟧6

∨
Wi2 ⟦b2

n⟧=Wj>i2(w2)

Therefore, by Lemma 5.4, 〈W ,c〉= ColimW−, and we proved 3. �

We next establish our characterisation of the countably presentable domains:

Proposition 5.29. Every countably presentable domain has a countable presentation.

Proof
Let K be any countably presentable domain. By Lemma 5.28, we present K as a colimit

〈K,c〉 = ColimW−. As K is countably presentable, we can factorise the identity over

K:
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K K

K〈B,I〉

g c〈B,I〉
=

By definition, K with the inclusion B⊆K is a P〈B,I〉-model. Given any other model

V satisfying the constraints, initiality yields the following diagram:

B

K〈B,I〉

W

W〈B,I〉 ⟦−⟧ h′

V ⟦−⟧
=

Take h : K
g−→ K〈B,I〉

h′−→W , then the following diagram commutes:

B

K

WB

K〈B,I〉

K

⊆

h

f
⊆

g

c
h′

Given any other homomorphism h′′ : K →W , pre-composition with c yields the fol-

lowing commuting diagram

B

K

W

K〈B,I〉

ι〈B,I〉 f̃

c

⊆
f

By initiality, we deduce that h′′ ◦ c = h′. Pre-composing with g yields:

h′′ = h′ ◦g = h

Therefore, h is unique, and 〈K,⊆〉 is initial. �
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Proposition 5.30. A domain that has a countable presentation is countably presentable.

Proof
Let K be any domain that has a countable presentation P = 〈B, I,v〉. Let 〈C,c〉 be any

colimiting cocone of a countably directed diagram D : I→ ωCPO, and f : K→C any

continuous function.

Take B′ B f ◦K ⟦−⟧ [B]⊆C. By Lemma 5.4, c is collectively epi, hence for every

b′ ∈ B′ there exists some ib′ ∈ I and db′ ∈ Dib′ such that cib′ (db′) = b′. By the same

Lemma, for all b′ 6 b′′ in B′ there exists some i′b′6b′′ > ib′, ib′′ such that:

D(i′b′′>b′ > ib′′)(db′′)> D(i′b′′>b′ > ib′)(db′)

Note that, as B′ is countable,
{

ib′, i′b′6b′′

∣∣∣b′,b′′ ∈ B′
}

is also countable. As I is count-

ably directed, there exists some upper bound i ∈ I.

Set f̃ : |B| → |Di| by f̃ (b)BD(i> i f◦ι(b))(d f◦K⟦b⟧). Note that, for any b ∈ B, if we

set b′B f (K ⟦b⟧), we have:

ci ◦ f̃ (b) = ci ◦D(i> ib′)(db′) = cib′ (db′) = b′ = f (K ⟦b⟧)

Therefore, c j ◦ f̃ = f ◦K ⟦−⟧. Also note that, from i’s choice, f̃ is monotone. Indeed,

for any b1 6 b2, set b′iB f (K ⟦bi⟧), and calculate:

f̃ (b2) = D(i> ib′2)(db′2
) = D(i> i′b′2>b′1

)◦D(i′b′2>b′1
> ib′2)(db′2

)

> D(i> i′b′2>b′1
)◦D(i′b′2>b′1

> ib′1)(db′1
) = f̃ (b1)

For any constraint
〈
b1

n
〉
v
〈
b2

n
〉

, we have:

ci(
∨

f̃ (b1
n)) =

∨
ci ◦ f̃ (b1

n)) =
∨

f (K ⟦b1
n⟧)

K satisfies all constraints

and f is monotone
↓
6

∨
f (K ⟦b2

n⟧) = ci(
∨

f̃ (b2
n))

Therefore, again by Lemma 5.4, there exists some j〈b1
n〉v〈b2

n〉 in I such that:

D( j〈b1
n〉v〈b2

n〉 > i)(
∨

f̃ (b2
n))> D( j〈b1

n〉v〈b2
n〉 > i)(

∨
f̃ (b1

n))

As v is countable, there is some j in I bounding {i} ∪
{

j〈b1
n〉v〈b2

n〉
∣∣∣〈b1

n
〉
v
〈
b2

n
〉}

.

Define f̌ as the post-composition

f̌ : B
f̃
−→ Di

D(i6 j)
−−−−−−→ D j

This function also satisfies c j ◦ f̌ = f ◦K ⟦−⟧, is also monotone, and, moreover, sat-

isfies all constraints
〈
b1

n
〉
v
〈
b2

n
〉

. Therefore, by initiality of K, there exists a unique

continuous function g : K→ D j such that
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B

K

D j
K ⟦−⟧ g

f̌

=

Therefore,

B

K CD j

K ⟦−⟧

g c j

f ◦K ⟦−⟧f̌
g’s def
=

=

By couniversality, c j ◦g = f , hence c j factors through f .

Let K
g′−→D j′

c j′−→C be any other factorisation. Then for any k ∈ K ⟦−⟧ [B]⊆ K, we

have:

c j′(g
′(k)) = f (k) = c j(g(k))

By Lemma 5.4, there exists some ı̂k > j′, j such that

D(ı̂k > j′)(g′(k)) = D(ı̂k > j)(g(k))

As K ⟦−⟧ [B] is countable, there is some ı̂ in I bounding { j, j′}∪{ı̂k|k ∈ ι[B]}. We then

have that D(ı̂ > j) ◦ g and D(ı̂ > j′) ◦ g′ agree on K ⟦−⟧ [B]. By Lemma 5.26, ι[B] is

dense in K, hence D(ı̂> j)◦g = D(ı̂> j′)◦g′.

We have shown that D j factorises essentially uniquely through f . Therefore, K is

countably presentable. �

Thus, we have characterised the countably presentable domains:

Theorem 5.31. A domain is countably presentable if and only if it has a countable

presentation.

More explicitly, an ω-cpo K is countably presentable if and only if there exists a

countable subset B⊆ K, and a countable binary relation v between pairs of ω-chains

from B, such that:

• for every pair 〈bn〉 v 〈b′n〉,
∨

bn 6
∨

b′n; and

• for any ω-cpo W and monotone function f : B→W, such that, for all 〈bn〉 v 〈b′n〉,∨
f (bn) 6

∨
f (b′n), there exist a unique Scott-continuous function f̂ : K →W

satisfying
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B

K

W

⊆

f̂

f

=

Proof
From Propositions 5.29,5.30 follows that the countably presentable domains are pre-

cisely the domains with a countable presentation. For the explicit formulation, note

that, for any presentation P , every initial P -model K is also initial for the presentation

〈K ⟦−⟧ [B],K ⟦−⟧ [I],K ⟦−⟧ ×K ⟦−⟧ [v]〉, but with the inclusion replacing K ⟦−⟧. �

Note that this universal characterisation of countably presentable domains is still

unsatisfactory. A predicative characterisation that does not quantify over all other do-

mains would be more satisfying. Nevertheless, this characterisation does shed more

light on the nature of the countably presentable domains, and suffices for our purposes.

In particular, we corroborate Hyland et al.’s observation that all ω-continuous ω-

cpos are countably presentable [HPP06]. Thus, the closed interval [0,1] with the arith-

metic ordering shows that there are countably presentable domains with uncountably

many elements, refuting Adámek and Rosický’s claim that the countably presentable

domains are precisely the domains with countably many elements [AR94].

We summarise our findings in the Venn diagram in Figure 5.1. To complete the

picture, we add the following example:

Example 5-12. Consider the constraining data given as follows. The basis is the dis-

joint union of two copies of ω, i.e., {a0 6 a1 6 a2 6 . . .}∪{b0 6 b1 6 b2 6 . . .}. The

constrained chains are {〈an〉 ,〈bn〉}. The two constraints are 〈an〉 v 〈bn〉, 〈bn〉 v 〈an〉.
The couniversal domain for this data is given pictorially as

a0

a1

a2

ω

b0

b1

b2

ωω

· · · ···

This domain is countable and countably presentable, yet not ω-continuous.

The category ωCPO is locally countably presentable. We first establish the exis-

tence of a set A of isomorphism classes of countably presentable domains:

Theorem 5.32. Up to isomorphism, ωCPO has a set of countably presentable do-

mains.
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countably
presentable

separable

ω-continuous

countable
•〈{0,1}∗, /0, /0〉

•[0,1]

• (Example 5-6)+[0,1]

• finite domains

•Example 5-6

• Example 5-12

Figure 5.1: characterisation summary

Proof
Let A be the following set of countably presentable objects K whose carrier set is a

cardinal, that are couniversal for some 〈B, I,v〉, where B is a poset whose carrier is a

countable cardinal, and I is a countable set of ω-chains over B. As ι[B] is dense in K

and countable, A is indeed a set. Any countably presentable object is then isomorphic

to one of A’s elements. �

Putting together Corollary 5.5, and Theorems 5.31 and 5.32, we corroborate the

following known fact [Mes81]:

Theorem 5.33. The category ωCPO is locally countably presentable.

And in particular, we obtain another proof for the following known fact (see, e.g.,

Meseguer [Mes81], or Barr and Wells [BW95, Exercise 14.5.7]):

Corollary 5.34. The category ωCPO is cocomplete.

Example 5-13. When λ>ℵ1 and |Char|< λ, the domain theoretic monads for mod-

elling recursion, I/O and exceptions are λ-ranked.

To summarise, we reviewed the basic properties of locally presentable categories.





Chapter 6

Lawvere theories

Better fish are in the sea

Is not the theory for me
—Ella Fitzgerald

In this chapter we present the main technical apparatus of Plotkin and Power’s

algebraic theory of effects: enriched Lawvere theories. Each enriched Lawvere

theory gives rise to a ranked strong monad, and these include many programming

language models [PP02]. We then define a subclass of our CBPV models with effects

that arise through Lawvere theories.

First, in Section 6.1, we recall some concepts from enriched category theory, in

particular powers and copowers. Then, in Section 6.2, following Power [Pow00],

we define enriched Lawvere theories and recall the relevant results and constructions.

Next, in Section 6.3, we define algebraic operations for a Lawvere theory. Finally, in

Section 6.4, we present algebraic models of CBPV.

6.1 Enriched powers and copowers

We present the concepts enriched in a symmetric monoidal closed category V , given

by the data
〈∣∣V ∣∣ , I,⊗,(,unitleft,unitright,assoc,symm

〉
. As we are mainly interested

in monoidal categories arising from a cartesian closed structure, the extra generality

of the monoidal setting is not necessary for our purposes. However, the monoidal

notation is useful, as it highlights the use of the enriching structure, with no notational

overhead. We denote the bijection given in the closed structure by

λV .− : V (W ⊗V ,U)∼= V (W ,V (U)

113
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its inverse by (λV )−1.−, and set

eval : (V (W )⊗V
(λV )−1.idV(W−−−−−−−−→W

Given a V -category C , we denote its objects by A, B, etc., its hom-objects by

C (A,B), its identities by idA : I→ C (A,A), and its composition by

◦A,B,C : C (B,C)⊗C (A,B)→ C (A,C)

Using the closed structure, V is then self-enriched. We also get a map:

C (A,−) : C (B,C)
λC (A,B).◦A,B,C−−−−−−−−→ V (C (A,B),C (A,C))

By varying B and C over all C -objects, the morphisms C (A,−) collate to the post-

composition, or representable, V -functor C (A,−) : C → V . Dually, using the sym-

metric structure of V , we obtain the contravariant pre-composition, or co-representable,

V -functor C (−,C) : C op→ V . We denote by |C |o the ordinary category underlying

C , and similarly for enriched functors and natural transformations.

Definition 6.1. Let V be a symmetric monoidal closed category, C a V -category, V

a V -object, and A a C -object. A power of A by V is a pair 〈∏V A,〈− :−→ A〉V 〉
consisting of a C -object ∏V A and a V -natural isomorphism

〈− :−→ A〉V : V (V ,C (−,A))→ C (−,∏
V

A)

Given a power 〈∏V A,〈−〉〉, we define the counit as the composite

π− : V
∼=−→ I⊗V

(λV )−1.(I
id−→C (∏V A,∏V A)

〈−:∏V A→A〉−1
V−−−−−−−−−→V(C (∏V A,A))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C (∏

V
A,A)

Kelly’s notation for the power is V
Ψ

A, while Power’s notation for the power is AV .

We chose the non-standard product notation because the universal arrow 〈− :−→ A〉V
is more similar to the universal arrow of products, i.e., tupling, than the universal arrow

of exponentials, i.e., evaluation.

Example 6-1 (Kelly [Kel82a, Section 3.7]). If we consider the self-enrichment of V ,

then all powers exist. The power object ∏V W is given by V (W , and the natural

isomorphism by

〈− : U →W 〉V : (V ( (U (W ))
∼=−→ (U ( (V (W ))

whose existence follows from symmetry. The counit is given by

π− : V
λV(W .(eval◦symm)−−−−−−−−−−−−→ ((V (W )(W )
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Thus, when the monoidal structure is cartesian, the self-enriched power coincides with

the exponential.

Example 6-2 (Kelly [Kel82a, Section 3.7]). Consider the case V = Set with the carte-

sian closed structure. Thus we consider locally small categories C . Let X be a set and

A any C -object. The power ∏X A exists if and only if the small product ∏x∈X A exists.

The required natural isomorphism is given by universality of the product:

〈− : B→ A〉X : (C (B,A))X → C (B,∏x∈X A)

〈− : B→ A〉X : λx. fx 7→ 〈 fx〉x∈X

The counit is given by the projections:

π− : X → C (∏x∈X A,A)

π− : x 7→ πx

This example explains our choice of notation.

We now examine the case V = ωCPO with the cartesian closed structure. The

following notion will make the characterisation more succinct:

Definition 6.2. Let C be an ωCPO-enriched category, and W an ω-cpo. A W -compatible

family from A to B in C is a family of C -arrows fw : A→ B indexed by w ∈W, such

that, for all w6 w′ in W, fw 6 fw′ , and, for all ω-chains 〈wn〉 in W,
∨

fwn = f∨wn .

Thus, the elements of the ω-cpo (C (A,B))W are precisely the W -compatible fami-

lies from A to B.

Proposition 6.3. Let C be an ωCPO-enriched category, W an ω-cpo, and A any C -

object. An object ∏W A in C is a power of A by W if and only if there is a W-compatible

family πw : ∏W A→ A such that, for all W-compatible families fw from every B to A

there exists a unique morphism 〈 fw〉w∈W satisfying, for all w ∈W:

B

A∏
W

A

fw

πw

〈 fw〉w∈W
=

and the following evident map is Scott-continuous:

〈−〉W : (C (B,A))W → C (B,∏W A)
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Proof
First, note that given an ωCPO-enriched power 〈∏W A,〈−〉〉, the counit is given by

π− : w
∼=7−→ 〈?,w〉

(λW )−1.λ?.〈id∏W A〉−1

7−−−−−−−−−−−−−→
〈
id∏W A

〉−1
(w)

Next, note that 〈−〉’s ωCPO-naturality amounts to the following diagram chasing for

any h : B→C in C , and W -compatible family fw from B to A:

λw.B
fw−→ A

(
B
〈λw. fw〉−−−−→∏

W
A

)

λw.
(

C h−→ B
fw◦h−−→ A

)

(
C h−→ B

〈λw. fw〉−−−−→∏
W

A

)
(

C
〈λw.( fw◦h)〉−−−−−−−→∏

W
A

)

(C (h,A))W

〈−〉

C

(
h,∏

W
A

)

〈−〉

Inverting 〈−〉 then yields, for all g : B→∏W A:

〈g◦h〉−1 = λw.(〈g〉−1 (w)◦h) (6.1)

For necessity, assume that the power 〈∏W A,〈−〉〉 exists. Choose πw as the W -

compatible family, and for any W -compatible family, choose 〈 fw〉w∈W as 〈λw. fw〉. We

then have, for all w:

πw ◦ 〈λw. fw〉 = 〈id〉−1 (w)◦ 〈λw. fw〉

Equation (6.1)

↓
= 〈id ◦ 〈λw. fw〉〉−1 w = λw. fww = fw

As 〈−〉 is a Scott continuous bijection, we are done.

Conversely, assume the existence of the W -compatible family πw and of 〈−〉, as

in the Proposition’s statement. Scott-continuity of 〈−〉 ensures we have a candidate

morphism 〈−〉 for the natural isomorphism. Define:

〈g〉−1B λw.(πw ◦g)

Continuity of post-composition in the ωCPO-enriched category C , together with πw

being W -compatible, ensures 〈g〉−1 is a Scott-continuous function, hence in (C (B,A))W .



6.1. Enriched powers and copowers 117

Continuity of pre-composition then ensures 〈−〉−1 is a Scott-continuous function from

C (B,∏W A) to (C (B,A))W . Direct calculation, using the assumed commutative tri-

angle, validates that 〈−〉 and 〈−〉−1 are inverse to each other. Therefore, for each B,

〈− : B→ A〉 is an isomorphism. Post-composing with πw yields:

πw ◦ 〈λw. fw〉 ◦h = fw ◦h = πw ◦ 〈λw.( fw ◦h)〉

Thus, universality implies 〈λw. fw〉 ◦h = 〈λw.( fw ◦h)〉, and 〈−〉 is natural. Therefore,

∏W A is the power of A by W . Moreover, direct calculation shows that the counit then

satisfies π−(w) = πw. �

Note that when W is discrete, the power degenerates back to the Set-enriched case.

The discussion dualises in a straightforward manner:

Definition 6.4. Let V be a symmetric monoidal closed category, C a V -category, V

a V -object, and A a C -object. A copower of A by V is a pair 〈∑V A, [− : A→−]V 〉
consisting of a C -object ∑V A and a V -natural isomorphism

[− : A→−]V : V (V ,C (A,−))→ C (∑
V

A,−)

Given a copower 〈∑V A, [−]〉, we define the counit as the composite

ι− : V
∼=−→ I⊗V

(λV )−1.(I
id−→C (∑V A,∑V A)

[−:∑V A→A]−1
V−−−−−−−−→V(C (A,∑V A))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C (A,∑

V
A)

Both Kelly and Power denote the copower by V ⊗A. As for powers, we prefer

to use the coproduct notation as the universal arrow [− : A→−]V is more similar to

the coproduct universal arrow, i.e., cotupling, than to the product universal arrow, i.e.,

tupling.

Example 6-3 (Kelly [Kel82a, Section 3.7]). If we consider the self-enrichment of V ,

then all copowers exist. The copower object ∑V W is given by V ⊗W , and the natural

isomorphism by

[− : W →U ]V : (V ( (W (U))
∼=−→ ((V ⊗W )(U)

whose existence follows from the closed structure. The counit is given by

ι− : V λW .id−−−→ (W ( (V ⊗W ))

Thus, when the monoidal structure is cartesian, the self-enriched copower coincides

with the binary product.
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Example 6-4 (Kelly [Kel82a, Section 3.7]). Consider the case V = Set with the carte-

sian closed structure. Thus we consider locally small categories C . Let X be a set and

A any C -object. The copower ∑X A exists if and only if the small coproduct ∑x∈X A

exists. The required natural isomorphism is given by universality of the product:

[− : B→ A]X : (C (A,B))X → C (∑x∈X A,B)

[− : A→ B]X : λx. fx 7→ [ fx]x∈X

The counit is given by the injections::

ι− : X → C (A,∑x∈X A)

ι− : x 7→ ιx

This example explains our choice of notation.

We now examine the case V = ωCPO with the cartesian closed structure.

Proposition 6.5. Let C be an ωCPO-enriched category, W an ω-cpo, and A any C -

object. An object ∏W A in C is a copower of A by W if and only if there is a W-

compatible family ιw : A→∑W A such that, for all W-compatible families fw from A to

every B there exists a unique morphism [ fw]w∈W satisfying, for all w ∈W:

B

A∑
W

A

fw

ιw

[ fw]w∈W
=

and the following evident map is Scott-continuous:

[−]W : (C (A,B))W → C (∑W A,B)

Proof
By duality, i.e., choose C B C op and apply Proposition 6.3. �

Finally, we discuss preservation of powers and copowers:

Definition 6.6. Let F : B → C be a V -functor.

1. Let 〈∏V B,〈−〉〉 be a power in B . We say that F preserves the power 〈∏V B,〈−〉〉
if F(∏V B) is the power ∏V (FB) in C , and the corresponding counit π− is given

by:

F ◦π− : V
π−−→ B (∏

V
B,B) F−→ C (F(∏

V
B),FB)
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2. Dually, let 〈∑V B, [−]〉 be a copower in B . We say that F preserves the copower

〈∑V B, [−]〉 if F(∑V B) is the copower ∑V (FB) in C , and the corresponding

counit ι− is given by:

F ◦ ι− : V
ι−−→ B (B,∑

V
B) F−→ C (F(∑

V
B),FB)

Example 6-5. In the case V = Set with the cartesian closed structure, an ordinary

functor F : B→ C preserves the power ∏x∈X B if and only if F(∏x∈X B) is the product

∏x∈X FB in C exhibited by Fπx as the projection to the x component, for every x ∈ X .

In other words, F preserves the power ∏X B if and only if it preserves the product

∏x∈X B in the usual sense. Similarly, a functor preserves the copower ∑X B if and only

if it preserves the coproduct ∑x∈X A in the usual sense.

Example 6-6. In the case V = ωCPO with the cartesian closed structure, an ωCPO-

enriched functor F : B→ C preserves the power ∏W A if and only if the W -compatible

family Fπw : ∏W B→ B exhibits F(∏W A) as the power ∏W (FB). Similarly, F pre-

serves the copower ∑W A if and only if the W -compatible family Fιw : B→ ∑W B ex-

hibits F(∑W A) as the copower ∑W (FB)

Finally, we note that powers are a special case of indexed limits, also known as

enriched limits, and cylindrical limits, and copowers are a special case of indexed

colimits. Therefore, powers are preserved by enriched right-adjoint enriched functors,

and copowers are preserved by enriched left-adjoint enriched functors.

Example 6-7 (Enriched Kleisli category). Let T be a monad on C . Recall the Kleisli

category C T , whose objects are the C -objects, and morphisms f from V to W are the

morphisms f : A→ TA in C . When both C and T are V -enriched, this structure can

be enriched to form a V -category C T , by setting:

C T (A,B)B C (A,T B)

idA : I
ηA−→ C (A,T A)

◦A,B,C:C (B,TC)⊗C (A,T B)
T⊗id−−−→C(T B,T 2C)⊗C (A,T B)

◦C
−→C(A,T 2C)

C(A,µ)−−−−→C (A,TC)

where C (A,µ) is the application of the ordinary functor |C (A,−)|o underlying the

post-composition functor.

Linton [Lin69] showed that C T is indeed a V -category, even when V is neither
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closed nor symmetric. Moreover, he showed that by setting FAB A, UAB T A, and

F : C (A,B)
C(A,η)
−−−−→ C (A,T B)

U : C (A,T B) T−→ C
(
T A,T 2B

) C(T A,µ)
−−−−−→ C (T A,T B)

we obtain a V -adjunction F aU : C T → C that resolves the V -monad T .

Therefore, if C has the copower ∑V A, then C T also has the copower of A by V ,

with both copower objects coinciding, and the counit given by:

Fι− : V
ι−−→ C (A,∑

V
A)

C(A,η)
−−−−→ C (A,T∑

V
A)

Let T ′ be any other V -monad over C , and m : T → T ′ a V -monad morphism.

Define the following V -functor:

M : C T −−−−−→ C T ′

M : A 7−−−−−→ A

M : C (A,T B)
C(A,mB)−−−−−→ C (A,T ′B)

Then M maps the copower ∑V A in C T to the copower ∑V A in C T ′ . Furthermore, M

preserves the copower ∑V A, as we have:

V

C (A,T∑
V

A)

C
(
A,T ′∑

V
A
)

C (A,∑
V

A)

Fι−

F ′ι−

ι− C (A,m)

C
(

A,η
)

C
(

A,η′
)

copower
preservation

=

copower
preservation

=

enriched
monad

morphism
=

By considering the self-enrichment on V , we have that, for every V -enriched

monad T , V T has all copowers, given by V ⊗W , and counits:

V λW .id−−−→W ( (V ⊗W )
W(η

−−−→W ( T (V ⊗W )

That is, λW .ηV⊗W as the counit.

Finally, we state a few technical results about powers and copowers. The calcu-

lations below become clearer through string diagrams (see, for example, Baez and
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Stay [BS11]). However, we keep to commuting diagrams to avoid the overhead im-

posed by additional notation. In the calculations below, given a morphism f : W →V

in a symmetric monoidal closed category V , we denote by f : I→ V (W ,V ) the cor-

responding V -arrow f B λW . f ◦unitleft.

Lemma 6.7. Let F : B→ C be a V -enriched functor preserving the power ∏V B. Then

V ( B (−,B) B (−,∏
V

B)

V ( C (−,FB) C (−,F ∏
V

B)

〈−〉B

〈−〉C

V ( F F=

Proof
First, we prove that, for every power, the isomorphism 〈−〉−1 is uniquely determined

by the counit π−:

C (−,∏
V

B) V ( (C (−,B))

C (−,∏
V

B)⊗ I

C (−,∏
V

B)⊗ (V ( C (∏
V

B,B))

((V ( C (∏V B,B))(
(V ( C (−,B)))⊗

(V ( (C (∏V B,B)))

〈−〉−1

∼=

id⊗π− V (V,C (−,B))⊗ id

eval

=
(6.2)
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Calculate:

(C (A,∏V B)( (V (
C (A,B)))⊗

C (A,∏V B)⊗ I

(C (A,∏V B)( (V (
C (A,B)))⊗ (C (∏V B,∏V B)(

C (A,∏V B))⊗C (∏V B,∏V B)

(C (A,∏V B)( (V (
C (A,B)))⊗ (C (∏V B,∏V B)(

C (A,∏V B))⊗ I

I⊗C (A,∏
V

B)⊗ I

(C (∏V B,∏V B)( (V (
C (A,B)))⊗C (∏V B,∏V B)

(C (∏V B,∏V B)(
(V ( C (A,B)))⊗ I

((V ( C (∏V B,B))( (V (
C (A,B)))⊗ (C (∏V B,∏V B)(

V ( C (∏V B,B))⊗C (∏V B,∏V B)

((V ( C (∏V B,B))( (V (
C (A,B)))⊗ I⊗ I

((V ( C (∏V B,B))( (V (
C (A,B)))⊗ (C (∏V B,∏V B)(

(V ( C (A,B)))⊗ I

C (A,∏
V

B)⊗ I⊗ I

(V ( C (∏V B,B))(
(V ( C (A,B))⊗ I

C (A,∏
V

B) I⊗C (A,∏
V

B)

(C (A,∏V B)( (V (
C (A,B)))⊗C (A,∏V B)V ( (C (A,B))

C (A,∏
V

B)⊗ I

C (A,∏V B)⊗ (V (
C (∏V B,B))

((V ( C (∏V B,B))( (V (
C (A,B)))⊗ (V ( (C (∏V B,B)))

(∗)
=

⊗ bifunctoriality
=

(◦V def.)⊗ id
=

id⊗(∗∗)
=

∼= naturality
=

(enriched

〈−〉−1 naturality)⊗ id
=

∼= naturality,

⊗ bifunctoriality
=

◦V def.
=

⊗ bifunct.
=

id⊗ eval

id⊗ id⊗ id

◦V ⊗ id

id⊗ id

〈−〉−1⊗ id⊗ I

id⊗∼=

id⊗ eval◦V ⊗ id

eval

∼=
id⊗

〈−〉−1⊗ I
◦V ⊗ id

〈−〉−1⊗C (−,B)⊗ I

V (V,C (A,B))⊗
〈−〉−1⊗ id

∼=
∼=

∼=

id⊗〈−〉−1⊗ id

id⊗π−

V (V,C (−,B))⊗
id

∼=

〈−〉−1⊗ id

eval

∼=

id⊗π−

V (V,C (−,B))

eval

where (∗) follows from

V ( C (∏
V

B,B)⊗V C (∏
V

B,B)

I⊗V I⊗C (∏
V

B,∏
V

B)⊗VI⊗ I⊗V

(C (∏V B,∏V B)(
(V ( C (∏V B,B))⊗
C (∏V B,∏V B)⊗V )

(V ( C (∏
V

B,B))⊗V

C (∏
V

B,∏
V

B)⊗V

V I⊗V

π−

eval

∼= id⊗ id ⊗ id

〈−〉−1⊗ id⊗ id

eval⊗ id

eval

∼=

∼=

∼=

π−

(λV )−1.〈−〉−1 ◦ id

id ⊗ id

〈−〉−1⊗ id

π− def.
=

∼= naturality
=

exponential universality
=

π− def.
=

(〈−〉−1 def.)

⊗id⊗ id
=
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and (∗∗) follows from

C (A,B)⊗ I C (A,B)

id⊗ id (C (B,B)( C (A,B))⊗C (B,B)

∼=

id⊗ id

C (−,B)⊗ id

eval
◦

enriched cat.
=

C (−,B) def.
=

Diagram 6.2 then follows by noting that 〈−〉−1 = eval◦ 〈−〉−1⊗ id◦ ∼=.

We will also use the following identity:

C (A,A′)⊗ (V ( C (A′,B))⊗V

((V ( C (A′,B))(
(V ( C (A,B)))⊗ (V (

C (A′,B))⊗V

(V ( C (A,B))⊗V

C (A,B)

C (A,A′)⊗C (A′,B)

C (A′,B)⊗C (A,A′)

(C (A′,B)(
C (A,B))⊗ (V (

C (A′,B))⊗V

(C (A′,B)(
C (A,B))⊗C (A′,B)

V (V,C (−,B))⊗ id⊗ id

eval⊗ id

eval

id⊗ eval

swap

◦C

C (−,A)⊗ id⊗ id

V (V,−)⊗
id⊗ id

◦V ⊗ id

id⊗ eval

eval

C (−,B)⊗ id

enriched
functor

composition
=

◦V def.
=

⊗ bifunctoriality
=

C (−,B) def.
=

(V (V,−) def.)
⊗id
= (6.3)
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Finally, we calculate:
B(A,∏

V
B)⊗V

C (FA,F ∏
V

B)⊗V

V ( C (FA,FB)C (FA,FB)(V ( C (FA,FB))⊗V

(V ( B(A,B))⊗V

B(A,∏
V

B)⊗ I⊗V

B(A,∏
V

B)⊗ (V ( B(∏
V

B,B))⊗V

C (FA,⊗)I⊗V

C (FA,F ∏V B)⊗
(V (B(∏V B,B))⊗V

B(A,∏
V

B)⊗B(∏
V

B,B)

C (FA,F ∏
V

B)⊗C (F ∏
V

B,B)

B(∏
V

B,B)⊗B(A,∏
V

B)

B(A,B)

(V ( B(∏
V

B,B))⊗V

C (F ∏
V

B,FB)⊗C (FA,F ∏
V

B)
((V ( C (F ∏V B,FB))( (V (

C (FA,FB)))⊗ (V (
C (F ∏V B,FB))⊗V

(B(∏V B,B)(
B(A,B))⊗B(∏V B,B)

((V ( B(∏V B,B))( (V (
B(A,B)))⊗ (V (

B(∏V B,B))⊗V

F⊗ id

〈−〉−1
C ⊗V

eval

〈−〉−1
B ⊗ id

(V ( F)⊗ id

eval

∼=⊗id

id⊗π
B
−⊗ id

V (V,B(−,B))⊗ id⊗ id

eval⊗ id

eval

F

◦B

F⊗F

◦C

B(−,B)
⊗id

swap

F⊗F

id⊗ eval

B(−,B)⊗
id⊗ id

V (V,−)⊗ id⊗ id

◦V ⊗ id

swap

eval⊗ id

F⊗ id⊗ id

∼=⊗id

id⊗π
C
−⊗ id

id⊗F ◦π
B
−⊗ id

V (V,C (−,FB))

⊗ id⊗ id

id⊗ eval

eval

id⊗ eval

eval naturality
=

Diagram 6.3
=

enriched functor

composition axiom
=

B(−,B) def.
=

Diagram 6.2
=◦V def.

=

⊗ bifunctoriality
=

(V (V,−) def.)⊗ id
=

Diagram 6.2
=

power

preservation
=

⊗ bifunctoriality
=

(∼= naturality)⊗ id
=

swap

naturality
=

enriched
functor

composition
=

The desired equation follows by the universal property of the closed structure. �

In the following, we will prove commutativity by post-composing with an arrow

and showing the resulting diagram commutes, which misshapes the original diagram

whose commutativity we want to establish. Therefore, we introduce the following

notation. We say that a diagram of the shape

A BC

f

g

h

commutes when the following diagram commutes

A B

B C

f

g h

h
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We will use the following lemma to construct enriched categories with powers from

other categories.

Lemma 6.8. Let V be a symmetric monoidal category, and C a V -category. Assume

as given a class Ob (B), and that, for every B-members A, B, C, assume as given:

• a choice B (A,B) of objects in V ;

• a map F assigning to each A in Ob (B) an object FA in C ;

• a choice FA,B : B (A,B)→ C (FA,FB) of arrows in V ;

• a choice idB
A : I→ B (A,A) of arrows in V , satisfying

I

B(A,A)

C (FA,FA)

idB

idC
F=

• and a choice ◦B : B (B,C)⊗B (A,B)→ B (A,C) of arrows in V satisfying

B(B,C)⊗B(A,B) B(A,C)

C (FA,FC)C (FB,FC)⊗C (FA,FB)

◦B

F⊗F F

◦C

=

1. The following diagrams commute:

C (A,D)

C (A,B) C (A,B)

(B(C,D)⊗B(B,C))⊗B(A,B) B(C,D)⊗ (B(B,C)⊗B(A,B))

B(B,D)⊗B(A,B) B(C,D)⊗B(A,C)

B(A,D)I⊗B(A,B) B(A,B)⊗ I

B(B,B)⊗B(A,B) B(A,B) B(A,B)⊗B(A,A)

∼=

id⊗◦B

◦B

◦B ⊗ id

◦B
F

idB
B ⊗ id

∼=

◦B

id⊗ idB
A

∼=

◦B
F F
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Assume further that this data makes B a V -category, and F : B → C a V -functor.

2. Assume that for some object V in V , and B in Ob (B), there is some ∏V B in

Ob (B) such that F ∏V B is the power ∏V FB in C exhibited by 〈−〉C . Given a

choice of maps

〈− : A→ B〉B : V ( B (A,B)→ B (A,∏V B)

〈− : A→ B〉−1
B : V ( B (A,B)← B (A,∏V B)

satisfying

V ( B(A,B) V ( B(A,B)B(A,∏
V

B) B(A,∏
V

B)

C (FA,F ∏
V

B) C (FA,F ∏
V

B)V ( C (FA,FB) V ( C (FA,FB)

〈−〉B

FV ( F

〈−〉C

〈−〉−1
B

FV ( F

〈−〉−1
C

= =

then the following diagrams commute:

V ( B(A,B)

B(A,∏
V

B)

V ( B(A,B)

B(A,∏
V

B)

V ( C (FA,FB)

C (FA,F ∏
V

B)
〈−〉B 〈−〉−1

B
〈−〉B

F

F

B(A,A′)⊗
(V ( B(A,B))

I⊗B(A,A′)⊗
(V ( B(A,B))

((V ( B(A,B))( B(A,∏V B))⊗
((V ( B(A′,B))( (V ( B(A,B)))⊗

(V ( B(A,B))

((V ( B(A,B))(
B(A,∏V B))⊗
(V ( B(A,B))

B(A,A′)⊗ I⊗
(V ( B(A,B))

(B(A′,∏V B)( B(A,∏V B))⊗
((V ( B(A′,B))( B(A′,∏V B))⊗

(V ( B(A,B))

B(A,∏
V

B)C (FA,F ∏
V

B)

∼=⊗id

〈−〉B ⊗V (V,B(−,B))⊗ id

◦B ⊗ id

∼=⊗id

B(−,∏
V

B)⊗〈−〉B

◦B ⊗ id

evalF
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V

B(∏
V

B,B)

C (F ∏
V

B,FB)

π
B
−

π
C
−

F

where πB
− is a formal counit as defined as for powers, i.e.,

π− : V
∼=−→ I⊗V

(λV )−1.(I
id−→C (∏V A,∏V A)

〈−:∏V A→A〉−1
V−−−−−−−−−→C (∏V A,A))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C (∏

V
A,A)

3. Assume a given V -functor G : A → C such that F factors through G’s object

map, i.e. there is a map H from Ob (A) to Ob (B) such that G = F ◦H, and a

choice HA,B : A (A,B)→ B (HA,HB) of arrows in V , satisfying:

A(A,B)

B(HA,HB)

C (FA,FB)

H

G

F=

then the following diagrams commute:

I

A(A,A)

B(HA,HA)

C (FA,FA)

idA

idB

H

F

A(B,C)⊗B(A,B) A(A,C)

B(HA,HC)B(HB,HC)⊗B(FA,FB)

C (FA,FC)

◦A

H⊗H H

◦C

F

Proof

With one notable exception in part 2, the proofs are straightforward calculations. These

calculations reduce each diagram to the corresponding property of the enriched con-

cept. For example, the proof of the first identity reduces the diagram to the associativity

axiom of the enriched category C .
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(B(C,D)⊗
B(B,C))⊗

B(A,B)

(C (FC,FD)⊗
C (FB,FC))⊗

C (FA,FB)

B(C,D)⊗
(B(B,C)⊗

B(A,B))

C (FC,FD)⊗
(C (FB,FC)⊗

C (FA,FB))

B(B,D)⊗B(A,B)

C (FB,FD)⊗
C (FA,FB)

B(C,D)⊗B(A,C)

C (FC,FD)⊗
C (FA,FC)

B(A,D)

C (A,D)

∼=

id⊗◦B

◦B

◦B ⊗ id

◦B

∼=

id⊗◦C

◦C

◦C ⊗ id

◦C

(F⊗F)⊗F F⊗ (F⊗F)

F⊗F F⊗F

F

(assumption)
⊗id
=

∼= naturality
=

id⊗
(assumption)

=

assumption
=

assumption
=

enriched cat.
=

The exception is the following diagram from part 2:

B(A,A′)⊗
(V ( B(A,B))

I⊗B(A,A′)⊗
(V ( B(A,B))

((V ( B(A,B))( B(A,∏V B))⊗
((V ( B(A′,B))( (V ( B(A,B)))⊗

(V ( B(A,B))

((V ( B(A,B))(
B(A,∏V B))⊗
(V ( B(A,B))

B(A,A′)⊗ I⊗
(V ( B(A,B))

(B(A′,∏V B)( B(A,∏V B))⊗
((V ( B(A′,B))( B(A′,∏V B))⊗

(V ( B(A,B))

B(A,∏
V

B)C (FA,F ∏
V

B)

∼=⊗id

〈−〉B ⊗V (V,B(−,B))⊗ id

◦B ⊗ id

∼=⊗id

B(−,∏
V

B)⊗〈−〉B

◦B ⊗ id

evalF

In this case too we reduce to the naturality of the isomorphism 〈−〉C in C . However,

this time the reduction requires some care. First, we note some properties involved in

this proof.
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Recall that the action of the contravariant functor (−)(W on morphisms f : V →
V ′ is defined as:

f (W B λV .
(
(V ′(W )⊗V

id⊗ f−−−→ (V ′(W )⊗V ′ eval−−→W
)

and satisfies the following naturality condition (see Mac Lane [ML98, Theorem IV.7.3]):

λV .g◦ (id⊗ f ) = ( f (W )◦ (λV ′.g) (6.4)

Using the bifunctor (−)( (−) we can reformulate our assumption on 〈−〉B as

follows:

I (V ( B(A,B)⊗ (B(A,∏
V

B))

(V ( C (FA,FB)⊗ (C (FA,F ∏
V

B)) (V ( B(A,B)⊗ (C (FA,F ∏
V

B))

〈−〉B

id( F〈−〉C

(V ( F)( id

=
(6.5)

The proof is a straightforward calculation:

(id( F)◦ 〈−〉B = (id( F)◦
(
λV ( B (A,B).

(
〈−〉B ◦unitleft

))
λ naturality

↓
= λV ( B (A,B).

(
F ◦ 〈−〉B ◦unitleft

)
assumption

↓
= λV ( B (A,B).

(
〈−〉C ◦ (V ( F)◦unitleft

)
unitleft naturality

↓
= λV ( B (A,B).

(
〈−〉C ◦unitleft ◦ (id⊗ (V ( F))

)
λ naturality (6.4)

↓
= (V ( F)◦λV ( B (A,B).(〈−〉C ◦unitleft)

= (V ( F)◦ 〈−〉C
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The contravariant hom-object V functor B (−,B) satisfies

B(A,A′) C (FA,FA′)

B(A′,B)( B(A,B) B(A′,B)( C (FA,FB)

C (FA′,FB)( C (FA,FB)

F

C (−,FB)

F( id

B(−,B)

id( F

= (6.6)

Indeed,

(F → id)◦C (−,FB)◦F

C (−,FB) def.

↓
= (F → id)◦

(
λC
(
FA′,FB

)
.(◦C ◦ swap)

)
◦F

λ naturality (6.4)

↓
= λC

(
FA′,FB

)
.(◦C ◦ swap◦ (id⊗F))◦F

λ naturality

↓
= λC

(
FA′,FB

)
.(◦C ◦ swap◦ (id⊗F)◦ (F⊗ id))

⊗ bifunctoriality, swap naturality

↓
= λC

(
FA′,FB

)
.(◦C ◦F⊗F ◦ swap)

enriched functor composition axiom

↓
= λC

(
FA′,FB

)
.(F ◦◦B ◦ swap)

λ naturality

↓
= (id( F)◦

(
λC
(
FA′,FB

)
.(◦B ◦ swap)

)
C (−,FB) def.

↓
= (id( F)◦C (−,FB)

Similar calculations establish the following three properties of the interaction be-

tween the composition ◦V in V and( for any morphism f in V :

(id( f )◦◦V = ◦V ◦ ((id( f )⊗ f ) (6.7a)

◦V ◦ (( f ( id)⊗ id) = ◦V ◦ (id⊗ (id( f )) (6.7b)

◦V ◦ (id⊗ ( f ( id)) = ( f ( id)◦◦V (6.7c)
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Another such calculation using these identities shows that:

B(A,A′) C (FA,FA′)

(V ( B(A′,B))(
(V ( B(A,B))

(V ( B(A′,B))(
(V ( C (FA,FB))

(V ( C (FA′,FB))(
(V ( C (FA,FB))

F

V ( C (−,FB)

(V ( F)( id

V ( B(−,B)

id( (id( F)

= (6.8)

The calculation on page 132 completes the proof. �

6.2 Enriched Lawvere theories

We recall the relevant notions regarding enriched Lawvere theories. Our account fol-

lows most closely Power’s account [Pow00]. A key difference is that we keep to a

symmetric closed enrichment, rather than the more general biclosed structure Power

considers. The symmetric account dates further back to Kelly [Kel82b].

First, we assume the enriching category has the following structure (see Power’s

account [Pow00, Section 2]).

Definition 6.9. Let λ be a regular cardinal. A λ-Power category V is a symmetric

monoidal closed category
〈∣∣V ∣∣ , I,⊗,(,unitleft,unitright,assoc,symm

〉
such that:

•
∣∣V ∣∣ is locally λ-presentable; and

• I is λ-presentable, and if V , W are λ-presentable, then so is V ⊗W.

We call an ℵ0-Power category a finitary Power category, and similarly we call

an ℵ1-Power category a countably infinitary Power category, or simply a countable

Power category (although it is may not be a countable category, i.e., have countably

many morphisms). We restrict our attention to the following two cases:

Example 6-8. The category Set with the cartesian closed structure is a finite Power

category. Indeed, in Example 5-7 we saw that Set is locally finitely presentable. As

I = {?} is finite, and the product of finite sets is finite as well, Set is a finite Power

category.
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((
V
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B
))
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(F
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∏ V
B
))
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⊗
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B
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Example 6-9. The category ωCPO with the cartesian closed structure is a countable

Power category. Indeed, Theorem 5.33 shows that ωCPO is locally countably pre-

sentable. As I = {?} is finite, it is countably presentable by Example 5-5. Let V , W

be two ω-cpos with countable domain presentations PV = 〈A, I,vV 〉, PW = 〈B,J,vW 〉,
respectively. Define:

C B A×B

K B {〈〈an,b〉〉n|〈an〉 ∈ I,b ∈ B}∪{〈〈a,bn〉〉n|a ∈ A,〈bn〉 ∈ J}
vU B {〈〈an,b〉〉 v 〈〈a′n,b〉〉|〈an〉 vV 〈a′n〉 ,b ∈ B}∪

{〈〈a,bn〉〉 v 〈〈a,b′n〉〉|a ∈ A,〈bn〉 vW 〈b′n〉}

then PU = 〈C,K,vU〉 is a countable domain presentation, and U B V ×W is the

initial PU -model. Indeed, setting U ⟦〈a,b〉⟧ B 〈V ⟦a⟧,W ⟦b⟧〉 exhibits U as a PU -

model. For initiality, take any other model U ′. For each a ∈ A, due to the presence

of constraints of the form 〈〈a,bn〉〉 v 〈〈a,b′n〉〉, the function ga B λb.U ′ ⟦〈a,b〉⟧ ex-

hibits a PW -model 〈U ′,ga〉, hence we have a unique Scott-continuous fa : W → U ′

factoring W ⟦−⟧ through ga. Due to constraints of the form 〈〈an,b〉〉 v 〈〈a′n,b〉〉, the

map g′ B λa. fa from A to U ′ is monotone, hence we have a unique Scott-continuous

h′ : V → (U ′)V factoring V ⟦−⟧ through g′. Uncurrying then yields the unique h :

V ×W λV .h′−−−→U ′ factoring U ⟦−⟧ through U ′ ⟦−⟧. Thus V ×W has a countable presen-

tation, and ωCPO is a countable Power category.

When a category has all (co)powers of objects by λ-presentable objects, we say it

has all λ-(co)powers. Denote by PresλV the full subcategory of V consisting of the λ-

presentable objects. When V is a λ-Power category, PresλV contains I and V ⊗W for

every λ-presentable V and W . Thus, PresλV has all λ-copowers, hence the opposite V -

category Presop
λ

V has all λ-powers. Note that, in light of Proposition 5.11, PresλV is

essentially small, i.e., it is V -equivalent to a small category. Note that Power [Pow00]

prefers to work with small categories, hence instead uses the skeleton of our PresλV .

As we will see later, it will be useful to have all λ-presentable objects rather than a set

of representatives, although it will complicate some proofs.

We say that a V -functor F : B → C is identity-on-objects if Ob (B) = Ob (C ) and

FB = B for all B-objects B. For example, the V -functor F from V to the Kleisli

V -category V T that we study in Example 6-7 is identity-on-objects.

Definition 6.10. Let V be a λ-Power category. An enriched λ-Lawvere V -theory L is

a pair 〈|L |,L ⟦−⟧〉 where:
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• |L | is a V category with λ-powers; and

• L ⟦−⟧ : Presop
λ

V → |L | is a V -functor that is λ-power preserving and identity-

on-objects.

Example 6-10 (see Power [Pow00, Construction 3.3]). Let T be a monad enriched

in a λ-Power category V , and F the V -functor from V to the Kleisli V -category

V T we studied in Example 6-7. Denote by V λ

T the V -category induced by the λ-

presentable objects in V . Then F restricts to an identity-on-objects λ-copower pre-

serving V -functor Fλ : PresλV → V λ

T . By moving to the opposite categories, we ob-

tain an identity-on-objects λ-power preserving V -functor from Presop
λ

V to
(

V λ

T

)op
,

and consequently a λ-Lawvere V -theory which we denote by LT .

Explicitly, LT is given as follows. The objects of |LT |, as in any λ-Lawvere V -

theory, are the λ-presentable objects of V . The hom-objects |LT |(V ,W ) are given by

V (W ,TV ). Identities are given by the monadic unit η, and the composition by:

◦A,B,C:V (C,T B)⊗V (B,T A)
id⊗T−−−→V (C,T B)⊗V (T B,T 2A)

◦V ◦symm−−−−−−→V (C,T 2A)
V (A,µ)−−−−→V (C,T A)

The powers ∏V U are given as V copowers, i.e., the tensor product V ⊗U .

Finally, the object map of the V -functor LT ⟦−⟧ is the identity map, and its action

on hom-objects is given by post-composing with the unit η:

LT ⟦−⟧ : Presop
λ

V (V ,W ) = V (W ,V )
V (W ,ηV )−−−−−→ V (W ,TV ) = |LT |(V ,W )

Thus, we have a λ-Lawvere V -theory.

In the sequel, we will present more syntactic and concrete ways to define Lawvere

theories.

Definition 6.11. Let L be a λ-Lawvere V -Theory and C a V -category with λ-powers.

An L-model M in C is a V -functor M : |L | → C preserving all λ-powers.

Given two models M , M ′, an L-homomorphism h is a V -natural transformation from

M to M ′.

We denote by Mod(L ,C ) the full subcategory of the (ordinary) category of V -functors

from |L | to C and V -natural transformations between them consisting of the L-models.

Let M be an L-model. Note that for any λ-presentable V :

M (V )

identity-on-objects

↓
= M (L ⟦V⟧)∼= M (L ⟦V ⊗ I⟧)

power preservation

↓
∼= M (∏

V
L ⟦I⟧) =

↑
identity-on-objects

M (∏
V

I)

power preservation

↓
∼= ∏

V
M (I)
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Therefore, the object map of M is uniquely determined by its action on I. We call the

object M (I) the carrier of M . In fact, we have the following functor:

UL : Mod(L ,C ) → |C |o
UL : M 7→M (I)

UL : (M h−→M ′) 7→ (I
hI−→ C (M (I),M ′(I)))

Note how we regarded Mod(L ,C ) as an ordinary category. In fact, Mod(L ,C ) is a

V -category [Pow00, Definition 3.2]. To explicitly describe this structure, we need to

introduce enriched functor categories, which requires us to review additional notions

from enriched category theory. As we will not explicitly use this enriched structure in

what follows, we treat Mod(L ,C ) merely as an ordinary category.

Power [Pow00] generalised the usual bijection between finitary monads and Law-

vere theories to the enriched case in the following manner:

Theorem 6.12 ([Pow00, Construction 3.3 and Theorems 3.4,4.1]). Let V be a λ-Power

category. For every λ-Lawvere V -theory L , the functor UL : Mod(L ,V ) → V is

monadic, i.e., UL has a left adjoint FL : V →Mod(L ,V ), and the Eilenberg-Moore

category for the resulting monad TL = ULFL over V is equivalent to Mod(L ,V ).

Furthermore, TL is V -enriched and λ-ranked. We call FL the free model functor for

L , and TL the free model monad for L .

Using Theorem 5.19, we deduce the following:

Theorem 6.13 ([HPP06]). For every λ-Lawvere V -theory L , the category of L-models

Mod(L ,V ) is locally λ-presentable.

Plotkin and Power, in unpublished work, use this theorem to show indirectly that

ωCPO is locally countably presentable by exhibiting it as a category of L-models for

a suitable countable Lawvere Pos-enriched theory.

Next, we follow Power [Pow00] and construct a category of enriched Lawvere

theories:

Definition 6.14. Let L , L ′ be two λ-Lawvere V -theories. A morphism T from L to

L ′ is a V functor T : |L | → |L ′| that is identity-on-objects, λ-power preserving, and

satisfies

Presop
λ

V

|L |
∣∣L ′∣∣

L ⟦−⟧ L ′ ⟦−⟧

T

=
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Taking λ-Lawvere V -theories as objects and their morphisms with the usual functor

composition and identities yields an ordinary category LawλV .

Example 6-11. Let m : T → T ′ be a V -monad morphism over a λ-Power category

V . We saw in Example 6-7 that m induces an identity-on-objects, copower preserving

V -functor M : V T → V T ′ . Therefore, by restricting to the λ-presentable objects and

taking the opposite categories, this V -functor restricts to a morphism of λ-Lawvere

V -theories Lm from the theory LT to the theory LT ′ , presented in Example 6-10.

Denote by V -Monads the (ordinary) category of V -monads and V -monad mor-

phisms. Then the construction L− is an ordinary functor from the category V -Monads
to the category LawλV .

Denote by V -Monadsλ the full subcategory of V -Monads consisting of the λ-

ranked monads. The functor L− restricts to a functor from V -Monadsλ to LawλV .

Theorem 6.15 ([Pow00, Theorem 4.3]). Let V be a λ-Power category. The functor

L− : V -Monadsλ→ LawλV is an equivalence of categories. Its adjoint weak inverse

from LawλV to V -Monadsλ maps every λ-Lawvere V -theory L to the monad TL from

Theorem 6.12. In particular:

• for every λ-Lawvere V -theory L , we have LTL
∼= L; and

• for every λ-ranked V -monad T over V , we have TLT
∼= T .

In the following we occasionally need the explicit description of T− on a theory L .

Therefore, we recount a known technique to reconstruct, up to isomorphism, the func-

tor T− from the definition of L−, using the previous theorem. Denote by θ : LT− → id

the counit of the equivalence.

Given a V -category C and arrows

f : I( C (A,B)

g : I( C (C,D)

define the composition arrow (cf. Kelly [Kel82a, Section 1.6]) as follows:

C
(

f ,g
)

: C (B,C)
∼=−→ I⊗C (B,C)⊗ I

g⊗id⊗ f−−−−→C (B,C)⊗C (B,C)⊗C (A,B)
id⊗◦−−−→C (B,C)⊗C (A,C)

◦−→ C (A,D)

For a Lawvere theory L , and any arrow f : A← B in PresλV , we define the arrow:

L ⟦ f ⟧ : I
f
−→ Presop

λ
V (A,B)

L⟦−⟧−−−→ |L |(A,B)
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Straightforward calculations verify the following identities:

L ⟦idA⟧= id|L |A (6.9a)

|L |(L ⟦ f ⟧,L ⟦h⟧)◦L ⟦g⟧= L ⟦ f ◦g◦h⟧ (6.9b)

C (B,C)⊗C (A,B) C (A,C)

C
(
B,C′

)
⊗C

(
A′,B

)
C
(
A′,C′

)
C (idB,g)⊗C ( f , idB) C ( f ,g)

◦

◦

= (6.9c)

C (B,C)⊗C (A,B) C (B,C)⊗C
(
A,B′

)

C
(
B′,C

)
⊗C (A,B) C (A,C)

C ( f , idC)⊗ id ◦

id⊗C (idA, f )

◦

= (6.9d)

|L |(A,B) |L |
(
A′,B′

)

∣∣∣L̂∣∣∣(A,B) ∣∣∣L̂∣∣∣(A′,B′)

|L |(L ⟦ f ⟧,L ⟦g⟧)

∣∣∣L̂∣∣∣(L̂ ⟦ f ⟧,L ⟦g⟧)

T T=
(6.9e)

Let L be any Lawvere theory.

First, we recover the action of TL on objects. Consider any V -object A, and a λ-

directed diagram D : I→V , whose vertices are λ-presentable, for which A = ColimD.
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We would like to calculate as follows:

TLA

λ-ranked monad

↓
= ColimTL ◦D∼= Colim(I( TLD(−)) = ColimPresλV (I,TLD(−))

= Colim |LTL |(D(−), I)

Theorem 6.15

↓
∼= Colim |L |(D(−), I)

However, we need to take some care with the last two transitions, and clarify what we

mean by |L |(D(−), I) when the diagram is applied to morphisms in I.

Let L be any Lawvere theory. We define an ordinary functor

|L |(L ⟦−⟧, I) : PresλV → V

The object map maps every λ-presentable object A to |L |(A, I). Given any mor-

phism f : A→ A′ between λ-presentable objects, we have a V -morphism L ⟦ f ⟧ : I→
|L |(A′,A). Thus, we define the morphism map by the enriched precomposition with

L ⟦ f ⟧:
|L |(L ⟦ f ⟧, I) : |L |(A, I)−→ |L |

(
A′, I
)

In light of (6.9a) and (6.9b), |L |(L ⟦−⟧, I) is a functor. For any λ-presentable object A,

define an isomorphism αA : TLA
∼=−→ |L |(A, I) by:

αA : TLA∼= I( TLA = PresλV (I,TLA) = |LTL |(A, I)
θ∼= |L |(A, I)

Because θ is a morphism of Lawvere theories, it follows by Diagram 6.9e that θ is

natural in A. Consequently, α is a natural isomorphism between the restriction of

TL to the λ-presentable objects, i.e., as a functor from PresλV to V , and the functor

|L |(L ⟦−⟧, I).
Consider any diagram D : I → V , whose vertices are λ-presentable, for which

A = ColimD. Let DL : I→ V be the diagram |L |(L ⟦−⟧, I)◦D. Then precomposing

α with D yields an isomorphism α : TL ◦D
∼=−→ DL . Thus we have:

TLA = TL ColimD = ColimTLD∼= ColimDL

Similarly, to recover the action of TL on morphisms, we use Proposition 5.21.

Consider any λ-directed diagram D : I → V S whose vertices are all λ-presentable.

The naturality of α yields a natural isomorphism αS : T S → |L |(L ⟦−⟧, I)S. Define

DL as the composition |L |(L ⟦−⟧, I)S ◦D. We then have:

TL f

Proposition 5.21

↓
∼= ColimT S

L ◦D∼= ColimDS
L
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Thus we recover the object map of L−. Let T : L → L̂ be a morphism of Lawvere

theories.

Consider any V -object A, and a λ-directed diagram D : I→ V , whose vertices are

λ-presentable, for which A = ColimD. We will invoke Proposition 5.22 on TT. Thus

we construct DTT as in Proposition 5.22:

DTTi : TLDi
(TT)Di−−−→ TL̂Di i ∈ Ob (I)

DTT f =
〈

TLDi
TL D f−−−→ TLD j,TL̂Di

TL̂ D f
−−−→ TL̂D j

〉
f : i→ j in I

The components of T form a natural transformation TA,I : |L |(A, I)→
∣∣∣L̂∣∣∣(A, I). Thus

we construct the diagram DT as in Proposition 5.22. I.e., for i ∈ Ob (I),

DTi : |L |(Di, I) T−→
∣∣∣L̂∣∣∣(Di, I) (6.10)

and for f : i→ j in I:

DT f =

〈
|L |(Di, I)

|L |(L⟦D f ⟧,I)−−−−−−−→ |L |(D j, I),
∣∣∣L̂∣∣∣(Di, I)

|L̂|(L̂⟦D f ⟧,I)
−−−−−−−−→

∣∣∣L̂∣∣∣(D j, I)

〉

The two isomorphisms αL : TL
∼=−→ |L |(L ⟦−⟧, I) and αL̂ : TL̂

∼=−→
∣∣∣L̂∣∣∣(L̂ ⟦−⟧, I

)
then

induce an isomorphism α̂ from DTT to DT. Therefore:

(TT)A

Proposition 5.22

↓
∼= ColimDTT

∼= ColimDT

Thus we reconstructed the functor T−.

The category LawλV is locally presentable1, but the proof lies beyond the scope

of this thesis. From its local presentability we deduce the following.

Theorem 6.16 (for a special case, see Hyland et. al [HPP06, Theorem 6]). The cate-

gory LawλV is cocomplete.

Therefore, we also know that LawλV is complete. However, in the sequel we will

make use of the fact that the limits in LawλV are given componentwise:

Theorem 6.17. Let D : J→ LawλV be a small diagram. Every limiting cone 〈L ,F〉
is uniquely determined by a collection of component limiting cones

〈
|L |(A,B),FA,B

〉
for the component diagrams |D(−)|(A,B).
The remainder of the Lawvere theory structure is given as the unique maps satisfying,

for all A, B:
1John Power, private communication, 2012.
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|L |(B,C)⊗|L |(A,B) |L |(A,C)

|Di|(F iA,F iC)|Di|(F iB,F iC)⊗|Di|(F iA,F iB)

◦|L |

F i⊗F i F i

◦|Di|

=I

|L |(A,A)

|Di|(F iA,F iA)

id|L |

id|Di|
F i=

Presop
λ

V (A,B)

|L |(A,B)

|Di|(F iA,F iB)

L ⟦−⟧

Di⟦−⟧
F i=

V ( |L |(A,B) V ( |L |(A,B)|L |(A,∏
V

B) |L |(A,∏
V

B)

|Di|(A,∏
V

B) |Di|(A,∏
V

B)V ( |Di|(A,B) V ( |Di|(A,B)

〈−〉|L |

F iV ( F i

〈−〉|Di|

〈−〉−1
|L |

F iV ( F i

〈−〉−1
|Di|

= =

Proof

First, assume a choice of limiting cones
〈
|L |(A,B),FA,B

〉
for the component diagrams

|D(−)|(A,B). Straightforward calculation shows that we indeed have, for every A, B,

cones for each of the diagrams above. For example, for every f : i→ j, we have

V ( |L |(A,B)

V ( |Di|(A,B)

V ( |D j|(A,B)

|Di|(A,∏
V

B)

|D j|(A,∏
V

B)

V ( F i

V ( F j

〈−〉|Di|

〈−〉|D j|

V ( D f D fV ( (cone)
=

Lemma 6.7
=

Thus 〈−〉|L | is uniquely defined. Using the fact that 〈−〉|Di| are isomorphisms, 〈−〉−1
|L |

is uniquely defined. Similar arguments establish the unique existence of the other

structure maps.

Lemma 6.8 completes the construction. From Lemma 6.8(1) we have, for all i:
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|Di|(A,D)

|Di|(A,B) |Di|(A,B)

(|L |(C,D)⊗|L |(B,C))⊗|L |(A,B) |L |(C,D)⊗ (|L |(B,C)⊗|L |(A,B))

|L |(B,D)⊗|L |(A,B) |L |(C,D)⊗|L |(A,C)

|L |(A,D)I⊗|L |(A,B) |L |(A,B)⊗ I

|L |(B,B)⊗|L |(A,B) |L |(A,B) |L |(A,B)⊗|L |(A,A)

∼=

id⊗◦|L |

◦|L |

◦|L |⊗ id

◦|L |
F i

id|L |B ⊗ id
∼=

◦|L |

id⊗ id|L |A

∼=

◦|L |
F i F i

Therefore, as
〈
|L |(A,B),FA,B

〉
is a limiting cone, we deduce that:

(|L |(C,D)⊗|L |(B,C))⊗|L |(A,B) |L |(C,D)⊗ (|L |(B,C)⊗|L |(A,B))

|L |(B,D)⊗|L |(A,B) |L |(C,D)⊗|L |(A,C)

|L |(A,D)I⊗|L |(A,B) |L |(A,B)⊗ I

|L |(B,B)⊗|L |(A,B) |L |(A,B) |L |(A,B)⊗|L |(A,A)

∼=

id⊗◦|L |

◦|L |

◦|L |⊗ id

◦|L |

=

id|L |B ⊗ id
∼=

◦|L |

id⊗ id|L |A

∼=

◦|L |

= =

Thus |L | is a V -category, and F i become V -functors from |L | to |Di|.

Therefore, we can invoke Lemma 6.8(2). From
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V ( |L |(A,B)

|L |(A,∏
V

B)

V ( |L |(A,B)

|L |(A,∏
V

B)

〈−〉|L | 〈−〉−1
|L |

〈−〉|L |=

=

we deduce that 〈−〉|L | is an isomorphism. From

|L |(A,A′)⊗
(V ( |L |(A,B))

I⊗|L |(A,A′)⊗
(V ( |L |(A,B))

((V ( |L |(A,B))( |L |(A,∏V B))⊗
((V ( |L |(A′,B))( (V ( |L |(A,B)))⊗

(V ( |L |(A,B))

((V ( |L |(A,B))(
|L |(A,∏V B))⊗
(V ( |L |(A,B))

|L |(A,A′)⊗ I⊗
(V ( |L |(A,B))

(|L |(A′,∏V B)( |L |(A,∏V B))⊗
((V ( |L |(A′,B))( |L |(A′,∏V B))⊗

(V ( |L |(A,B))

|L |(A,∏
V

B)

∼=⊗id

〈−〉|L |⊗V (V, |L |(−,B))⊗ id

◦|L |⊗ id

∼=⊗id

|L |(−,∏
V

B)⊗〈−〉|L |

◦|L |⊗ id

eval=

we deduce, by appeal to universality, that 〈−〉|L | is V -natural, hence |L | has the power

∏V B. From

V

|L |(∏
V

B,B)

|Di|(∏
V

B,B)

π
|L |
−

π
|Di|
−

F i=

we deduce that F i preserves this power.

We now invoke Lemma 6.8(3) for H B L ⟦−⟧, and deduce that:
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I

Presop
λ

V (A,A)

|L |(A,A)

idPresop
λ

V

id|L |

L ⟦−⟧

Presop
λ

V (B,C)⊗|L |(A,B) Presop
λ

V (A,C)

|L |(A,C)|L |(B,C)⊗|L |(A,B)

◦Presop
λ

V

L ⟦−⟧⊗L ⟦−⟧ L ⟦−⟧

◦|Di|

Thus L ⟦−⟧ is a V -functor from Presop
λ

V to |L |. This functor preserves all λ-powers,

as the following calculation shows

V

Presop
λ

V (∏
V

B,B)

|L |(∏
V

B,B)

|Di|(∏
V

B,B)

π
Presop

λ
V

−

π
|L |
−

L ⟦−⟧

Di⟦−⟧

F i

π
|Di|
−

power
preservation

=

power
preservation

=

L ⟦−⟧ def.
=

Thus we have a λ-Lawvere V -theory L , and a Lawvere theory morphism F i : L→
Di for every i. As this morphism is componentwise a cone, we deduce that 〈L ,F〉 is a

cone.

Given any other cone
〈

L̂ ,G
〉

, we get componentwise cones
〈∣∣∣L̂∣∣∣(A,B),Gi

A,B

〉
,

hence a unique factorisation HA,B :
∣∣∣L̂∣∣∣(A,B) → |L |(A,B). Another invocation of

Lemma 6.8(3) shows these form the components of a V -functor H, and another calcu-

lation shows it preserves λ-powers. The componentwise uniqueness shows the unique-

ness of this functor, hence 〈L ,F〉 is the limiting cone for D.

Conversely, assume we have a limiting cone 〈L ,F〉. As V is complete, for every

A, B, we have some cone L̂ (A,B) for |Di|(A,B). Hence, by the previous direction

of the proof, these form a limiting cone
〈

L̂ ,G
〉

, and we have a unique isomorphism

〈L ,F〉 ∼=
〈

L̂ ,G
〉

. As isomorphisms of Lawvere theories are componentwise isomor-

phisms, each component
〈
|L |(A,B),FA,B

〉
is thus a limiting cone. The other commu-

tative diagrams follow from F being a cone of Lawvere theories, and their uniqueness

follows from universality. �
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6.3 Algebraic operations

We define algebraic operations for Lawvere theories:

Definition 6.18. Let L be a λ-Lawvere V -theory, and A, P be λ-presentable objects.

An operation op of type A〈P〉 in L is a morphism op : A→ P in |L |, i.e., a V -morphism

op : I→ |L |(A,P).
Let op, op′ be algebraic operations of type A〈P〉 in L , L̂ , respectively, and T : L → L̂
a morphism of Lawvere theories. We say that T maps op to op′ if T(op) = op′, i.e.,

when

I ∣∣∣L̂∣∣∣(A,P)

|L |(A,P)

=

op

op′

T

Just as in Section 3.1, we write op : A〈P〉 when op is an operation of type A〈P〉.
In fact, Plotkin and Power’s notion of algebraic operations (see Definition 2.1)

arose from the notion of algebraic operations in a Lawvere theory. Thus, the corre-

spondence between algebraic operations and generic effects extends to operations in a

Lawvere theory. It is precisely the well-known bijection between arrows in a Lawvere

theory and Kleisli arrows:

Theorem 6.19. Let V be a λ-Power category with a cartesian closed structure. The

equivalence LawλV ' V -Monadsλ given in Theorem 6.15 induces a bijection be-

tween generic effects gen : A〈P〉 for λ-ranked V -enriched monads and algebraic op-

erations op : A〈P〉 for λ-Lawvere V -theories, given by:

opgen : I
λP.
(

1×P
π2−→P

gen−−→T A
)

−−−−−−−−−−−−−−→ (T A)P = |LT |(A,P)∼= |L |(A,P)

genop : P∼= 1×P
op×P−−−→ |L |(A,P)×P∼= (T A)P×P eval−−→ T A

Moreover, this bijection respects the mapping relation between operations: a strong

monad morphism m maps gen to gen′ if and only if Lm maps opgen to opgen′ .

Proof
The bijection amounts to internalising the Kleisli arrow gen and using the isomor-

phisms |L |(A,P)∼= (T A)P. For establishing that genopgen = gen, we have
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P

1×P

|L |(A,P)×P

(TA)P

TA

(TA)P

P
∼=

opgen×P ∼=

eval

∼=

gen

gen

λP.(gen◦π2)×P

∼=

=

=

=

opgen def.
=

exponential universality
=

Conversely, for opgenop = op we have, by universality,

1×P

TAP×P

|L |(A,P)×P TAP×P TA

|L |(A,P)×P

TAP×PP

1×PλP.(genop ◦π2)×P

∼=

∼= eval

op×P

∼=

eval

∼= ∼=

op×P

genop

=

=

=

exponential
universality

=

genop def.
=

Similar calculations show that the commutativity of each of the following two dia-

grams implies the commutativity of the other:

I ∣∣∣L̂∣∣∣(A,P)

|L |(A,P)

=

opgen

opgen′

LmP

T ′A

TA

=

gen

gen′

m

Therefore, m maps gen to gen′ if and and only if Lm maps opgen to opgen′ . �
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Example 6-12. Take V to be Set and λ to be ℵ0. Let V be any finite set with at least

two elements denoting storable values. Take Char to be V. Consider the global state

monad TGS(V), and the monad TI/O(V) for input/output of ‘characters’ in V. We define

inductively a monad morphism f : TI/O(V)→ TGS(V):

fX : TI/O(V)X → TGS(V)X

fX : 〈I,〈tv〉〉 7→ λv. f{lookup}(tv)(v)

x 7→ λv.〈v,x〉
〈O,v0, t〉 7→ λv. f (t)(v0)

Straightforward calculations show f is indeed a monad morphism, and that it maps

the input operation to the look-up operation and the output operation to the update

operation. Note also that f is surjective, as

λv.〈uv,xv〉= f (
〈
I,〈〈O,uv,xv〉〉v∈V

〉
)

Thus, by Theorem 6.19 we have input and output operations for the finitary Law-

vere theory L I/O(Char) corresponding to TI/O(Char), lookup and update operations for

the finitary Lawvere theory LGS(V), and the monad morphism f maps the input and

output operations to the look-up and update operations, respectively.

6.4 Algebraic CBPV models

We define a subclass of CBPV models arising from a Lawvere theory.

Definition 6.20. Let λ be a regular cardinal, and V a locally λ-presentable category,

and X a set. A λ-presentable type assignment for X in V is a type assignment for X in

PresλV .

Note that every locally λ-presentable type assignment in V induces an ordinary

type assignment in V , as PresλV is a subcategory of V .

Example 6-13. If V is a finite set denoting storable values, the type assignment from

Example 2-9:

lookup : V update : 1〈V〉

is a finitely-presentable type assignment for {lookup,update} in Set.

We can now define algebraic models of CBPV:
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Definition 2.13+. Let Π be a set. An algebraic CBPV Π-model is a quintuple〈
λ,V , type,L ,L ⟦−⟧〉

where:

• λ is a regular cardinal;

• V is a λ-Power category with respect to the cartesian closed structure, called the

value category;

• type is a λ-presentable type assignment for Π in V ;

• L is a λ-Lawvere V -theory.

• L ⟦−⟧ assigns to every op : A〈P〉 in Π an algebraic operation L ⟦op⟧ : A〈P〉 for

L .

To aid the presentation, we use the plus suffix to reflect an algebraic reformulation

of a previously visited concepted. Thus, Definition 2.13+ is an algebraic reformulation

of Definition 2.13.

Example 6-14. The global state CBPV model in Example 2-10 can be viewed as an

algebraic CBPV model. Take λ to be ℵ0, V to be Set, type to be the finitely-presentable

type assignment for global state from Example 6-13, L to be the global state theory

LGS(V), and L ⟦−⟧ as the interpretation of look-up and update, as in Example 6-12.

More generally, let
〈
λ,V , type,L ,L ⟦−⟧〉 be an algebraic Π-model. Note that we

can apply the categorical equivalence LawλV ' V -Monadsλ to L and obtain a λ-

ranked strong monad over V . In light of Theorem 6.19, we have a Π-model〈
V , type,TL ,opL⟦−⟧

〉
Conversely, given a Π-model 〈

V , type,T,O ⟦−⟧〉
such that there is a regular cardinal λ which makes V a λ-Power category with respect

to the cartesian structure, type a λ-presentable type assignment, and T be λ-ranked, we

obtain an algebraic Σ-model. These constructions are not inverse to each other. How-

ever, by composing the two constructions we get a model in which the monad/theory is

isomorphic to the monad/theory of the starting model, and this isomorphism preserves
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the operations. The proper setting for this fact requires us to introduce morphisms of

Π-models. Then, this fact can be phrased as a categorical equivalence between cate-

gories of models. However, we have no other interest in morphisms of models and in

categorical constructions on models apart from the equivalence we just described here.

Therefore, we do not study morphisms of models in this thesis.

To summarise, we presented enriched Lawvere theories and their properties, and

specialised our CBPV models to models arising out of some Lawvere theory and its

operations.
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Algebraic models

Now the teacher would say to learn your algebra

—Johnny Cash

The semantic structures we considered so far, namely for global state, excep-

tions, I/O, and recursion, arise from algebraic descriptions using Plotkin and

Power’s algebraic theory of effects. We now restrict our attention to such algebraic

models. We present a construction that builds an entire hierarchical model from a

single CBPV model at the top of the hierarchy. Thus, a refined semantics that takes

type-and-effect information into account can be derived from an unrefined semantics.

Our construction uses factorisation systems of categories.

First, in Section 7.1, we present our notion of algebraic models for effect analysis.

Next, in Section 7.2, we recall some notions about factorisation systems, and apply

them to enriched Lawvere theories. With this machinery at hand, in Section 7.3, we

present the categorical conservative restriction construction.

7.1 Categorical algebraic models

Before we present our models, we introduce the following auxiliary definition:

Definition 7.1. Let Σ be hierarchy (see Definition 3.1). A λ-presentable Σ-type assign-

ment in V is a λ-presentable type assignment for ΠΣ in V .

Without further ado, we define algebraic Σ-models:

Definition 3.2+. Let Σ be a hierarchy. An algebraic Σ-model is a quintuple〈
λ,V , type,L−,L− ⟦−⟧

〉
149
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where:

• λ is a regular cardinal;

• V is a λ-Power category with respect to a cartesian closed structure, called the

value category;

• type is a λ-presentable Σ-type assignment in V ;

• L− is a functor E → LawλV called the theory hierarchy;

• L− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε, op : A〈P〉 an algebraic operation

Lε ⟦op⟧ of type A〈P〉 for Lε;

and, for all ε⊆ ε′, and op ∈ ε, Lε⊆ε′ maps Lε ⟦op⟧ to Lε′ ⟦op⟧. Thus, Lε⊆ε′ preserves

the operations.

Example 7-1. Let Σ be the hierarchy for global state, and V a finite set denoting

storable values. The global state Σ-model can be viewed as an algebraic Σ-model.

We take λ to be ℵ0, and V to be Set. For every ε ⊆ {lookup,update}, we take Lε to

be the (finitary) Lawvere theory corresponding to the monad Pε from Example 3-2, for

every ε⊆ ε′, Lε⊆ε′ corresponds to the monad morphism P(ε⊆ ε′) from said example,

and for every op ∈ ε, Lε ⟦op⟧ is the algebraic operation corresponding to Oε ⟦op⟧ from

that model. By Theorem 6.19, these data constitute an algebraic Σ-model.

More generally, as in Section 6.4, every algebraic Σ-model induces a categorical

Σ-model where the value category is a λ-Power category with respect to the cartesian

structure, the type assignment is λ-presentable, and all monads are λ-ranked, and vice

versa. As before, these constructions are only inverse to each other up to isomorphism,

hence best studied as equivalences, via a suitable notion of morphisms of Σ-models.

As before, we leave such an investigation to further work.

Example 7-2 (benchmark model). Let Σ be an effect hierarchy, and

M =
〈
λ,V , type,L ,L ⟦−⟧〉

an algebraic CBPV Π-model. The benchmark model M [ is given by

M [B
〈
λ,V , type,L−,L− ⟦−⟧

〉
where:
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• for all ε, LεB L ;

• for all ε⊆ ε′, Lε⊆ε′ B id; and

• for all ε and op ∈ ε, Lε ⟦op⟧B L ⟦op⟧.

Trivial calculations show that M [ is indeed an algebraic Σ-model.

7.2 Factorisation systems

We recall the notion of a factorisation system in a category C . These are two classes

of C -morphisms, E and M conceptually thought of as classes of epi and monic mor-

phisms, respectively, although formally they need not be be neither epi nor monic.

Given such a pair of classes, we will denote the arrows in E by e : A� B, and the

arrows in M by m : A� B. The precise definition is as follows:

Definition 7.2. Let C be a category. A factorisation system
〈
E ,M

〉
in C consists of

two classes E and M of morphisms such that:

• both E and M contain all identity arrows, and are closed under composition

with isomorphisms on both sides;

• for every arrow f : A→ B in C there exists an E-morphism e : A� L and an

M -morphism m : L� B such that

A B

L

f

e m
=

and

• for every E-morphism e : A� L, M -morphism m : M� B, and every C arrows

f : A→M, g : L→ B, such that

A

B

L

M

e

m

f g=
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there exists a unique C -morphism h : L→M filling in the diagonal:

A

B

L

M

e

m

f gh
=

=

Sets and functions have the following well-known factorisation system:

Example 7-3. In Set, taking E to be the surjective functions (i.e., the epis) and M to

be the injective functions (i.e., the monos), yields a factorisation system.

Every function f : X → Y can be factored as a surjection onto the image f [X ]:

X Y

f [X ]

f

f ⊆
=

Example 7-4 (see Meseguer1 [Mes81]). In ωCPO, let E be the class of dense func-

tions, these are the Scott-continuous functions e : V �W such that Cl(e[V ]) =W , and

let M be the class of full monos, these are the Scott-continuous functions m : V �W

such that if f (v) 6 f (v′) in W , then v 6 v′ in V . Meseguer [Mes81] showed that〈
E ,M

〉
is a factorisation system in ωCPO. Indeed, both classes contain all identities

and are closed under precomposition with Scott-continuous bijections. Every Scott-

continuous function can be factored as the inclusion of the closure of its image:

V W

Cl( f [V ])

f

f ⊆
=

Finally, consider a commuting square:

V

W

L

M

e

m

f g=

1Meseguer’s ’78 manuscript is rare, but Meseguer describes the results in a later paper [Mes80].
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Define U to be the following subset of L:

U B {x ∈ L|there is some y ∈M such that m(y) = g(x)}

Consider an arbitrary ω-chain 〈xn〉 in U . Then, by U’s definition, we have a (unique)

sequence 〈yn〉 in M satisfying, for all n, m(yn) = g(xn). Because f is monotone and m

is full, this sequence is an ω-chain in M. Thus we calculate:

m(
∨

yn) =
∨

m(yn) =
∨

g(xn) = g(
∨

xn)

Therefore,
∨

xn ∈U , hence U is a subdomain of L. We have e[V ]⊆U , as every v ∈V

satisfies m( f (v)) = g(e(v)). Thus, by the closure’s definition:

L = Cl(e[V ])⊆U ⊆ L

hence L =U .

Define a function h : L→M, taking each x ∈ L to a y ∈M satisfying m(y) = g(x).

Because m is injective, there is a unique such x. Thus, by definition, we have that h is

the unique fill-in morphism:

V

W

L

M

e

m

f gh
=

=

Thus we have a dense epi-full mono factorisation of ωCPO.

We recall a few concepts and results regarding factorisation systems.

Definition 7.3. Let e : A→ L, m : M → B be two morphisms. We say that e is left

orthogonal to m, and write e⊥m, if, for every two morphisms f : A→M and g : L→ B

satisfying

A

B

L

M

e

m

f g=

there exists a unique morphism h : L→M filling-in the diagonal:
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A

B

L

M

e

m

f gh
=

=

Given any class of morphisms M , its left orthogonality class ⊥M is the class of all

morphisms e satisfying e⊥ m, for every m ∈M .

Thus, in a factorisation system
〈
E ,M

〉
, E ⊆ ⊥M . In fact, the converse inclusion

also holds, and E is completely determined by M , provided that
〈⊥M ,M

〉
is in fact a

factorisation system (see, for example, Adámek et al. [AHS90, Proposition 14.6(3)]).

Factorisation systems can be constructed using an appropriate solution set condi-

tion:

Theorem 7.4 (Bousfield’s factorisation theorem2 [Bou77, Theorem 3.1]). Let C be a

complete category, and M a class of maps in C . Then
〈⊥M ,M

〉
is a factorization

system in C if and only if M satisfies the following five closure conditions:

1. every isomorphism is in M ;

2. M is closed under composition;

3. if m◦ f ∈M and m ∈M , then f ∈M ;

4. M is stable under pullbacks: for every pullback square

A

B

C

P

m

f

f ∗(m)

with m ∈M , we also have f ∗(m) ∈M ; and

5. M is closed under limits: for every small diagram D : J → C S in the arrow

category C SB C ↓C , for which, for all j ∈ J, D j ∈M , the limit arrow is also in

M ,

and the following solution set condition:

2Boudfield states the dual theorem, dealing with right orthogonality classes.
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• for every map f : A→ B in C there is a set S f of factorisations f : A
g−→ L

m
� B,

with m ∈M such that for every factorisation f : A
g−→ L

m
� B there exists some

factorisation f : A
ĝ−→ L̂

m̂
� B in S f and an arrow h : L̂→ L such that

A B

L

L̂
ĝ m̂

g m

h= =

A category may have multiple factorisation systems. We chose our two factorisa-

tion systems of interest, i.e., injections for Set and full monos for ωCPO, seemingly

arbitrarily. We would very much like to axiomatise categorically the required proper-

ties of our factorisations to make this choice canonical. Category theory has several

well-studied notions of monomorphisms, with the following inclusion properties (see,

for example, Adámek, Herrlich and Strecker [AHS90, Remark 7.76(2)]):

section

⊆

regular monomorphism

⊆

strict monomorphism

⊆

strong monomorphism

⊆

extremal monomorphism

⊆

monomorphism

In particular, restricting our attention to extremal monos seems appealing, as every

locally presentable category has an 〈epi,extremal mono〉 factorisation [AR94, Propo-

sition 1.61]. Unfortunately, the full monomorphisms in ωCPO do not coincide with

neither the extremal monos nor with the monomorphisms. Rather, they lie between

the latter two notions in the above hierarchy. Indeed, recall that an extremal monomor-

phism is a monomorphism m : A→B such that the only epimorphisms it can be factored
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through are isomorphisms. More explicitly: every epi e for which m : A
e
−−� L

g−→ B is

an isomorphism.3 Lehmann [Leh80, Theorem 3] showed that in ωCPO:

extremal monomorphism⊆ full monomorphism⊆monomorphism

These inclusions are in fact proper. Lehmann and Pasztor [LP82] exhibit a proper full

mono inclusion m : V �W that is also an epimorphism of ωCPO. Therefore, this full

mono is not an extremal monomorphism. The inclusion of the discrete domain with

two elements in the Sierpinski space 2⊆ S is a mono that is not full. Therefore,

extremal mono⊂ full mono⊂mono

Lehmann and Pasztor [LP82] give a categorical characterisation of the full monos

as extremal monos of a larger category. However, we cannot justify switching from

ωCPO to this category for no other reason. Therefore, we do not commit to a particular

choice of factorisation system. The following folklore result4 is a central construction

in our account.

Theorem 7.5. Let V be a λ-Power category, and
〈⊥M ,M

〉
a factorisation system in

V . If M is a subclass of the monomorphisms in V , then LawλV has a factorisation

system
〈
⊥
(

M law
)
,M law

〉
, where M law consists of all the Lawvere theory morphisms

M for which, for every λ-presentable A, the component MA,I is in M .

Proof
We invoke Bousfield’s factorisation theorem (Theorem 7.4). The closure conditions

follow from their counterparts in each component:

1. If T is a Lawvere theory isomorphism, then its components TA,I are isomor-

phisms. Thus, T’s A,I components lie in M , hence T is in M law.

2. Similarly, as composition of Lawvere theory morphisms is defined component-

wise, we deduce that M law is closed under composition.

3. If M ◦T ∈M law, and M ∈M law, then for each A,I component we have that

MA,I ◦TA,I and MA,I are in M . Thus, MA,I is in M , and we deduce that T is in

M law.

4. Consider a pullback square
3In a locally presentable category, the inclusion strong mono ⊆ extremal mono becomes an equal-

ity [AR94, Proposition 1.61].
4John Power, private communication, 2012.
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L1

L2

L

L̂

M

T

T∗(M)

with M in M law. As limits of Lawvere theories are taken componentwise (The-

orem 6.17), we have a pullback square

|L1|(A, I)

|L2|(A, I)

|L |(A, I)

∣∣∣L̂∣∣∣(A, I)

MA,I

TA,I

(T∗(M))A,I

with MA,B in M . Thus, T∗(M) is in M law.

5. A similar appeal to Theorem 6.17 shows that M law is closed under limits.

Some care is required to establish the solution set condition. The crux of the argu-

ment lies in the fact that a locally λ-presentable category is locally small (see Corol-

lary 5.13), well-powered (see Proposition 5.14), has a set P of non-isomorphic rep-

resentative objects of the λ-presentable objects (see Proposition 5.11), and that the

hom-objects are determined up to isomorphism by the hom-objects |L |(A, I) (due to

preservation of powers). A slight complication arises from our choice to define Law-

vere theories as consisting of a large class of objects, rather than as a small skeleton

P. We deal with this difficulty by noting that, as there is only a set P of λ-presentable

objects up to isomorphism, the full inclusion P⊆ PresλV forms an equivalence of cat-

egories [ML98, Proposition IV.3.2], and has an adjoint ∂ : PresλV → P and a specified

isomorphism η∂ : id
∼=−→ ∂.

Let T : L1→ L2 be any morphism of Lawvere theories. Let IT be the following set

of sextuples 〈
TL−, idL

−,◦
L
〈−,−,−〉,L ⟦−⟧〈−,−〉 ,Tg

〈−,−〉,M〈−,−〉

〉
where:

• TL− assigns to each object A in P a subobject TLA from the set Sub(|L2|(A, I));

Using TL , for each pair of objects A, B in P, denote by |L |(A,B) the object B( TLA;
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• idL
− assigns to each object A in P a morphism

idL
A : I→ |L |(A,A)

• ◦L
〈−,−,−〉 assigns to each triple of objects A, B, and C in P a morphism

◦|L |A,B,C : |L |(B,C)⊗|L |(A,B)→ |L |(A,C)

• L ⟦−⟧〈−,−〉 assigns to each pair of objects A and B in P a morphism

L ⟦−⟧A,B : Presop
λ

V (A,B)→ |L |(A,B)

• T
g
〈−,−〉 assigns to each pair of objects A and B in P a morphism

T
g
A,B : |L1|(A,B)→ |L |(A,B)

• M〈−,−〉 assigns to each pair of objects A and B in P an M -morphism

MA,B : |L |(A,B)→ |L2|(A,B)

Because our assignments only range over the set P and assign elements from sets, IT
is indeed a set.

Denote by ST the set of all factorisations T : L1
Tg
−→ L

M
� L2 with M in M law,

together with a specified family 〈TLA〉A∈P, satisfying, for all λ-presentable objects A,

B, C, and V :

• TL∂A ∈ Sub(|L2|(∂A, I));

• |L |(A,B) = ∂B( TL∂A;

• idL
A : I→ |L |(A,A) = idL

∂A : I→ |L2|(∂A,∂A);

• ◦|L |A,B,C = ◦|L |
∂A,∂B,∂C;

• L ⟦−⟧A,B = L ⟦−⟧
∂A,∂B;

• T
g
A,B = T

g
∂A,∂B; and

• MA,B =M∂A,∂B
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Thus we have an injection from ST into the set IT, and ST is indeed a set.

Let T : L1
Tg
−→L

M
�L2 be any factorisation of T. As M∂A,I : |L |(∂A, I)→|L2|(∂A, I)

is an M -morphism, it is also a monomorphism. Therefore, there exists a unique sub-

object TL̂∂A ∈ Sub(|L2|(∂A, I)) and a unique isomorphism

FA : TL̂∂A
∼=−→ |L |(∂A, I)

satisfying:

|L2|(∂A, I)|L |(∂A, I)

TL̂∂A

m̂A

M∂A,I

FA
def
=

Note that m̂A, and FA depend only on ∂A.

For every λ-presentable objects A, B, we have isomorphisms:

η
∂
A : A

∼=−→ ∂A, η
∂
B : B

∼=−→ ∂B, unitright : ∂B⊗ I
∼=−→ ∂B

We therefore have V -isomorphisms:

L ⟦
(

η∂
A

)−1⟧ : I
(η

∂
A)
−1

−−−−→ Presop
λ

V (A,∂A)
L⟦−⟧−−−→ |L |(A,∂A)

L ⟦η∂
B⟧ : I

η
∂
B−→ Presop

λ
V (∂B,B)

L⟦−⟧−−−→ |L |(∂B,B)

L ⟦∼=⟧ : I
∼=−→ Presop

λ
V (∂B,∂B⊗ I)

L⟦−⟧−−−→ |L |(∂B,∂B⊗ I)

= |L |(∂B,∏∂B I)

Define, for every A, B,
∣∣∣L̂∣∣∣(A,B)B ∂B( TL̂∂A. We have an isomorphism

GA,B :
∣∣∣L̂∣∣∣(A,B) = ∂B( TL∂A

id(FA−−−−→∂B( |L |(∂A, I)

−→ 〈−〉∣∣∣L̂∣∣∣(∂A,∏
∂B

I)
|L |(id ,L⟦∼=⟧)
−−−−−−−−→ |L |(∂A,∂B)

Note that GA,B only depends on ∂A, ∂B. Thus, we obtain an isomorphism:

Th
A,B :

∣∣∣L̂∣∣∣(A,B) GA,B−−→ |L |(∂A,∂B)
|L |(L⟦(η

∂
A)
−1⟧,L⟦η∂

B⟧)−−−−−−−−−−−−−→ |L |(A,B)
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Define:

∣∣∣L̂∣∣∣(B,C)⊗
∣∣∣L̂∣∣∣(A,B) ∣∣∣L̂∣∣∣(A,C)

|L |(A,C)|L |(B,C)⊗|L |(A,B)

◦|L̂|

Th⊗Th
(
Th
)−1

◦|L |

def
=I

∣∣∣L̂∣∣∣(A,A)
|L |(A,A)

id|L̂|

id|L |

(
Th
)−1

def
=

V (
∣∣∣L̂∣∣∣(A,B) V (

∣∣∣L̂∣∣∣(A,B)∣∣∣L̂∣∣∣(A,∏
V

B)
∣∣∣L̂∣∣∣(A,∏

V
B)

|L |(A,∏
V

B) |L |(A,∏
V

B)V ( |L |(A,B) V ( |L |(A,B)

〈−〉|L̂|

(
Th
)−1

V ( Th

〈−〉|L |

〈−〉−1
|L̂|

ThV (
(
Th
)−1

〈−〉−1
|L |

def
=

def
=

∣∣Presop
λ

V
∣∣(A,B)

∣∣∣L̂∣∣∣(A,B)

|L |(A,B)

L̂ ⟦−⟧

L ⟦−⟧

(
Th
)−1def

=

Just as in the proof of Theorem 6.17, we use Lemma 6.8 to show that these data de-

fine a Lawvere theory L̂ and a Lawvere theory isomorphism Th : L̂
∼=−→L . We therefore

obtain a factorisation T : L1
T̂g
−→ L̂ M̂−→ L2 by setting

L1

L

L̂
T̂g

T̂

(
Th
)−1

def
= L2

L

L̂
M̂

M

Th def
=

As Th is an isomorphism, M̂ is in M law.

It remains to show that this factorisation belongs to the solution set ST. The speci-

fied family is
〈
TL̂A

〉
A∈P

. By fiat,
∣∣∣L̂∣∣∣(A,B) = ∂B( TL̂A is independent of our choice

of representatives A, B. Straightforward, yet tedious, calculations show that id|L̂|A ,

◦A,B,C
|L̂|, L̂ ⟦−⟧A,B, Tg

A,B, and M̂A,B are independent of their representatives. For ex-
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ample, to show that id|L̂|A only depends on ∂A, note that, by definition:

id|L̂|A = G−1
A,A ◦ |L |(L ⟦η∂⟧,L ⟦

(
η

∂

)−1⟧)◦ id|L |A

(6.9a)

↓
= G−1

A,A ◦ |L |(L ⟦η∂⟧,L ⟦
(

η
∂

)−1⟧)◦L ⟦idA⟧
(6.9b)

↓
= G−1

A,A ◦L ⟦η∂ ◦ idA ◦
(

η
∂

)−1⟧

= G−1
A,A ◦L ⟦id∂A⟧

As G−1
A,A is independent of the representative A, we deduce that id|L̂|A is independent of

the representative. Similar arguments using Diagrams 6.9c and 6.9d show ◦A,B,C
|L̂| is

independent of the choice of representatives, and finally Diagram 6.9e is used thrice

(separately) to show that L̂ ⟦−⟧A,B, Tg
A,B, and M̂A,B are independent of their represen-

tatives.

Therefore, the solution set condition is satisfied. From Bousfield’s factorisation

theorem we deduce that
〈
⊥
(

M law
)
,M law

〉
is a factorisation system in LawλV . �

This theorem explicitly describes the M -class of the factorisation system, but

leaves the E-class unspecified. We do not know a general characterisation for this

class. The following partial description will suffice for our purposes:

Proposition 7.6. Let V be a λ-Power category, and
〈
E ,M

〉
a factorisation system

on V . Denote by M law the class of all Lawvere theory morphisms M whose compo-

nents MA,I are in M , as in Theorem 7.5. Denote by E law
∗ the class of all Lawvere

theory morphisms E whose components EA,I are in E . If every morphism in M is a

monomorphism in V , then every morphism in E law
∗ is left-orthogonal to M law:

E law
∗ ⊆ ⊥

(
M law

)
Proof
Let E be an E law

∗ -morphism. Consider an arbitrary commuting square:

L1 L2

L3 L4

E

T T̂

M

=
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For every λ-presentable A, we have a commuting square:

|L1|(A, I) |L2|(A, I)

|L3|(A, I) |L4|(A, I)

E

T T̂

M

=

As
〈
E ,M

〉
is a factorisation system, we have a unique fill-in morphism:

|L1|(A, I) |L2|(A, I)

|L3|(A, I) |L4|(A, I)

FA

E

T T̂

M

=

=

Define, for all λ-presentable A, B:

|L2|(A,B) |L2|(A,B⊗ I) B( |L2|(A, I)

|L3|(A,B) |L3|(A,B⊗ I) B( |L3|(A, I)

|L2|
(
id,L2 ⟦∼=⟧

)
〈−〉−1

2

B( FF

|L2|
(
id,L3 ⟦∼=⟧

)
〈−〉3

def
=



7.2. Factorisation systems 163

We have:

|L1|(A,B)

|L1|(A,B⊗ I)

B( |L1|(A, I)

|L2|(A,B)

|L2|(A,B⊗ I)

B( |L2|(A, I)

|L3|(A,B)

|L3|(A,B⊗ I)

B( |L3|(A, I)

E

E

B( E

T T B( T

|L2|
(
id,L1 ⟦∼=⟧

)

〈−〉−1
1

|L2|
(
id,L2 ⟦∼=⟧

)

〈−〉−1
2

|L2|
(
id,L3 ⟦∼=⟧

)
〈−〉−1

3

B( F

Diagram 6.9e
=

Lemma 6.7
=

B( (F def.)
=

Diagram 6.9e
=

Lemma 6.7
=

|L4|(A,B)

|L4|(A,B⊗ I)

B( |L4|(A, I)

|L2|(A,B)

|L2|(A,B⊗ I)

B( |L2|(A, I)

|L3|(A,B)

|L3|(A,B⊗ I)

B( |L3|(A, I)

T̂T̂B( T̂

M

M

B(M

|L2|
(
id,L1 ⟦∼=⟧

)
〈−〉−1

1

|L2|
(
id,L2 ⟦∼=⟧

)

〈−〉−1
2

|L2|
(
id,L3 ⟦∼=⟧

)

〈−〉−1
3

B( F

Diagram 6.9e
=

Lemma 6.7
=

B( (F def.)
=

Diagram 6.9e
=

Lemma 6.7
=

Therefore, for all A, B:

|L1|(A,B) |L2|(A,B)

|L3|(A,B) |L4|(A,B)

E

T T̂

M

F
=

=
(∗)

The commutativity of the lower right triangle in (∗) implies that F : L2→ L3 is an

identity-on-objects V -functor, using Lemma 6.8(3) and the fact that the components

of M are monomorphisms, . From the commutativity of the upper left triangle in (∗),
we deduce that this functor is λ-power preserving and forms a morphism of Lawvere

theories.
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Thus, F is a diagonal fill-in:

L1 L2

L3 L4

E

T T̂

M

F
=

=

Conversely, let F̂ be any diagonal fill-in:

L1 L2

L3 L4

E

T T̂

M

F̂
=

=

For every λ-presentable A, we have

|L1|(A, I) |L2|(A, I)

|L3|(A, I) |L4|(A, I)

F̂

E

T T̂

M

=

=

thus, as
〈
E ,M

〉
is a factorisation system, necessarily F̂A,I =FA. For every λ-presentable

A we also have:

|L2|(A,B) |L2|(A,B⊗ I) B( |L2|(A, I)

|L3|(A,B) |L3|(A,B⊗ I) B( |L3|(A, I)

|L2|
(
id,L2 ⟦∼=⟧

)
〈−〉−1

2

B( F̂ B( FF̂

|L2|
(
id,L3 ⟦∼=⟧

)
〈−〉3

F̂
Diagram 6.9e

=
Lemma 6.7

=
=

hence F̂= F, and the diagonal fill-in morphism is unique.

Thus, E is left-orthogonal to M law. �
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Next, we deal with factorisations of ranked monads.

Definition 7.7. Let F be a class of morphisms in a locally λ-presentable category.

We say that F is closed under λ-directed colimits if for every λ-directed diagram

D : I→ C S in the arrow category C S B C ↓ C for which Di ∈ F , for all i ∈ I, the

colimit arrow is also in F .

We say that a factorisation system
〈
E ,M

〉
is closed under λ-directed colimits if M is.

Note that, in light of the dual to Bousfield’s factorisation theorem, in every factori-

sation system
〈
E ,M

〉
, the class E is closed under all colimits, and in particular the

λ-directed ones.

Example 7-5. The surjection-injection factorisation system in Set is closed under

finitely directed colimits. Indeed, take any finitely-directed diagram D : I→ SetS.

For every i ∈ I, denote Di : D1i
mi
� D2i, and for every i6 j in I denote by D(i6 j)

the pair
〈
D1(i6 j),D2(i6 j)

〉
. Because colimits in functor categories are taken com-

ponentwise, we have two colimiting cocones
〈
C1,c1〉 and

〈
C2,c2〉 for D1 and D2,

respectively, and the colimit of D is given by a function C2 f−→C1 such that
〈
c1,c2〉 is

the colimiting cocone for D.

We need to show that f is injective. Take any x,y in C1 such that f (x) = f (y). By

Lemma 5.3(1), there exist some ix, iy, dx ∈ D1ix, and dy ∈ D1iy such that c1
ix(dx) = x

and c1
iy(dy) = y. We thus have mix(dx) ∈ D2ix and miy(dy) ∈ D2iy satisfying

c2
ix(mix(dx)) = f (c1

x(dx)) = f (x) = f (y) = c2
iy(miy(dy)) (∗)

From Lemma 5.3(2), there exists some j > ix, iy such that:

D2( j > ix)(mix(dx)) = D2( j > iy)(miy(dy)) (∗)

We thus have:

m j(D1( j > ix)(dx)) = D2( j > ix)(mix(dx))

= D2( j > iy)(miy(dy)) = m j(D1( j > iy)(dy)) (∗)

Because f j is injective, we deduce that

D1( j > ix)(dx) = D1( j > iy)(dy) (∗)

By applying c1
j , we deduce that:

x = c1
ix(dx) = c1

j(D
1( j > ix)(dx)) = c1

j(D
1( j > iy)(dy)) = y (∗)

Thus f is injective. Therefore, the class of injective functions is closed under finitely

directed colimits.
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Example 7-6. The dense-full mono factorisation of ωCPO is closed under countably

directed colimits. The proof is identical to the previous example, replacing the as-

sumption f (x) = f (y) by f (x) 6 f (y), the use of Lemma 5.3 by that of Lemma 5.4,

and modifying the equalities marked with (∗) with appropriate inequalities.

Proposition 7.8. Let V be a λ-Power category, F be a class of morphisms in V
closed under λ-directed colimits, and T : L → L ′ a morphism of Lawvere theories. If,

for every λ-presentable object A, the component TA,I : |L |(A, I)→ |L ′|(A, I) is an F -

morphism, then all components of the corresponding monad morphism TT : TL → TL ′

are in F .

Proof
In Section 6.2 (see Equation (6.10)), we showed that, for any A, the A component of

TT is the colimit of a λ-directed diagram DT : I→ V S whose object map is given by:

DTi : |L |(Di, I) T−→
∣∣L ′∣∣(Di, I) (6.10)

Thus, DT is a λ-directed diagram whose objects are F -morphisms. As F is closed

under λ-directed colimits, we deduce that the A component of TT is in F . �

We transport our factorisation to ranked monads:

Theorem 7.9. Let V be a λ-Power category, and
〈
E ,M

〉
a factorisation system in V .

If M is a subclass of the monomorphisms closed under λ-directed colimits, then the

category of λ-ranked monads V -Monadsλ has a factorisation system
〈
Emon,M mon〉

where:

• M mon consists of all monad morphisms between λ-ranked monads whose com-

ponents are M -morphisms; and

• Emon includes all monad morphisms between λ-ranked monads whose compo-

nents are E-morphisms, but may a-priori include other morphisms.

Proof
Transport the factorisation system

〈
E law,M law

〉
in LawλV from Theorem 7.5 to a

factorisation system
〈
Emon,M mon〉 in V -Monadsλ using the equivalence from The-

orem 6.15. Thus, Emon consists of all monad morphisms e such that Le ∈ E law, and

M mon consists of all monad morphisms m such that Lm ∈M law.

As M is closed under λ-directed colimits, we deduce by Proposition 7.8 that M

is in M law if and only if all components of TM are in M . As M is closed under
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composition with isomorphisms, we deduce that m ∈M mon if and only if Lm ∈M law

if and only if all components of TLm
∼= m are in M .

Similarly, assume e is a monad morphism whose components are all in E . Then

all the A,I components of Le are in E , hence, by Proposition 7.6, Le is in E law, and e

is in Emon. �

Example 7-7. The category of finitary monads over Set has a factorisation system

whose M -class consists of the componentwise injective monad morphisms, and whose

E-class includes the componentwise surjective monad morphisms. Similarly, the cat-

egory of countably ranked locally continuous monads over ωCPO has a factorisation

system whose M -class consists of the componentwise full mono monad morphisms,

and whose E-class includes the componentwise dense monad morphisms.

Example 7-8. Let V be any finite set with at least two elements denoting storable

values. Take Char to be V. Consider the global state, environment, and overwrite

monads for a single memory V-cell i.e., TGS(V), TEnv(V), and TOW(V), respectively (see

Examples 2-1 and 2-3). Let TI(V), TO(V) be the monads for modelling input and output

interactions (see Example 3-5). As we mentioned in Example 5-8, all these monads

have finite rank.

Straightforward calculation shows that the components of the monad morphisms

m{lookup} : TEnv(V) → TGS(V) and m{update} : TOW(V) → TGS(V) from Example 2-3 are

injective. Thus, m{lookup},m{update} are injectivemon-morphisms.

We define inductively the following four monad morphisms:

e{lookup} : TI(V) → TEnv(V) e{update} : TO(V) → TOW(V)

e{lookup} : x 7→ λv.x e{update} : x 7→ 〈ι1?,x〉
e{lookup} : 〈I,〈tv〉〉 7→ λv.e{lookup}(tv)(v) e{update} : 〈O,v0, t〉 7→ 〈ι2v,x〉

where e{update}(t) = 〈δ,x〉

and v =

v δ = ι1?

v′ δ = ι2v′

f{lookup} : TI(V) → TGS(V) f{update} : TO(V) → TGS(V)

f{lookup} : x 7→ λv.〈v,x〉 f{update} : x 7→ λv.〈v,x〉
f{lookup} : 〈I,〈tv〉〉 7→ λv. f{lookup}(tv)(v) f{update} : 〈O,v0, t〉 7→ λv. f{lookup}(t)(v0)

Straightforward calculations show that these indeed are monad morphisms. To see
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that the components of e{lookup} and e{update} are surjective functions, note that:

λv.xv = e{lookup}(
〈
I,〈xv〉v∈V

〉
)

〈ι1?,x〉= e{update}(x) 〈ι2v,x〉= e{update}(〈O,v,x〉)

Finally, direct calculation shows that:

f{lookup} : TI(V)

e{lookup}
−−−−−−� TEnv(V)

m{lookup}
TGS(V)

f{update} : TO(V)

e{update}
−−−−−−� TOW(V)

m{update}
TGS(V)

Thus, these are the surjectivemon-injectivemon factorisations of the monad mor-

phisms f{lookup} and f{update}. Consequently, we have the surjectivelaw-injectivelaw

factorisations:

T{lookup} : L I(V)

E{lookup}
−−−−−−−� LEnv(V)

M{lookup} LGS(V)

T{update} : LO(V)

E{update}
−−−−−−−� LOW(V)

M{update} LGS(V)

Note that if |V| 6 1, then m{update} is not componentwise injective. In this case,

these are not surjectivelaw-injectivelaw factorisations.

7.3 Conservative restriction

For any effect hierarchy Σ, let
〈
V ,T

〉
be a CBPV model, let type be a type assignment

for |Σ| in V , and, for all op ∈ |Σ|, an assignment of an algebraic operation of type

A〈P〉 for T . These data constitute a semantic model that ignores the effect hierarchy,

and specifies meaning to all the effects together. Our goal is to construct a Σ-model that

takes the effect hierarchy into account, when the CBPV model is given algebraically,

as in Definition 2.13+. Recall that in this case, a λ-Power category replaces V , the

type assignment is λ-presentable, a λ-Lawvere V -theory L replaces T , and algebraic

operations in this Lawvere theory replace the effect operations.

Our construction proceeds in two steps. First, we note that for every ε ∈ E there is

an initial Lawvere theory L〈ε,type〉 amongst all Lawvere theories that have an operation

of type P〈A〉 for every op : P〈A〉 in ε. Because L has operations of type P〈A〉 for

every op : P〈A〉, initiality implies the existence of a unique Lawvere theory morphism

Tε : L〈ε,type〉→ L . The second step is to factorise this morphism using a factorisation

system of LawλV :

Tε : L〈ε,type〉
Eε−−−� Lε

Mε L
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This factorisation yields a Σ-model, which we call the conservative restriction model.

We need a few auxiliary definitions.

Definition 7.10. Let V be a λ-Power category with respect to the cartesian closed

structure. A λ-presentable signature σ is a pair 〈|σ|, type〉 consisting of a set |σ| and a

λ-presentable type assignment type for |σ| in V .

Let σ be a λ-presentable signature. A σ-theory is a pair 〈L ,L ⟦−⟧〉, where:

• L is a λ-Lawvere V -theory, and

• L ⟦−⟧ assigns to each op : A〈P〉 in |σ| an operation L ⟦op⟧ : A〈P〉 in L .

Let L , L̂ be two σ-theories. A morphism T of σ-theories from L to L̂ is a morphism

of Lawvere theories T : L→ L̂ such that, for every op ∈ |σ|, T maps L ⟦op⟧ to L̂ ⟦op⟧.

Example 7-9. Take V to be Set, and let V be any finite set denoting storable values.

Take σ to be the signature with |σ| a two element set {lookup,update} and the finitely-

presentable type assignment to be lookup : V, update : 1〈V〉. Thus σ is a finitely-

presentable type assignment.

The (finitary) Lawvere theory LGS(V) is the Lawvere theory corresponding to the

finitary global state monad TGS(V). As we saw in Example 6-12, this is a σ-theory.

Moreover, the theory L I/O(V) is also a σ-theory, where lookup is interpreted as the

input operation and update as the output operation.

Finally, in Example 6-12 we saw a Lawvere theory morphism T : L I/O(V)→LGS(V)

mapping input and output to look-up and update, respectively. Thus, T is a morphism

of σ-theories.

The first ingredient in our construction is the following theorem:

Theorem 7.11. For every λ-presentable signature σ in V there exists an initial σ-

theory Lσ.

Proof
Our proof consists of two parts. First, we establish the existence of the initial σ-theory

when |σ| is a singleton {op} using standard techniques for free monads. Once the

existence of the L{op:A〈P〉} is established, we use the cocompleteness of LawλV , and

show that the required σ-theory is the coproduct of these Lawvere theories, namely

Lσ = ∑
op∈|σ|
op:A〈P〉

L{op:A〈P〉}
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Our use of free monads is not essential, but merely a convenience, for we can thus refer

to published work on free monads. Other techniques, e.g., enriched sketches [Kel82a]

can be used too, but we will not elaborate on them further. In order to not tie the proof

to free monads, we isolated their use to a small part of the proof, and the rest of the

proof does not depend on the use of free monads.

Let Σ be the evident V -endofunctor over V given by

ΣB∏A ∑P (−) = (P× (−))A

Note that the underlying ordinary functor |Σ|o preserves λ-directed colimits, as it is

the composition of two adjoint functors between locally λ-presentable categories (see

Theorem 5.17). Hyland et al. [HPP06, Section 2, prior to Example 6], employing

techniques described by Kelly [Kel80], describe several sufficient conditions for the

existence of the free monad for Σ. For our purposes, it suffices that |Σ|o is λ-ranked,

V -enriched, and V is locally λ-presentable, and then the free V -monad TΣ for Σ exists.

Its crucial three properties are:

• TΣ is a λ-ranked V -monad;

• TΣ has a generic effect gen : A〈P〉; and

• if T ′ is any other V -monad and gen′ : A〈P〉 is a generic effect for T ′, then there

exists a unique V -monad morphism from TΣ to T ′ mapping gen to gen′.

By invoking Theorem 6.19, deduce that L{op:A〈P〉}B LTΣ
is the required Lawvere the-

ory.

Next, for an arbitrary λ-presentable signature σ, choose:

LσB ∑
op∈|σ|
op:A〈P〉

L{op:A〈P〉}

And interpret each op ∈ |σ| as Lσ ⟦op⟧B ιop
(
L{op:A〈P〉} ⟦op⟧), i.e.:

1
L{op:A〈P〉}⟦op⟧
−−−−−−−−→

∣∣L{op}:A〈P〉
∣∣(A,P) ιop−→ ∑

op∈|σ|
op:A〈P〉

L{op:A〈P〉}

If L is any other σ-theory, then, for each op ∈ |σ|, L is a {op : A〈P〉}-theory, and there

is a unique morphism Top : L{op:A〈P〉}→ L preserving the interpretation of op. Choose

as T : Lσ→ L the coproduct morphism TB
[
Top
]

op∈|σ|. Then we have:



7.3. Conservative restriction 171

1

∑
op∈|σ|
op:A〈P〉

L{op:A〈P〉} (A,P)

L (A,P)

L{op:A〈P〉} (A,P)
Lop:A〈P〉 ⟦op⟧

ιop

T

Top

L ⟦op⟧

{op : A〈P〉}-theory morphism
=

coproducts
=

Conversely, if T̂ : Lσ→ L is any other σ-theory morphism, then T̂opB T̂◦ ιop is a

{op : A〈P〉}-theory morphism from L{op:A〈P〉} to L , hence T̂op = Top. For all op ∈ |σ|,
we have T̂◦ ιop = T◦ ιop, hence T̂= T, and we have uniqueness. �

Example 7-10. Let V be a finite set denoting storable values. Consider the signature

σ from Example 7-9, {lookup : V,update : 1〈V〉}. Consider the input/output theory

L I/O(V) from Example 7-9. We will show L I/O(V) is the initial σ-theory.

We already saw that L I/O(V) is a σ-theory. Let 〈L ,L ⟦−⟧〉 be any other σ-theory.

We therefore have a corresponding monad T over Set with algebraic operations lookup :

V and update : 1〈V〉.
For every set X , define inductively:

fX : TI/O(V)X → T X

fX : x 7→ η(x)〈
I,〈tv〉v∈V

〉
7→ lookup(λv. fX(tv))(?)

〈O,v, t〉 7→ update(λ?. fX(t))(v)

To establish that f is a monad morphism from TI/O(V) to T , we use the following

special case of a result by Plotkin and Power [PP03, Proposition 1], adapted to include

parameter types:

Let T be a monad over Set, and op : A〈P〉 an algebraic operation for T .
Then:

1. the transformation op : (T−)A→ (T−)P is natural; and

2. this transformation respects the monadic multiplication µ in the sense
that, for all λa.t̂a in (T 2X)A and p ∈ P:

op(λa.µ(t̂a))(p) = λp.µ(op(λa.t̂a)(p))
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Straightforward calculations show that the naturality of η, lookup, and update implies

that of f , and that, by definition, f preserves the monadic unit. A straightforward

inductive argument using the monad laws and property 2 above shows that f preserves

the monadic multiplication.

Straightforward calculation shows that f preserves the operations. Indeed, for ev-

ery λv.tv in (TI/O(V)X)V, we have:

λv.tv λv. f (tv)

〈I,〈tv〉〉

lookup(λv. f (tv))

λ?.(lookup(λv. f (tv))(?))

f V

lookup
input

f 1

Thus, f maps input to lookup. A similar calculation shows that f maps output to

update. Therefore, using the equivalence between Lawvere theories and ranked mon-

ads, we deduce there exists a σ-theory morphism T : L I/O(V)→ L , corresponding to

f .

To conclude, assume T̂ : L I/O(V) → L is any σ-theory morphism. We therefore

have a monad morphism f̂ : TI/O(V) → T , mapping input and output to lookup and

update, respectively. A straightforward inductive argument using the preservation of

the unit and the mapping of the operations shows that f̂ and f coincide. We will only

demonstrate how f and f̂ agree on 〈I,〈tv〉〉, if they agree over all components tv. As f̂

maps input to lookup, we have:

λv.tv λv. f̂ (tv)

〈I,〈tv〉〉

lookup(λv. f̂ (tv))

λ?. f̂ (〈I,〈tv〉〉)

f̂ V

lookup
input

f̂ 1

Thus,

f̂ (〈I,〈tv〉〉) = lookup(λv. f̂ (tv))(?)

induction hypothesis

↓
= lookup(λv. f (tv))(?)

f def.

↓
= f (〈I,〈tv〉〉)
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and f̂ and f agree on 〈I,〈tv〉〉.
As f , f̂ coincide, T and T̂ coincide. Thus, L I/O(V) is the initial σ-theory Lσ. Simi-

lar arguments show that the theories L I(V) and LO(V) corresponding to the monads TI(V)

and TO(V), respectively, are the initial {lookup : V}-, and {update : 1〈V〉}-theories, re-

spectively.

The following theorem is our central construction:

Theorem 7.12 (conservative restriction model). Let Π be a set, and

M =
〈
λ,V , type,L ,L ⟦−⟧〉

an algebraic CBPV Π-model. For every effect hierarchy Σ whose set of operation is Π,

and for every factorisation system
〈

E law,M law
〉

in LawλV , the following data define

an algebraic Σ-model

M ]B
〈
λ,V , type,L−,L− ⟦−⟧

〉
together with the auxiliary data 〈σ−,T−,E−,M−,S−〉, where:

• σ− assigns to every ε ∈ E the λ-presentable signature given by restricting type

to the subset ε⊆Π, σεB 〈ε, type|
ε
〉;

• T− assigns to every ε ∈ E the unique morphism Tε : Lσε
→ L mapping, for

every op∈ ε, the operation Lσε
⟦op⟧ to L ⟦op⟧, where Lσε

is the initial σε theory

from Theorem 7.11;

• for every ε ∈ E , 〈Lε,Eε,Mε〉 is a specified
〈

E law,M law
〉

factorisation:

Tε : Lσε

Eε−−−� Lε

Mε L

• L− ⟦−⟧ assigns to each ε ∈ E and op ∈ ε the unique operation Lε ⟦op⟧ in Lε

such that Eε maps Lσε
⟦op⟧ to Lε ⟦op⟧, and then, Mε maps Lε ⟦op⟧ to L ⟦op⟧.

• S− assigns to each ε⊆ ε′ in E the unique morphism Sε⊆ε′ : Lσε
→ Lε′ that, for

every op ∈ ε, maps Lσε
⟦op⟧ to Lε′ ⟦op⟧;

• L− assigns to every ε⊆ ε′ in E the unique fill-in morphism:

Lσε Lε

Lε′ L

Sε⊆ε′

Eε

Mε

Mε′

Lε⊆ε′

=

=
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and, moreover, this morphism is in M law.

We call M ] the conservative restriction Σ-model for the given Π-model, relative to the

given factorisation system.

Proof

First, we show these data are well-defined. Consider any ε ∈ E . As type is a λ-

presentable type assignment, σε is a well-defined λ-presentable type assignment in V .

If we restrict L ⟦−⟧ to ε, we obtain a σε-theory 〈L , L ⟦−⟧|
ε
〉. By initiality, there exists

a unique morphism Tε : Lσε
→ L preserving the interpretations of all the operations in

ε. Thus Tε is well-defined, and consequently, so are Lε, Eε, and Mε.

Consider any op ∈ ε. By Corollary 2.9 and Theorem 6.19, there exists a unique

algebraic operation Lε ⟦op⟧ for Lε such that Eε maps Lσε
⟦op⟧ to Lε ⟦op⟧, and Lε ⟦op⟧

is well-defined. Since both T and E preserve the interpretation of op, Tε =Mε◦Eε, we

deduce by Corollary 2.9 and Theorem 6.19 that Mε also preserves the interpretation of

op.

Consider any ε ⊆ ε′ in E . By restricting Lε′ ⟦−⟧ to ε, we obtain a σε-theory

〈Lε′, Lε′ ⟦−⟧|ε〉. Therefore, there exists a unique morphism Sε⊆ε′ : Lσε
→ Lε′ pre-

serving the interpretations of the effects in ε, and S− is well-defined.

Thus, both Mε ◦Eε and Mε′ ◦Sε⊆ε′ are σε-theory homomorphisms. Initiality of

Lσε
means that

Lσε Lε

Lε′ L

Sε⊆ε′

Eε

Mε

Mε′

=

By the orthogonality property of factorisation systems, we deduce the existence of

a unique fill-in morphism:

Lσε Lε

Lε′ L

Sε⊆ε′

Eε

Mε

Mε′

Lε⊆ε′

=

=
(7.1)
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The commutativity of these two triangles implies, again by Corollary 2.9 and Theo-

rem 6.19, that Lε⊆ε′ preserves the operations in ε. Also, note that Bousfield’s factori-

sation theorem (Theorem 7.4(3)) implies that Lε⊆ε′ is an M law-morphism.

These data do yield an algebraic Σ-model. Indeed, by their choice, λ is a regular

cardinal, and V a λ-Power category. Our choice of L− indeed yields a functor from

E to LawλV . First, note that Eε is a σε-morphism from Lσε
to Lε, hence initiality

implies Eε =Sε⊆ε. Consequently,

Lσε Lε

Lε L

Sε⊆ε

Eε

Mε

Mε

=

=

By orthogonality we deduce that Lε⊆ε = id. Consider any ε ⊆ ε′ ⊆ ε′′ in E , then

Lε′⊆ε′′ ◦Sε⊆ε′ is a σε-theory morphism from Lσε
to Lε′′ . By initiality,

Lσε

Lε′

Lε′′
Sε⊆ε′′

Sε⊆ε′ Lε′⊆ε′′

= (7.2)

Thus, on the one hand, we have:

Lσε Lε

Lε′′ L

Lε′Sε⊆ε′′

Eε

Mε

Mε′′

Lε⊆ε′

Lε′⊆ε′′

Sε⊆ε′

Mε′

Diagram 7.2
=

Diagram 7.1
=

Diagram 7.1
=

Diagram 7.1
=

Thus, by definition, Lε⊆ε′′ = Lε′⊆ε′′ ◦Lε⊆ε′ . Thus, we have a functor L :E → LawλV .

By fiat, Lε ⟦−⟧ assigns operations as required, and we have seen that L− preserves

them. �
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Example 7-11. Let Σ be the effect hierarchy for global state, and V a finite set such

that |V|> 2 denoting storable values. Consider the algebraic CBPV Π-model for global

state from Example 6-14, and the surjectivelaw-injectivelaw factorisation system arising

from the surjective-injective factorisation system of Set by Theorem 7.5. We work out

the explicit description of the conservative restriction model.

Comparing the construction of the initial morphism f : TI/O(V)→ TGS(V) in Exam-

ple 7-10 to the definition of the morphisms T : L I/O(V) → LGS(V) in Example 6-12,

and T{lookup} : L I(V) → LEnv(V) and T{update} : LO(V) → LOW(V) from Example 7-8,

shows these are indeed the initial Π-, {lookup}-, and {update}-theory morphisms, re-

spectively. The initial /0-theory morphism T /0 : Presop
ℵ0
(Set)→ LGS(V) is the functor

LGS(V) ⟦−⟧.
In Example 6-12 we noted that the monad morphism corresponding to TΠ is surjec-

tive, From Proposition 7.6 we conclude that TΠ is in the class surjectivelaw. Therefore,

we have the factorisation:

TΠ : L I/O(V)

TΠ

−−−−� LGS(V)
id LGS(V)

In Example 7-8 we presented a factorisation of T{lookup} and T{update}:

T{lookup} : L I(V)

E{lookup}
−−−−−−−� LEnv(V)

M{lookup} LGS(V)

T{update} : LO(V)

E{update}
−−−−−−−� LOW(V)

M{update} LGS(V)

The X ,1 components of this functor act on morphisms by post-composing with the

monadic unit ηGS(V) (see Example 6-10). As V is non-empty, this monadic unit is

injective, hence post-composing with it yields a monomorphism between the homsets.

Thus, T /0 is a injectivelaw-morphism, and we have the factorisation:

T /0 : Presop
ℵ0
(Set)

id
−−−� Presop

ℵ0
(Set)

T /0 LGS(V)

Therefore, the object part of the functor L− for the conservative restriction model

agrees with the model in Example 6-14. We know that the injectivelaw-part of the

factorisation preserves the operations, hence uniquely determines them. As these ar-

rows are precisely the morphisms Lε⊆Π in the model from Example 6-14, we know

they preserve the operations. Therefore, the operations in the conservative restriction

model coincide with the operations in the model from Example 6-14. The fact that

the injectivelaw-part of the factorisation coincides with Lε⊆Π in the model from Exam-

ple 6-14 also means the lower-right triangle in the orthogonality square defining Lε⊆ε′
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commutes. Because they preserve the operations, initiality of Lσε
means the upper-left

triangle also commutes. Therefore, the morphism parts of the functors L− of the two

models coincide.

In conclusion, the model in Example 6-14 is the conservative restriction model.

This example illustrates that the conservative restriction model construction uni-

formly gives rise to a natural, intuitive Σ-model that seemed previously non-uniform.

It also demonstrates that the conservative restriction models allow us to avoid explic-

itly specifying an exponentially large structure. Instead, we only need to define the

desired algebraic CBPV model, and then derive the data we require as properties of this

structure. As we will see, the conservative restriction model is tightly related to the

underlying CBPV model that gives rise to it. However, specifying a Lawvere theory is

still an elaborate process: even when the theory is given as a monad, we need to enrich

it, and verify it has a rank.

In summary, we defined the hierarchical algebraic models, presented the categori-

cal conservative restriction construction, and showed that when we apply it to global

state we obtain the global state hierarchical model.





Chapter 8

Presentation models

We don’t use dollars to represent,

We just use our inner sense and talent
—Black Eyed Peas

In this chapter we present a concrete and syntactic account of our conservative

restriction construction by using standard concepts from universal algebra and

equational logic. This concrete description, which uses presentations consisting of

terms and equations, allows us to state concretely and strengthen the results of the

previous chapter.

First, in Section 8.1, we recount the relevant results and terminology from univer-

sal algebra and equational logic. Next, in Section 8.2, we describe their connection

to strong monads and Lawvere theories. Then, in Section 8.3, we complement the

account of the previous chapter by studying translations of presentations. Finally, in

Section 8.4, we describe the conservative restriction construction.

8.1 Universal algebra and equational logic

This section briefly recounts standard notions and results from universal algebra. For

a thorough introduction, see, e.g., Burris and Sankappanavar [BS81, Chapter II, Sec-

tions 1 and 8].

A signature σ is a pair 〈π,ar〉 where

• π is a set whose elements f , g, h we call operation symbols; and

• ar assigns to each f in π a natural number ar( f ) called its arity.

179
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When ar( f ) = n, we say that f : n in σ. Operation symbols with arity n are called n-ary

operations, and nullary operations, f : 0, are called constants.

Example 8-1. The signature for semilattices consists of a single binary operation ∨ : 2

called join.

Example 8-2. The signature for monoids consists of a binary operation · : 2 called

multiplication, and a constant 1 : 0 called unit.

Example 8-3. Let V = {v1, . . . ,vn} be a finite set, n > 2 denoting storable values.

The signature for mnemoids1 consists of an n-ary operation symbol lookup : n and

n different unary operation symbols updatevi
: 1, for all i = 1, . . . ,n. Note that this

signature depends on the enumeration order of V.

Let σ be a signature, and X be any set. We consider the elements of X as variables,

and define the set of σ-terms over X , Termsσ (X) by induction:

• For every variable x ∈ X , we have x ∈ Termsσ (X).

• For every f : n, if t1, . . . , tn ∈ Termsσ (X), then f (t1, . . . , tn) ∈ Termsσ (X).

Given a σ-term t over X , we define the set var(t) ⊆ X of variables appearing in t by

induction:

• var(x)B {x}; and

• var( f (t1, . . . , tn))B
⋃n

i=1 var(ti).

A σ-equation e over X is a pair 〈t,s〉 of two σ-terms over X , written as t = s. This

notation may cause confusion between an equation such as 1 · x = x and syntactic

equality which differentiates 1 · x from x. In the following, we explicitly note when

we refer to syntactic equality between terms. We extend the variable-set function to

equations by setting var(t = s)B var(t)∪var(s).

We will henceforth fix a countably infinite set of variables Var, whose elements are

denoted by x, y, z and their subscripts and superscripts x1, y2, z1
2, etc. Thus, Termsσ

refers to Termsσ (Var).

Definition 8.1. A presentation Ax is a pair 〈σ,E〉 consisting of a signature σ and a set

E of σ-equations (over the distinguished set of variables Var).

1Paul-André Melliès coined the term ‘mnemoid’ in unpublished work from 2010.
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We will usually define presentations by specifying their equations only, when their

signature can be inferred.

Example 8-4. The presentation of semilattices consists of the associativity, commuta-

tivity and idempotency equations:

x∨ (y∨ z) = (x∨y)∨ z x∨y = y∨x x∨x = x

Example 8-5. The presentation of monoids consists of the associativity equation and

neutrality of the unit:

x · (y · z) = (x ·y) · z 1 ·x = x x ·1 = x

The following presentation of mnemoids is due to Melliés [Mel10]:

Example 8-6. Let V = {v1, . . . ,vn} be a finite non-empty set denoting storable values

and σGS(V) be the signature for V-mnemoids given in Example 8-3. The presentation

for mnemoids consists of the following three equation schemas:

lookup(updatev1
(x), . . . ,updatevn

(x)) = x

updatevi
(lookup(x1, . . . ,xn)) = updatevi

(xi)

updatev(updateu(x)) = updateu(x)

These three equations have an operational reading in terms of interactions with a single

global memory V-cell. The first equation states that a computation that first reads the

state, and, depending on the stored value v, updates the cell to contain v, and then

carries on executing x is identical to the computation that immediately executes x. The

second equation states that a look-up proceeding an update yields the updated value.

The last equation states that more recent updates erase previous updates.

Let σ be a signature. We call the presentation 〈σ, /0〉 the free presentation over σ.

Example 8-7. Let Char = {c1, . . . ,cn} be a finite set denoting I/O terminal characters.

The presentation of terminal I/O is the free presentation over the signature consisting

of the an n-ary operation input : n and n unary operations outputc1
, . . . , outputcn

. This

presentation has the same signature as the mnemoid presentation, but no equations.

Example 8-8. Let E be any non-empty set, possibly infinite, denoting possible ex-

ceptions. The presentation of E-exceptions is the free presentation over the signature

consisting of a constant raisee for every e ∈ E.
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Let σ be a signature. A σ-algebra B is a pair 〈|B|,B⟦−⟧〉 consisting of a set |B|,
and an assignment mapping each f : n in σ to a function B⟦ f ⟧ : |B|n → |B|. The set

|σ| is called the carrier of the algebra. The set Termsσ (X) has an evident σ-algebra

structure, which we call the term algebra.

Let B be a σ-algebra and X a set. A valuation over X in B is a function ρ : X→ |B|.
Given a term t, we say that a valuation over X suffices for t provided var(t) ⊆ X . We

define valuations sufficing for equations similarly. We can extend any valuation ρ over

X in B to a function B⟦−⟧ρ : Termsσ (X)→ |B| inductively as follows:

• B⟦x⟧ρB ρ(x)

• B⟦ f (t1, . . . , tn)⟧ρB B⟦ f ⟧(B⟦t1⟧ρ, . . . ,B⟦tn⟧ρ)

Let t = s be a σ-equation, B a σ-algebra, and ρ a valuation in B sufficient for e. We

say that t = s is true under the valuation ρ if ⟦t⟧ρ = ⟦s⟧ρ. We say that a σ-equation is

true in a σ-algebra if it is true under all valuations sufficient for it.

Definition 8.2. Let Ax = 〈σ,E〉 be a presentation. An Ax-model is a σ-algebra in

which all the equations in E are true.

The models for the semilattice presentation are precisely the semilattices, and sim-

ilarly for monoids. We call models of the mnemoid presentation mnemoids.

Let Ax be a presentation. We say that Ax entails an equation e, and write Ax |= e,

if the equation e is valid in all Ax-models.

The following observation is due to Melliés [Mel10]:

Example 8-9. The presentation for mnemoids entails the following equation:

lookup(lookup(x1
1, . . . ,x

1
n), . . . , lookup(lookup(xn

1, . . . ,x
n
n)) = lookup(x1

1, . . . ,x
n
n)

The operational reading of this equation is that the memory cell does not change its

contents between consecutive look-ups.

Let B, C be two σ-algebras. A homomorphism h : B→C is a function h : |B| → |C|
such that, for every f : n in B and b1, . . . ,bn ∈ |B|:

h(B⟦ f ⟧(b1, . . . ,bn)) =C ⟦ f ⟧(h(b1), . . . ,h(bn))

Let Ax = 〈σ,E〉 be a presentation. A homomorphism between two Ax-models is a

homomorphism between them as σ-algebras.
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Let Ax be a presentation and X a set. A free Ax-model over X is a pair 〈B,η〉
consisting of an Ax-model B and a function η : X → |B| such that for every other such

pair 〈C, f 〉 there exists a unique homomorphism h : B→ C satisfying h ◦η = f . The

free Ax-model over any set always exists, and it is unique up to a unique isomorphism

preserving η.

Example 8-10. The carrier of the free semilattice over a set X is given by the non-

empty finite powerset P ℵ0
+ (X). The join operation is given by union.

Example 8-11. The carrier of the free monoid over a set X is given by the set X∗

of finite sequences of X-elements. The monoid unit is the empty sequence, 〈〉. The

monoid multiplication is concatenation, ++.

The following three examples are due to Plotkin and Power [PP02]:

Example 8-12. Let V = {v1, . . . ,vn} be a finite set with at least two elements denoting

storable values. The carrier of the free mnemoid T X over a set X is given by (V×X)V.

The lookup operation is given by:

lookup : (T X)n → T X

lookup : λi.(λv.〈ui,v,xi,v〉) 7→ λvi.〈ui,vi,xi,vi〉

For every v0 ∈ V, the updatev0
operation is given by:

updatev0
: (T X)→ T X

updatev0
: k 7→ λv.k(v0)

Compare these operations with the algebraic operations for the global state monad

given in Example 2-2.

Let Ax be a presentation. Denote by Mod(Ax,Set) the category consisting

of Ax-models as objects and homomorphisms between them. Consider the

forgetful functor UAx : Mod(Ax,Set)→ Set forgetting the algebra structure. The free

model over X is a universal arrow from X to U . The existence of the free Ax-model

implies that UAx always has a left adjoint FAx a UAx given on objects by the free

algebra.

The entailment relation forms a semantic notion of validity. We now discuss

syntactic validity via provability. Given a signature σ, a substitution θ from a

set X to a set Y assigns to each element in X a σ-term over Y . Thus, substitutions from

X to Y are valuations over X in the term algebra Termsσ (Y ). Therefore, we may say
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AXIOM:

e ∈ E =⇒ Ax ` e

REFL:

Ax ` t = t

SYMM:
Ax ` t = s

Ax ` s = t

TRANS:
Ax ` t = s Ax ` s = u

Ax ` t = u

SUBST:
Ax ` e

Ax ` eθ

(θ suffices for e)

CONG:
for all x ∈ var(t): Ax ` θ1(x) = θ2(x)

Ax ` tθ1 = tθ2

(θ1, θ2 suffice for t)

Figure 8.1: equational logic

that a substitution suffices for a term or an equation. When θ suffices for t, we write tθ

for the term resulting from performing the substitution, and similarly for an equation

e. A renaming is a substitution to Y assigning only variables in Y .

Given a presentation Ax = 〈σ,E〉, Figure 8.1 inductively defines the provability

relation Ax ` t = s over σ-equations. The provability relation is thus the least congru-

ence relation, with respect to the operations in σ, that contains E, and that is closed

under substitution. When the presentation is free, i.e., E = /0, the provability relation

coincides with syntactic equality.

We extend the provability relation from Termsσ to terms over any set X by defining

Ax ` t = s if and only if there exist provably equal σ-terms t ′, s′ (over Var) and a

renaming θ to X sufficient for t ′ = s′ such that t ′θ and s′θ are syntactically equivalent

to t and s, respectively. The extended provability relation is then the least congruence

over the term algebra Termsσ (X), with respect to its operations, contains all instances

of equations in E, and closed under substitution. We can therefore quotient each term

algebra Termsσ (X) by the provability relation, with the operations factoring through

the congruence relation. The resulting algebra FX is then an Ax-model called the term

model over X .

Theorem 8.3. Let Ax = 〈σ,E〉 be a presentation, and X is a set. The term model over

X, with the function mapping each variable in X to its equivalence class, is the free
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Ax-model over X. Moreover, every σ-equation over X is provable if and only if it is

valid in the term model FX.

In particular, entailment and provability coincide:

Theorem 8.4 (soundness and completeness). For every presentation Ax:

Ax |= e ⇐⇒ Ax ` e

Example 8-13. The free semilattice P ℵ0
+ (X) can be viewed as the term model where

each set {x1, . . . ,xn} corresponds to the equivalence class of x1∨ . . .∨ xn.

Example 8-14. The free monoid X∗ can be viewed as the term model where each finite

sequence 〈x1, . . . ,xn〉, n> 0, corresponds to the equivalence class of x1 · · ·xn.

Example 8-15. Let V = {v1, . . . ,vn}, n > 2 be a finite set denoting storable values.

The free mnemoid (V×X)V can be viewed as the term model where each function

λv.〈uv,xv〉 corresponds to the equivalence class of the following term:

lookup(updatev1
(xv1), . . . ,updatevn

(xvn))

We say that a presentation Ax is equationally inconsistent if Ax ` x = y. A pre-

sentation that is not inconsistent is consistent. Theorem 8.4 implies that if Ax is incon-

sistent, every Ax-model has at most one element. In this case, if Ax has no constant

symbols, the free model over the empty set is the empty set. If Ax does contain at least

one constant symbol, the free model over the empty set is also a singleton.

Finally, we discuss morphisms between presentations. The following notions are

not standard. Let σ, σ′ be signatures. A translation of signatures T : σ→ σ′ is an as-

signment assigning to every f : n in σ a σ′-term T( f ) over {x1, . . . ,xn}. Note that every

translation T extends uniquely to a homomorphism T : Termsσ→ Termsσ′ between the

term algebras of the corresponding signatures (without any equations).

Let Ax = 〈σ,E〉, Ax′ = 〈σ′,E ′〉 be presentations. A translation of presentations

T : Ax→ Ax′ is a translation T : σ→ σ′ such that, for every t = s in E,

Ax′ ` T(t) = T(s)

The category of presentations Presentation is given by presentations and transla-

tions between them. The identities are the translations mapping each f : n to

T( f )B f (x1, . . . ,xn)

Composition T2 ◦T1 is given by composing the homomorphic extension of T2 with

T1.
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Example 8-16. Let AxAb be the presentation of Abelian groups whose signature σAb

consists of a binary operation + : 2, a constant 0 : 0, a unary operation− : 1, and whose

equations are

x+y = y+x x+(−x) = 0

(x+y)+ z = x+(y+ z) x+0 = x

Let AxNeg be the presentation whose signature σNeg consists of a binary operation

− : 2, a constant 0 : 0, and whose equations are

x− (y− (z− (x−y))) = z x−x = 0

Define the following translation T : σNeg→ σAb:

T(0)B 0 T(−)B x1 +(−x2)

Then T is also a translation T : AxNeg→ AxAb.

Define the following translation T−1 : σAb→ σNeg:

T−1(0)B 0 T−1(+)B x1− (0−x2) T−1(−)B 0−x1

Tarski [Tar38] showed that the Abelian group axioms follow from the two axioms of

σNeg, and therefore T−1 : AxAb→ AxNeg is a translation.

The two compositions are given by:

T−1 ◦T(0) = 0 T−1 ◦T(−) = T−1(x1 +(−x2))

= x1− (0− (0−x2))

T◦T−1(0) = 0 T◦T−1(+) = T(x1− (0−x2))

= x1 +(−(0+(0+(−x2))))

T◦T−1(−) = T(0−x1) = 0+(0−x1)

Note that T−1 ◦T(0) and id(0) are syntactically equivalent, but T−1 ◦T(−) and id(−)
are not, and therefore T−1 ◦T is not the identity translation. However, the following

does hold:

AxNeg ` T−1 ◦T(−) = id(−)
The previous example suggests an alternative for translations. Given two presenta-

tions Ax, Ax′, we define the relation∼ over translations T1,T2 : Ax→Ax′ by T1∼T2

if and only if for every f : n in Ax:

Ax′ ` T1( f ) = T2( f )
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For example, the translations from Example 8-16 satisfy T−1◦T∼ id and T◦T−1 ∼ id.

Therefore, it is natural to consider the category Theory consisting of presentations to-

gether with equivalence classes of translations as morphisms between them. We will

do so in the next section using Lawvere theories and monads. The advantage of our

chosen notion of translations is that their equality can be decided syntactically.

We will be mainly concerned with a particular kind of translation. An extension is

a translation T : Ax→Ax′ such that for every f : n in Ax there is a unique f ′ : n in Ax′

such that T( f ) = f ′(x1, . . . ,xn) syntactically, and, moreover, if f ′1 = f ′2 then f1 = f2.

Example 8-17. Let V = {v1, . . . ,vn} be a finite set with at lest two elements denoting

storable values. The environment presentation is given by the two equations:

lookup(x, . . . ,x) = x

lookup(lookup(x1
1, . . . ,x

1
n), . . . , lookup(xn

1, . . . ,x
n
n)) = lookup(x1

1, . . . ,x
n
n)

Then, by Example 8-15, we have an extension from the environment presentation

to the mnemoid presentation mapping lookup to lookup.

As in the previous example, the extension will usually be obvious. In this case we

simply say that Ax′ is an extension of Ax.

8.2 Universal algebra and monads

We review the well-known connections between presentations, monads and Lawvere

theories. Let Ax be a presentation. Let F : Set→Mod(Ax,Set) be the free Ax-model

functor, and U : Mod(Ax,Set)→ Set be the forgetful functor assigning to each model

its carrier set. Then T BUF is a monad. Its unit η : X → T X is the function assigning

to each variable x ∈ X its equivalence class [x] ∈ T X . The monadic multiplication

µ : T 2X → T X is defined inductively as follows:

• For every [t] ∈ FX , µ[t]B [t]

• For every op : n, τ1, . . . ,τn ∈ FT X such that µ(τ1) = [t1], . . ., µ(τn) = [tn], define:

µ[op(τ1, . . . ,τn)]B [op(t1, . . . , tn)].

Each op : n in Ax yields an algebraic operation op : n (cf. Definition 2.1) given by

op : (T X)n → (T X)1

λιi?.[ti] 7→ [op(t1, . . . , tn)]
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The corresponding generic effect gen : n is given by:

gen : 1→ Tn

? 7→ [op(ι1?, . . . , ιn?)]

More generally, each P-indexed family of terms
〈
sp
〉

p∈P over n variables yields an

algebraic operation of type n〈P〉:

op : (T X)A → (T X)P

λιi?.[ti] 7→ λp.[sp(t1, . . . , tn)]

The corresponding generic effect gen : n〈P〉 is given by:

p 7→ [sp(ι1?, . . . , ιn?)]

Example 8-18. The monads corresponding to the two inconsistent theories are the

constantly 1 monad, when the theory contains a constant, and the monad mapping

the empty set to itself and every non-empty set to 1, when the theory contains no

constants.

Example 8-19. Let V = {v1, . . . ,vn} be a finite set with at least two elements denoting

storable values. The global state monad TGS(V) is the free mnemoid monad, the look-

up operation for this monad is the operation corresponding to the look-up mnemoid

operation. For the update operation, note that for each v ∈ V, applying the generic

effect for update at v, i.e. set!(v) yields the same result as applying the generic effect

for updatev to ?.

Similarly, the environment monad TEnv(V) is the free model monad for the envi-

ronment presentation from Example 8-17. Every function f ∈ XV corresponds to the

equivalence class of the term

lookup( f (v1), . . . , f (vn))

The look-up operation of the environment monad is the operation corresponding to

lookup.

Finally, the overwrite monad TOW(V) is the free model monad for the following

overwrite presentation: the signature is given by {updatev : 1|v ∈ V}, and the equations

are given by

updatev(updatev′(x)) = updatev′(x)

for every v,v′ ∈ V. In this case, for every v ∈ V, applying the generic effect for update

at v, i.e. set!(v) for updatev to ?.
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Example 8-20. Recall the model for exceptions and terminal I/O from Example 3-

5. Let Char = {c1, . . . ,cn} be a set denoting terminal characters. The monad from

Example 3-5 is the free model for the free presentation over the signature

{input : n,outputc : 1, raises : 0|c ∈ Char,s ∈ Str}

As a free presentation, the term model coincides with the term algebra. Thus the

different constructors used in Example 3-5 correspond to the abstract sysntax tree con-

structors of the term model.

More generally, the free model monad for any free presentation coincides with the

term algebra for that signature.

Let T : Ax→ Ax′ be a translation. Let T , T ′ be the monads corresponding to Ax,

Ax′, respectively. We then have a family of functions:

mX : T X → T ′X

[t] 7→ [T(t)]

Then m is a monad morphism from T to T ′. Moreover, for every P-indexed family of

n-ary terms
〈
tp
〉

p∈P, this monad morphism m maps the generic effect corresponding to〈
tp
〉

to the generic effect corresponding to
〈
T(tp)

〉
.

The monad corresponding to a presentation is finitary. The assignments

Ax 7→ TAx and T 7→ Tm form a functor T− : Presentation→ Set-Monadsℵ0 .

We recall the well-known connection between presentations and finitary monads in the

following theorem:

Theorem 8.5. The functor T− : Presentation→ Set-Monadsℵ0 is essentially surjec-

tive and full. Moreover, T− factorises as

T− : Presentation
Q
−−−� Theory' Set-Monadsℵ0

where Q is the evident identity-on-objects full functor mapping each translation to its

∼-equivalence class. Therefore, for all T,T′ : Ax→Ax′, we have TT = TT′ if and only

if T∼ T′.

Crucially, T− is not faithful. For example, the two presentations of Abelian groups

from Example 8-16 yield the free Abelian group monad, and all translations in that

example are mapped to the identity monad morphism. However, the action of T−
on translations is injective on representatives of distinct equivalence classes of the
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relation ∼ over translations. This result captures the notion that finitary monads are

presentation invariants of universal algebra.

We now turn to Lawvere theories. We can post-compose the functor T− with the

isomorphism Set-Monadsℵ0
∼= Lawℵ0Set between finitary monads and Lawvere the-

ories. Therefore, every Lawvere theory can be understood in terms of presentations.

Lawvere’s thesis [Law63] introduced Lawvere theories to give a presentation invariant

account of universal algebra. The following constructions and observations are due to

him.

Let Ax be a presentation, then the Lawvere theory L corresponding to Ax is given

as follows. Recall that our notion of a (finitary) Lawvere (set-enriched) theory in-

cludes all finite sets as objects, and not only the natural numbers. Given two finite sets

X , Y , the hom-set |L |(X ,Y ) is the set of Y -indexed tuples of Ax-equivalence classes of

terms over X . These can be viewed as substitutions whose domain is Y , but the terms

are quotiented modulo Ax. The identity morphism in |L |(X ,X) maps each x ∈ X to

the equivalence class of the variable [x]. Composition g◦ f corresponds to substituting

in g according to f . The category Presop
ℵ0

Set, i.e., the opposite category to finite sets,

is then considered as renamings. A function f : X ← Y assigns to each variable in Y

its renamed variable. The functor L ⟦−⟧ : Presop
λ

Set→ |L | maps each renaming to its

counterpart in |L |. Given a translation T : Ax→ Ax′, the corresponding morphism of

Lawvere theories T : L → L ′ applies the homomorphic extension of T to each equiv-

alence class component of the substitution it acts on. Theorem 8.5 implies that all

Lawvere theories and their morphisms arise from presentations and their translations.

The correspondence extends to models:

Theorem 8.6. Let Ax be a presentation, L the corresponding Lawvere theory, and T

the corresponding finitary monad. Then Mod(Ax,Set)∼= Mod(L ,Set)∼= SetT .

This fact explains our choice of notation for T -algebras: if B is a T -algebra, then

the elements of T |B| are represented by Ax-terms over |B|. The algebra B⟦−⟧ then

homomorphically interprets this term in |B|.

8.3 Conservative and surjective translations

We focus on the following important class of translations:

Definition 8.7. A translation T : Ax→ Ax′ is conservative when, for every
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pair of Ax-terms, t, s, we have:

Ax′ ` T(t) = T(s) =⇒ Ax ` t = s

We denote conservative translations by T : Ax�Ax′. In particular, a conservative

extension is an extension of Ax to Ax′ that satisfies, for all Ax-terms t, s:

Ax′ ` t = s =⇒ Ax ` t = s

Thus, a presentation is consistent if and only if the unique translation from the empty

presentation is conservative.

Theorem 8.8. A translation T : Ax→ Ax′ is conservative if and only if the corre-

sponding monad morphism is component-wise injective.

Proof
Let m : T → T ′ be the corresponding monad morphism. In light of Proposi-

tion 7.8, it suffices to show that T is conservative if and only if mX is injective

for all finite sets X . As every element in T X is of the form [t] for some Ax-term t, and

as m([t]) = [T(t)], we have:

m([t]) = m([s]) ⇐⇒ Ax′ ` T(t) = T(s)

[t] = [s] ⇐⇒ Ax ` t = s

and we are done. �

We turn to the dual notion:

Definition 8.9. A translation T : Ax→ Ax′ is surjective when, for every Ax′-term s,

there exists an Ax-term t such that Ax′ ` T(t) = s.

We denote surjective translations by T : Ax� Ax′. Surjective translations relate

to component-wise surjective monad morphisms as conservative translations relate to

component-wise injective morphisms:

Theorem 8.10. A translation T : Ax→Ax′ is surjective if and only if the correspond-

ing monad morphism is component-wise surjective.
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Proof

Because the class of surjections is closed under colimits, by Proposition 7.8, it

suffices to show that T is surjective if and only if mX is surjective for all finite

sets X . The remainder of the proof follows as in Theorem 8.8. �

The classes of surjective and conservative translations are fundamental building

blocks in the category of presentations:

Theorem 8.11. Every translation admits a surjective-conservative factorisation.

Explicitly, let T : Ax1→ Ax2 be any translation. Let Ax be the presentation con-

sisting of Ax1’s signature and all the equations t = s where t, s are Ax1-terms such that

Ax2 ` T(t) = T(s). Let E : Ax1�Ax be the evident extension, and M : Ax�Ax2 be

given by M(op) = T(op). Then T : Ax1
E
−−−� Ax M Ax2 is a factorisation of T.

Proof
We need to show E and M are well-defined surjective and conservative translations,

respectively. The fact that they factorise T is immediate.

Given any equation Ax1 ` t = s, then

Ax2 ` T(E(t)) = T(t) = T(s) = T(E(s))

Therefore, Ax ` E(t) = E(s). Thus, E : Ax1→ Ax is a well-defined translation. Be-

cause the term algebras for Ax1 and Ax′ coincide, this translation is surjective.

Given any equation Ax ` t = s, then, by definition:

Ax2 `M(t) = T(t) = T(s) =M(s)

Therefore M : Ax→ Ax2 is a well-defined translation. If Ax2 `M(t) =M(s), then,

by definition, Ax ` t = s, hence M is conservative. �

Note that this factorisation may not be unique, as different translations may be

equivalent under the ∼ relation. However, when we move to Lawvere theories

and finitary monads, this factorisation gives rise to a factorisation system.

Corollary 8.12. The E-class of the factorisation system of finitary monads over Set
from Theorem 7.9 arising from the surjective-injective factorisation of Set consists of

all component-wise surjective monad morphisms.

Equivalently, the E-class of the factorisation system of Lawvere theories from Theo-

rem 7.5 arising from the surjective-injective factorisation of Set consists of all mor-

phisms E whose components EX ,1 are surjective.
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Proof
In light of Proposition 7.8, both parts of the theorem are equivalent. Let e : T1 → T2

be any monad morphism in the E-class for the factorisation system of finitary monads

over Set.
By Theorem 8.5, there exists a translation of presentations E : Ax1 → Ax2 such

that the corresponding monad morphism is isomorphic to e. By Theorem 8.11, E has

a surjective-conservative factorisation E : Ax1
E′
−−−� Ax′ M′ Ax2. Therefore, by

Theorems 8.8 and 8.10, e has a component-wise surjective-injective factorisation

e : T1
e′
−−−� T ′ m′ T2

But, by Theorem 7.9, this factorisation is a factorisation in the factorisation system

from Theorem 7.9. As e : T1
e
−−� T2 ∼= T2 is another such factorisation, we deduce that

e∼= e′, and e is component-wise surjective. �

A direct consequence of the previous corollary and Theorem 8.5 is that the

surjective-conservative factorisation of Theorem 8.11 is essentially unique in

the following sense:

Corollary 8.13. If T : Ax1
E
−−−� Ax M Ax2 and T′ : Ax1

E′
−−−� Ax′ M′ Ax2

are two surjective-conservative factorisations such that T ∼ T′, then there exist two

translations Ax I−→ Ax′ I−1
−−→ Ax such that I◦I−1 ∼ id, I−1 ◦I∼ id, and

Ax1 Ax2

Ax′

Ax
E M

E′ M′

I∼ ∼

Moreover, if I′ : Ax→ Ax′ is any other such translation, then I′ ∼ I.

8.4 Presentation models

We now utilise the algebraic descriptions to account for our hierarchical models.

Definition 7.1 (revisited). Let Π be a set. A presentation type assignment for Π is

a set-theoretic type assignment (see Definition 2.10 (revisited)) such that, for all op :

A〈P〉, the arity type A is a finite set.

For example, if V is a finite set denoting storable values, then the global state type

assignment from Example 2-9 (revisited) is a presentation type assignment.
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Definition 3.2* (revisited)+. Let Σ be a hierarchy. A presentation Σ-model is a quadru-

ple

〈type,Ax−,L−,T− ⟦−⟧〉
where:

• type is a presentation type assignment for Σ;

• Ax− assigns to each ε in E a presentation Axε;

• L− assigns to each ε⊆ ε′ in E a translation Lε⊆ε′ : Axε→ Axε′;

• T− ⟦−⟧ assigns to each ε ∈ E , and op : A〈P〉 in ε a P-indexed family Tε ⟦op⟧ of

terms over A;

• for all ε⊆ ε′ ⊆ ε′′ in E:

Lε⊆ε ∼ id, Lε′⊆ε′′ ◦Lε⊆ε′ ∼ Lε⊆ε′′

i.e., L− is functorial;

and, for all ε⊆ ε′ in E , op : A〈P〉 in ε, and p ∈ P:

Axε′ ` Lε⊆ε′(Tε ⟦op⟧(p)) = Tε′ ⟦op⟧(p)

Thus, L− preserves the effect terms.

Let 〈type,Ax−,L−,T− ⟦−⟧〉 be a presentation Σ-model. We construct a set-theoretic

Σ-model 〈type,T−,m−,G− ⟦−⟧〉 as follows. For every ε in E , Tε is the free Axε-model

monad. For every ε⊆ ε′, mε⊆ε′ is the monad morphism corresponding to the translation

Lε⊆ε′ . Finally, for every ε in E and op : A〈P〉 in ε, we set

Gε ⟦op⟧ : P→ TεA

p 7→ [Tε ⟦op⟧(p)]

Note that each of the monads Tε in this construction is finitary. The con-

verse statement also holds, in light of the essential surjectivity of the func-

tor T− : Presentation→ Set-Monadsℵ0 (Theorem 8.5). Thus, every set-theoretic Σ-

model with a presentation type assignment arises from a presentation Σ-model in this

way.
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Our goal is to generate hierarchical models from given algebraic descriptions

of the non-hierarchical models. We therefore first need a notion of such mod-

els.

Definition 2.13+ (revisited). Let Π be a set. A presentation Π-model is a triple

〈type,Ax,T ⟦−⟧〉

where:

• type is a presentation type assignment for Π;

• Ax is a presentation; and

• T ⟦−⟧ assigns to each op : A〈P〉 in Π a P-indexed family T ⟦op⟧ of terms over A.

Example 8-21. Take Π B {lookup,update}. Let V = {v1, . . . ,vn}, n > 2 be any fi-

nite set denoting storable values. Let type be the presentation type assignment from

Example 6-13. Let Ax be the presentation of V-mnemoids from Example 8-6. Define:

T ⟦lookup⟧ : ? 7→ lookup(v1, . . . ,vn) T ⟦update⟧ : v0 7→ updatev0
(?)

Then 〈type,Ax,T ⟦−⟧〉 is a presentation Π-model for global V-state.

Example 8-22. Take Π B {choose}. Let type be the presentation type assignment

given by choose : 2, Ax be the semilattice presentation from Example 8-4, and set

T ⟦choose⟧ : ? 7→ (ι1?)∨ (ι2?)

Then 〈type,Ax,T ⟦−⟧〉 is a presentation Π-model for non-deterministic choice.

Example 8-23. Take Π B {input,output, raise}. Let Char = {c1, . . . ,cn} be a finite

set denoting terminal characters. Let type be the presentation type assignment given

by

input : Char output : 1〈Char〉 raise : 0〈Str〉

Let Ax be the free presentation over the signature:

{input : n,outputc : 1, raises : 0|c ∈ Char,s ∈ Str}

Set
T ⟦input⟧ : ? 7→ input(c1, . . . ,cn)

T ⟦output⟧ : c 7→ outputc(?)

T ⟦raise⟧ : s 7→ raises

Then 〈type,Ax,T ⟦−⟧〉 is a presentation Π-model for terminal I/O and exceptions.
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Note that these examples illustrate that our notion of presentation Π-models is

lightweight: the only proof obligations it incurs are the finiteness of the arity types,

and the well-formedness of the equations and effect terms.

The Π-model in Example 8-23 does not arise from an algebraic Π-model with

a finitary Lawvere theory, as the type assignment is not finitely presentable. We

can capture this model by switching to countable Lawvere theories, but these capture

monads that cannot be presented using our finitary notion of presentations. Therefore,

there is a mismatch between our notion of a presentation Π-model and our notion of a

finitary algebraic Π-model. As we do not wish to diverge from the standard notions of

universal algebra and of enriched Lawvere theories, we do not resolve this mismatch

in this thesis.

We now present the main construction of this chapter, the conservative restric-

tion model:

Theorem 7.12 (revisited). Let Π be a set, and let M = 〈type,Ax,T ⟦−⟧〉 be a presen-

tation Π-model. For every effect hierarchy Σ whose set of operations is Π, we have a

Σ-model defined by

M ]B 〈type,Ax−,L−,T− ⟦−⟧〉

together with the auxiliary data 〈enum−,σ−,T−,E−,M−,S−〉, where:

• enum− assigns to each op : A〈P〉, |A|= n, in Π a bijection enumop : A∼= {1, . . . ,n};

• σ− assigns to every ε ∈ E a signature σε given by

σεB
{

opp : n
∣∣op : A〈P〉 , |A|= n, p ∈ P

}
• T− assigns to every ε ∈ E the translation Tε : 〈σε, /0〉 → Ax given by the substi-

tution

Tε(op)B T ⟦op⟧θ

where θ is the substitution given by θ(a)B xenumopa for every a ∈ A;

• for every ε ∈ E , 〈Axε,Eε,Mε〉 is the factorisation from Theorem 8.11,

Tε : 〈σε, /0〉
Eε−−−� Axε

Mε Ax

i.e., Axε has σε as signature, Eε is the evident surjective extension, and Mε is

the evident conservative translation;
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• T− ⟦−⟧ assigns to every ε ∈ E and op : A〈P〉, |A|= n in ε the family

Tε ⟦op⟧B 〈opp(enum−1
op 1, . . . ,enum−1

op n)
〉

p∈P

• S− assigns to every ε ⊆ ε′ in E the evident extension Sε⊆ε′ : 〈σε, /0〉 → Axε′;

and

• L− assigns to every ε⊆ ε′ the evident extension Lε⊆ε′ : Axε→ Axε′ , and, more-

over, this extension is conservative.

We call M ] the set-theoretic conservative restriction Σ-model for the given Π-model.

Note that this theorem gives us an explicit and uniform definition of M ]. However,

working out the exact syntactic description of each presentation Axε is impractical,

as these presentations always have infinitely many axioms. In every concrete case,

we will find alternative and simpler ways to present the monad corresponding to Axε.

Our technique is to rely on Corollary 8.13: we will factorise the translation Tε to a

surjective-conservative factorisation. The factorising presentation is then, up to the

equivalence ∼, canonically isomorphic to Axε.

Example 7-11 (revisited). Let ΠB {lookup,update}. Let V = {v1, . . . ,vn}, n> 2, be

a finite set denoting storable values. Let M B 〈type,Ax,T ⟦−⟧〉 be the global state

Π-model from Example 8-21. Let Σ be the full powerset hierarchy. We analyse the

conservative restriction model M ].

The presentation Ax /0 can be alternatively described by the empty presentation. In-

deed, because the theory of mnemoids is consistent, we have a factorisation consisting

of extensions:

〈σ /0, /0〉= 〈 /0, /0〉� 〈 /0, /0〉� Ax

Therefore, by Corollary 8.13, Ax /0 and the empty presentation both present the same

monad.

The presentation Ax{lookup} can be alternatively described by the environment pre-

sentation AxEnv(V) from Example 8-17, as the two evident extensions form a factorisa-

tion

T{lookup} : 〈{lookup? : n}, /0〉� AxEnv(V)� Ax

Indeed, as AxEnv(V)’s signature is {lookup : n}, the first translation is surjective. The

monad morphism corresponding to the second translation is the monad morphism

m{lookup}⊆{lookup,update} from Example 3-2* (revisited). Direct calculation shows this
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monad morphism is componentwise injective, hence the second translation is conser-

vative.

Similarly, the presentation Ax{update} can be alternatively described by the over-

write presentation AxOW(V) from Example 8-19.

Finally, the presentation Ax{lookup,update} can be alternatively described by the pre-

sentation Ax itself.

In summary, the set-theoretic Σ-model corresponding to M ] is the Σ-model for

global state from Example 3-2* (revisited).

Example 8-24. Let Π B {input,output, raise} and M B 〈type,Ax,T ⟦⟧〉 be the ter-

minal I/O and exception presentation Π-model from Example 8-23. Let Σ be the full

powerset hierarchy. We analyse conservative restriction model M ].

For every ε⊆Π, we have the following factorisation of extensions:

Tε : 〈σε, /0〉� 〈σε, /0〉� Ax

Indeed, the first extension is evidently surjective. As Ax is free, the second extension

is conservative. Therefore, Axε may be alternatively presented by 〈σε, /0〉. Therefore,

the set-theoretic model corresponding to M ] is the Σ-model for terminal I/O and ex-

ceptions given in Example 3-5.

The last two examples show that the conservative restriction model yields the natu-

ral Σ-models from Section 3.3. Note how we transitioned from specifying structure to

specifying properties: there is very little overhead in proof obligations while describ-

ing the structure of the starting Π-model. A more elaborate analysis of the properties

of the resulting conservative restriction models recovers the rest of the elaborate model

structure. Thus, we avoid the need to specify the exponentially large structure required

by set-theoretic Σ-models.

In summary, we reviewed the relevant background in universal algebra, equational

logic, and its relationship to finitary monads and Lawvere theories, and reformulated

our conservative restriction construction in terms of presentations.



Chapter 9

Relational models

We search our lives forever for perfection in relations

—Simply Red

In this chapter we study a useful subclass of our categorical models in which

the objects are suitable relations, subsets in the set-theoretic case and ω-chain-

closed subsets in the domain-theoretic case. Relational models organise the data re-

quired to present logical relations proofs [Fil07, Mit90, Rey74] for relating different

semantic models.

We leave a general account of relational models to future work. Here, we only

consider predicates over sets. However, we structure our account in a form we believe

holds in greater generality.

First, in Section 9.1, we introduce set-theoretic logical relations as a category.

Next, in Section 9.2, we present our monadic lifting construction, which we use in

Corollary 9.12 to relate the conservative restriction model of Theorem 7.12 and the

benchmark model of Example 7-2.

9.1 Set-theoretic logical relations

We define predicates over sets:

Definition 9.1. The category PredSet of set-theoretic predicates is given as follows:

• the objects consist of pairs 〈X ,P〉 where X is a set and P is a subset of X; and

• the morphisms from 〈X ,P〉 to 〈Y ,Q〉 consist of pairs
〈

f , ḟ
〉

where f : X → Y is

a function and ḟ : P→ Q such that

199
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P Q

X Y

⊆ ⊆

ḟ

f

=

We will denote objects of Pred as P ⊆ X , and say that P is a predicate over X .

Note that if ḟ exists, then it is uniquely determined by f , and we say that f lifts to a

morphism from P⊆ X to Q⊆Y . Also note that Pred is categorically equivalent to the

full subcategory of the arrow category SetS induced by the morphisms in the M -class

of the surjection-injection factorisation system of Set.

As is well-known:

Proposition 9.2. The category Pred is cartesian closed and has all products and co-

products. As a consequence, it is distributive. This structure is given as follows:

• products: We have, ∏i∈I (Pi ⊆ Xi) = (∏i∈I Pi)⊆ (∏i∈I Xi), and the set-theoretic

projections lift to the product of predicates. Given, for all i ∈ I, a morphism〈
fi, ḟi

〉
: Q⊆ Y → Pi ⊆ Xi, then

〈〈
fi, ḟi

〉〉
=
〈
〈 fi〉,

〈
ḟi
〉〉

.

• coproducts: Similarly, ∑i∈I (Pi ⊆ Xi)= (∑i∈I Pi)⊆ (∑i∈I Xi), and the set-theoretic

injections lift to the coproduct of predicates. Given, for all i ∈ I, a morphism〈
f , ḟ
〉

: Pi ⊆ Xi→ Q⊆ Y , then
[〈

fi, ḟi
〉]

=
〈
[ fi],

[
ḟi
]〉

.

• exponentials: (Q⊆ Y )P⊆X = R⊆Y X , where R is the subset of all functions from

X to Y that lift. Explicitly,

R = { f : X → Y | for all p in P, f (p) ∈ Q}

The evaluation map lifts to the evaluation map in Pred, and for every predicate

morphism 〈
f , ḟ
〉

: (S⊆ Z)× (P⊆ X)→ Q⊆ Y

the curried function λX . f lifts to λP⊆ X .
〈

f , ḟ
〉
.

Proof

Jacobs [Jac01, Section 9.2 and Exercise 9.2.1] includes this structure as an exercise.

Katsumata [Kat13] spells it out in detail. �
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The following category is the central concept of this chapter:

Definition 9.3. The category LogRel of set-theoretic logical relations is given by:

• the objects X consist of triples
〈
X1,X2, Ẋ

〉
, where X1 and X2 are sets and Ẋ is a

predicate over X1×X2; and

• the morphisms f : X → Y consist of triples
〈

f1, f2, ḟ
〉
, where

〈
f1× f2, ḟ

〉
is a

predicate morphism from Ẋ ⊆ X1×X2 to Ẏ ⊆ Y1×Y2.

We have the following forgetful functors:

USet×Set : LogRel → Set×Set Cod : Pred → Set〈
X1,X2, Ẋ

〉
7→ 〈X1,X2〉 P⊆ X → X〈

f1, f2, ḟ
〉
7→ 〈 f1, f2〉

〈
f , ḟ
〉
7→ f

UPred : LogRel → Pred〈
X1,X2, Ẋ

〉
7→ Ẋ ⊆ X1×X2〈

f1, f2, ḟ
〉
7→
〈

f1× f2, ḟ
〉

In fact, LogRel arises as the pullback square in the (large) category of categories and

functors:

Set×Set

Pred

Set

LogRel

×

Cod

UPred

USet×Set

This known characterisation is part of the logical relations folklore, see, for example,

Katsumata [Kat13]. We expect this characterisation to be useful when generalising

from sets and subsets to objects in a category and their predicates. As in Pred, note

that the morphism ḟ , if it exists, is uniquely determined by the components f1, f2.

When ḟ exists, we say that 〈 f1, f2〉 lifts to LogRel.

The following result is well-known:

Proposition 9.4. The category LogRel is cartesian closed and has all products and

coproducts. As a consequence, it is distributive. The functor USet×Set preserves the

products, coproducts and this closed structure. Explictly, these structures are given as

follows:
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• products: ∏i∈I X i =
〈
∏i∈I X i

1,∏i∈I X i
2,∏̇i∈IX i〉 where

˙
∏i∈IX

i =
{〈〈

xi
1
〉
,
〈
xi

2
〉〉∣∣∀i ∈ I.

〈
xi

1,x
i
2
〉
∈ Ẋ i}

The pair of set-theoretic projections lifts to the product of predicates. Given, for

all i∈ I, a morphism f i : Y → X i, then the pair
〈〈

f i
1
〉

i∈I,
〈

f i
2
〉

i∈I

〉
lifts to

〈
f i〉

i∈I .

• coproducts: ∑i∈I X i =
〈
∑i∈I X i

1,∑i∈I X i
2,∑i∈I Ẋ i〉. Note that indeed we have

∑ Ẋ i ⊆∑(X i
1×X i

2)⊆
(
∑X i

1
)
× (∑X i

2)

The pair of set-theoretic injections lifts to the coproduct of predicates. Given, for

all i∈ I, a logical relations morphism f i : X i→Y , then the pair
〈[

f i
1
]

i∈I,
[

f i
2
]

i∈I

〉
lifts to

[
f i]

i∈I .

• exponentials: Y X =
〈

Y X1
1 ,Y X2

2 ,R
〉

, where

R =
{
〈 f1, f2〉 ∈ Y X1

1 ×Y X2
2

∣∣∣ for all 〈x1,x2〉 in Ẋ , 〈 f1(x1), f2(x2)〉 ∈ Ẏ
}

The pair 〈eval,eval〉 lifts to the evaluation map in Pred, and for every logical

relation morphism f : Z×X → Y the pair of functions 〈λX1. f1,λX2. f2〉 lifts to

λX . f .

Proof
A vast generalisation of this result using bifibrations is discussed by Jacobs [Jac01,

Section 9.2]. Katsumata [Kat13] spells out this structure for a more specialised situa-

tion, using faithful bifibrations, that includes our notion of logical relations. �

9.2 Monadic lifting

Our goal is to construct relational CBPV models, i.e., models in LogRel, relating two

models in Set. Such models are given by a pair of monads. Straightforward calculation

shows that if T1, T2 are two (strong) monads over (cartesian) categories V 1, V 2, then

setting T 〈x,y〉 to 〈T1x,T2y〉 yields a monad over V 1×V 2, with the monadic structure

given componentwise, i.e. the unit by 〈η1,η2〉 and the multiplication by 〈µ1,µ2〉. The

following definition captures the data we will need in our logical relations models.

Definition 9.5. Let 〈T1,T2〉 be a pair of (strong) monads over Set. A lifting of T1, T2 to

LogRel is a strong monad T , such that:
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• for every logical relation X, T X is a lifting of T1X1 and T2X2, and we write

T X =
〈
T1X1,T2X2, Ṫ X

〉
;

• for every logical relation morphism f , 〈T1 f1,T2 f2〉 lifts to T f ;

• the monadic unit 〈η1,η2〉 lifts to the unit of T ;

• the monadic multiplication 〈µ1,µ2〉 lifts to the multiplication of T ; and

• the monadic strength 〈str1,str2〉 lifts to the strength of T .

Note that, in order to lift a given pair of monads T1, T2, the only additional struc-

ture required is the relation part Ṫ
〈
X1,X2, Ẋ

〉
of the monad T . The remainder of the

monadic structure of the lifting is uniquely determined by the monadic structure of T1

and T2, i.e., we only need to validate that the existing structure satisfies these proper-

ties.

Example 9-1. Every pair of monads T1, T2 admits a lifting via the total relation, i.e.,

by setting Ṫ
〈
X1,X2, Ẋ

〉
B T1X1×T2X2.

The models, i.e. monads, Benton et al. [BK99, BKHB06, BB07, BKBH07, BKBH09]

use to validate effect-dependent transformations are lifted models. Due to time and

space constraints, we do not describe these models here explicitly.

Lemma 9.6. Let T be a lifting of T1,T2. Let B1, B2 be algebras for T1, T2, respectively,

and B a lifting of the algebra structure, i.e., a predicate Ḃ ⊆ |B1|× |B2| such that the

pair of algebra maps 〈B1 ⟦−⟧,B2 ⟦−⟧〉 lifts. Thus, such a B is an algebra for T .

Further, for all logical relations morphisms f : X×Y→|B|, the pair of monadic liftings〈
f1

†, f2
†〉 lifts to the monadic lifting f † : X×TY → |B|.

Proof
As f † is expressed using λ−.−, T , and the tupling morphism, the monadic lifting also

lifts to LogRel. �

We define the lifting of other concepts, such as generic effects, monad morphisms,

and algebraic operations similarly. Let A, P be logical relations. Let gen1 : A1 〈P1〉,
gen2 : A2 〈P2〉 be generic effects for the monads T1, T2, respectively. We say the pair

〈gen1,gen2〉 lifts to a generic operation of type A〈P〉 for T when the pair lifts as a

function P→ T A.

Similarly, let opi be two algebraic operations of types Ai 〈Pi〉 for Ti, i = 1,2. The

pair 〈op1,op2〉 lifts when, for every T -algebra B, the components
〈

opB1
1 ,opB2

2

〉
lift.
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Let T , T ′ be liftings of T1, T2, and T ′1, T ′2, respectively. A pair of monad morphism

mi : Ti→ T ′i , i = 1,2 lifts when each component 〈m1,m2〉 lifts to a morphism of logical

relations mX : T X → T ′X .

Let Π be a set of operations. Let type1, type2 be set-theoretic type assignments for

Π. A lifting of type1,type2 is a type assignment type for Π in LogRel, such that, for

every op∈Π, if type assigns op : A〈P〉, then typei assigns op : Ai 〈Pi〉, for i= 1,2. In the

following, we are only concerned with such type assignment liftings which assign the

pair of diagonal relations for every operation. Given two set-theoretic CBPV Π-models

〈Set,T1, type1,O1 ⟦−⟧〉 , 〈Set,T2, type2,O2 ⟦−⟧〉

a lifting of these models is a CBPV Π-model

〈LogRel,T, type,O ⟦−⟧〉

such that T is a lifting of the given monads, type is a lifting of the type assignments,

and, for every op in Π, O ⟦op⟧ is a lifting of O1 ⟦op⟧, O1 ⟦op⟧. Our goal is to lift a given

pair of set-theoretic CBPV Π-models to such a relational model. In order to present our

construction we require the following auxiliary notion.

Definition 9.7. Let T1, T2 be monads over Set, let X be a logical relation, and let

R⊆ T1X1×T2X2 be a relation.

• We say that the monadic unit respects R at X if η1×η2[Ẋ ]⊆ R.

• Let A, P be logical relations and op1 : A1 〈P1〉, op2 : A2P2 be algebraic operations

for T1, T2. We say that the operations 〈op1,op2〉 respect R at X under 〈A,P〉 when〈
opFX1

1 ,opFX2
2

〉
lifts to a logical relation morphism:

opFX : 〈T1X1,T2X2,R〉A→ 〈T1X1,T2X2,R〉P

Explicitly, this condition holds when, for every 〈κ1,κ2〉 ∈ (T1X1)
A1 × (T2X2)

A2 ,

for which 〈a1,a2〉 ∈ Ȧ implies 〈κ1(a1),κ2(a2)〉 ∈ R, we have, for every pair

〈p1, p2〉 ∈ Ṗ

〈op1(κ)(p1),op2(κ2)(p2)〉 ∈ R

We present the central construction of this chapter:

Theorem 9.8. Let Π be a set of operations. Consider any two set-theoretic CBPV

Π-models

〈Set,T1, type1,O1 ⟦−⟧〉 , 〈Set,T2, type2,O2 ⟦−⟧〉
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Let type be a lifting of type1, type2.

For every logical relation X, set T X B 〈T1X1,T2X2,
⋂

R X〉, where R X is the set of

all relations R⊆ T1X1×T2X2 such that:

• the monadic unit respects R; and

• for every op ∈ Π, op : A〈P〉 via type, the operations 〈op1,op2〉 respect R at X

under 〈A,P〉.

Then:

• T is a lifting of T1, T2;

• for every op ∈Π, 〈O1 ⟦op1⟧,O2 ⟦op2⟧〉 lift to an operation O ⟦op⟧ : A〈P〉 for T ;

Thus, 〈LogRel,T, type,O ⟦−⟧〉 is a lifting of the two given models to type. In addition,

• for every other lifting 〈
LogRel,T ′, type,O ′ ⟦−⟧〉

of the two given models with the same type assignment lifting, there is a (neces-

sarily unique) monad morphism between the corresponding free liftings:

〈id, id,m〉 : T → T ′

preserving the operations in Π.

We call T the free lifting of T1 and T2 via type, and the resulting CBPV Π-model

the free lifting model.

Proof
We proceed as follows. First, we show that for every logical relation X ,

⋂
R X ∈ R X .

Next, we show that the action of T on morphisms lifts. Thus T is indeed an endofunctor

over LogRel. We then show the monadic unit, multiplication and strength lift to T .

Thus, T is a strong monad. Next, we show the operations lift, and obtain a lifting of

the CBPV models. Finally, we show that this model is free.

Consider any logical relation X , and set RB
⋂

R X .

Consider any R′ ∈ R X . As the unit respects R′, η1×η2[Ẋ ]⊆ R′. Therefore

η1×η2[Ẋ ]⊆
⋂

R X = R

i.e., the unit respects R.
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Consider any op ∈ Π, op : A〈P〉. Consider any 〈κ1,κ2〉 ∈ (T1X1)
A1 × (T2X2)

A2

satisfying, for every 〈a1,a2〉 ∈ Ȧ, 〈κ(a1),κ2(a2)〉 ∈ R. Consider any 〈p1, p2〉 ∈ Ṗ.

Consider any R′ ∈ R X . For every 〈a1,a2〉 ∈ Ȧ, we have:

〈κ1(a1),κ2(a2)〉 ∈ R⊆ R′

As op respects R′, we deduce that

〈O1 ⟦op⟧(κ1)(p1),O2 ⟦op⟧(κ2)(p2)〉 ∈ R′

As we considered an arbitrary R′ ∈ R X , we deduce that:

〈O1 ⟦op⟧(κ1)(p1),O2 ⟦op⟧(κ2)(p2)〉 ∈
⋂

R X = R

and op respects R. We showed thus that both the unit and operations respect R, i.e., R

is in R X .

Next, consider any predicate morphism f =
〈

f1, f2, ḟ
〉

: X→Y . Denote RB
⋂

R X ,

SB
⋂

R Y . Set R′B (T1 f1×T2 f2)
−1[S]. Then R′ ∈ R X .

The the unit respects relation R′. Indeed,

T1 f1×T2 f2[η1×η2[Ẋ ]] = (T1 f1 ◦η1)× (T2 f2 ◦η2)[Ẋ ]

ηi naturality

↓
= (η1 ◦ f1)× (η2 ◦ f2)[Ẋ ]

f : X → Y

↓
⊆ η1×η2[Ẏ ]

S ∈
⋂

R Y

↓
⊆ S

Therefore

η1×η2[Ẋ ]⊆ (T1 f1×T2 f2)
−1[S] = R′

and the unit respects R′.

Consider any op ∈Π, op : A〈P〉. Then op respects the relation R′. Indeed, consider

any 〈κ1,κ2〉 ∈ (T1X1)
A1× (T2X2)

A2 satisfying, for every 〈a1,a2〉 ∈ Ȧ, 〈κ(a1),κ2(a2)〉 ∈
R′, i.e.,

〈T1 f1(κ1(a1)),T2 f2(κ2(a2))〉 ∈ S

Consider any 〈p1, p2〉 ∈ Ṗ. As S respects op, we have〈
O1 ⟦op⟧(λa1.T1 f1(κ1(a1))

)
(p1),O2 ⟦op⟧(λa2.T2 f2(κ2(a2))

)
(p2)

〉
∈ S

Therefore

T1 f1×T2 f2(〈O1 ⟦op⟧(κ1)(p1),O1 ⟦op⟧(κ1)(p1)〉)

= 〈T1 f1(O1 ⟦op⟧(κ1)(p1)),T2 f2(O2 ⟦op⟧(κ2)(p2))〉
Oi ⟦op⟧ naturality (see Example 7-10)

↓
=
〈
O1 ⟦op⟧(λa1.T1 f1(κ1(a1))

)
(p1),O2 ⟦op⟧(λa2.T2 f2(κ2(a2))

)
(p2)

〉
∈ S
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Hence,

〈O1 ⟦op⟧(κ1)(p1),O1 ⟦op⟧(κ1)(p1)〉 ∈ (T1 f1×T2 f2)
−1[S] = R′

and thus op respects R′.

We showed that the unit and the operations respect R′, hence R′ ∈ R X , and thus

R⊆ R. Therefore

T1 f1×T2 f2[R]⊆ T1 f1×T2 f2[R′]⊆ S

Thus, 〈T1 f1,T2 f2〉 lifts. We therefore have an endofunctor T over LogRel.
The monadic unit lifts, as the unit respects

⋂
R X . The monadic multiplication also

lifts. Indeed, consider any logical relation X . Denote RB
⋂

R X , S B
⋂

R T X . Set

S′B (µ1×µ2)
−1[R]. Then S′ ∈ R T X .

Indeed,

µ1×µ2[η1×η2[R]]

monad law

↓
= id× id[R] = R

Therefore, η1×η2[R] ⊆ S′, and the unit respects S′. Consider any op ∈ Π, op : A〈P〉.
Then op respects the relation S′. Indeed, consider any 〈κ1,κ2〉 ∈ (T1X1)

A1 × (T2X2)
A2

satisfying, for every 〈a1,a2〉 ∈ Ȧ, 〈κ(a1),κ2(a2)〉 ∈ S′, i.e., 〈µ1(κ1(a1)),µ2(κ2(a2))〉 is

in R. Consider any 〈p1, p2〉 ∈ Ṗ. As op respects R, we have

〈O1 ⟦op⟧(µ1 ◦κ1)(p1),O2 ⟦op⟧(µ2 ◦κ2)(p2)〉 ∈ R

Therefore,

µ1×µ2(〈O1 ⟦op⟧(κ1)(p1),O2 ⟦op⟧(κ2)(p2)〉)

= 〈µ1(O1 ⟦op⟧(κ1)(p1)),µ2(O2 ⟦op⟧(κ2)(p2))〉
see Example 7-10

↓
= 〈O1 ⟦op⟧(µ1 ◦κ1)(p1),O2 ⟦op⟧(µ2 ◦κ2)(p2)〉 ∈ R

and thus op respects S′. We showed the unit and the operations respect S′, hence

S′ ∈ R T X . Consequently, µ lifts.

Consider any logical relations X , Y . From Kock [Koc72] follows that, for all

〈xi,ki〉 ∈ Xi×TiYi, stri(xi,ki) = Ti(λyi.〈xi,yi〉)(ki). As the strengths are expressed using

the cartesian closed structure and the action of Ti on morphisms, the strengths also lift.

Explicitly, consider any 〈〈x1,k1〉,〈x2,k2〉〉 ∈ X ×̇ TY . Consider any 〈y1,y2〉 ∈ Ẏ .

Then, 〈〈x1,y1〉,〈x2,y2〉〉 ∈ X ×̇Y . Therefore, 〈λy1.〈x1,y1〉,λy2.〈x2,y2〉〉 lifts, hence by

applying the lifted monad T we deduce that

〈T1(λy1.〈x1,y1〉),T2(λy2.〈x2,y2〉)〉
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lifts. As 〈k1,k2〉 ∈
⋂

R Y , we deduce that 〈str1(x1,k1),str2(x2,k2)〉 ∈
⋂

R (X×Y ), and

the monadic strengths lift.

Every operation in Π lifts. Indeed, consider any op ∈ Π, op : A〈P〉. For every

logical relation X , as O ⟦op⟧ respects
⋂

R X , we deduce that O ⟦op⟧ lifts at the com-

ponent FX . Recall that all components of an algebraic operation op : Ai 〈Pi〉 can be

expressed in terms of the component opFAi
, the cartesian closed structure, and the

strong monadic structure (see the proof of Corollary 2.5 and Theorem 2.4). We have

just shown all these structures lift to logical relations, therefore all components of the

interpretation of op lift. Thus, all operations in Π lift.

Finally, let 〈LogRel,T ′, type,O ′ ⟦−⟧〉 be any other lifting. Then 〈id, id〉 lifts to a

monad morphism from T to T ′. Indeed, consider any logical relation X , and denote

T ′X = 〈T1X1,T2X2,R〉. Because T ′ is a lifting, the monadic unit lifts, hence the unit

respects R. Similarly, because O ′ ⟦−⟧ is a lifting, all the operations in Π respect R.

Therefore, R ∈ R X , hence
⋂

R X ⊆ R. Therefore the pair of identities lift to a mor-

phism T X → T ′X . Thus 〈LogRel,T, type,O ⟦−⟧〉 is the free lifting. �

Our construction also extends to monad morphisms:

Theorem 9.9. Let Π be a set of operations. Consider any four set-theoretic CBPV

Π-models:

〈Set,T1, type1,O1 ⟦−⟧〉 ,〈Set,T2, type2,O2 ⟦−⟧〉 ,〈
Set,T ′1, type1,O ′1 ⟦−⟧

〉
,
〈
Set,T ′2, type2,O ′2 ⟦−⟧

〉
Let type be a lifting of type1,type2. Every pair of monad morphisms m1 : T1 → T ′1,

m2 : T2→ T ′2 that preserve the operations in Π lifts to a monad morphism

〈m1,m2,m〉 : T → T ′

As a consequence, this monad morphism preserves the lifted operations.

Proof

The proof amounts to showing that each component of the pair of monad morphisms

lifts. We proceed along the same lines of the previous proof. Consider any logical

relation X , and denote RB (m1×m2)
−1[

⋂
R ′X ], where R ′X is the relation component

of T ′X . The preservation of units under monad morphisms implies the monadic unit

respects R. The assumption that the monad morphisms preserves the operations implies

the operations in Π respect R. Thus, R ∈ R X , and 〈m1,m2〉 lifts. �
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Before we conclude our discussion of set-theoretic lifting, we investigate its action

on diagonal relations, i.e., logical relations of the form 〈X ,X ,=〉.

Lemma 9.10. Let Π be a set of operations. Consider any two CBPV Π-models with

the same type assignment:

〈Set,T1, type,O1 ⟦−⟧〉 ,〈Set,T2, type,O2 ⟦−⟧〉

Let m : T1→ T2 be a monad morphism preserving the operations in Π.

Denote by type the lifting of type,type, assigning to each operation the pair of

diagonal relations of its type assignment via type, i.e., if type(op) = 〈A,P〉, then

type(op) = 〈〈A,A,=〉,〈P,P,=〉〉. Denote by TΠ the free monad for the signature

〈Π, type〉. Denote by e : TΠ → T1 the (unique) monad morphism preserving Π.

For every set X, there exists a (unique) function f : TΠX→
⋂

R 〈X ,X ,=〉 satisfying

TΠX T1X

Ṫ X T1X×T2X

f

g

〈id,m〉

⊆

=

Proof
We use the inductive description of TΠ as the term algebra for the signature induced by

〈Π, type〉. We construct f by induction, essentially as 〈id,m〉◦g. Because the monadic

unit respects Ṫ X that preserves the operations in Π, f is well-defined. We then prove

by induction on TΠX that the square commutes for all k ∈ TΠX . Uniqueness of f

follows as inclusions are monic. �

We can now calculate the explicit description of the action of a class of free lifting

on diagonal relations:

Theorem 9.11. Let Π be a set of operations, T2 be a finitary monad, and

〈Set,T2, type,O2 ⟦−⟧〉

be a CBPV Π-model. Let TΠ be the free monad for the signature 〈Π, type〉, and denote

by TΠ

e
−−� T1

m T2 the conservative restriction factorisation corresponding to the

surjection-injection factorisation of Set, giving rise to the CBPV Π-model

〈Set,T1, type,O1 ⟦−⟧〉
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Let type be the diagonal lifting of type, and T be the free lifting arising from type.

For every set X,

Ṫ 〈X ,X ,=〉= 〈id,m〉 [T1X ] = {〈k,m(k)〉|k ∈ T1X}

Proof
Consider any set X . Denote RB Ṫ 〈X ,X ,=〉, SB 〈id,m〉 [T1X ]. We show that R = S.

First, note that the unit respects S⊆ T1X×T2X by the definition of monad morphisms,

and the operations respect S by the definition of preservation of operations by monad

morphisms. Therefore, by definition, R⊆ S.

For the converse inclusion, recall that the E-morphisms in the factorisation system

of finitary monads arising from the injection-surjection factorisation of Set are com-

ponentwise surjective, Corollary 8.12. Therefore, by the previous lemma, we have a

function f : TΠX → R, satisfying

TΠX T1X

R T1X×T2X

f

e

〈id,m〉

⊆

=

Therefore, there exists a unique fill-in diagonal

TΠX T1X

R T1X×T2X

f

e

〈id,m〉

⊆

h
=

=

Chasing the lower-right triangle shows that, for all k∈ T1X , 〈k,m(k)〉= h(k)∈R. Thus,

S⊆ R. �

We employ Theorems 9.8, 9.9, and 9.11 to relate the conservative restriction mod-

els and the benchmark models. Consider any two Σ-models

M 1 =
〈
Set, type1,P1,O1

− ⟦−⟧
〉
, M 2 =

〈
Set, type2,P2,O2

− ⟦−⟧
〉
,

for some effect hierarchy Σ. A lifting of M 1, M 2 is a Σ-model

M =
〈
LogRel, type,P,O− ⟦−⟧

〉
where:
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• type is a lifting of type1, type2;

• for every ε ∈ E , Pε is a lifting of P1ε, P2ε;

• for every ε⊆ ε′ in E , P(ε⊆ ε′) is a lifting of P1(ε⊆ ε′), P2(ε⊆ ε′); and

• for every ε ∈ E and op ∈ ε, Oε ⟦op⟧ is a lifting of O1
ε ⟦−⟧,O2

ε ⟦−⟧.

Note that in order to lift two Σ-models, the only additional structure we require is

the lifting of the type assignments and the lifting of each monad in the hierarchy. The

other conditions are properties that need to be verified.

Using this terminology, we obtain the following corollary:

Corollary 9.12. Let Σ be an effect hierarchy, and M an algebraic CBPV Π-model. De-

note by type the diagonal lifting of the type assignment of M . Consider the benchmark

model (see Example 7-2)

M [ =
〈

Set, type,P[,O[
− ⟦−⟧

〉
and the conservative restriction model (see Theorem 7.12)

M ] =
〈

Set, type,P],O]
− ⟦−⟧

〉
The conservative comparison relational model M is given by

M =
〈
LogRel, type,P,O− ⟦−⟧

〉
where for every ε ∈ E , 〈LogRel,Pε, type,Oε ⟦−⟧〉 is the free lifting of the two CBPV

Π-models
〈

Set,P]ε, type,O]
ε ⟦−⟧

〉
and

〈
Set,P[ε, type,O[

ε ⟦−⟧
〉

. Moreover, for every

set X, we have

Pε〈X ,X ,=〉=
〈
P]εX ,P[εX ,

〈
id,mX

ε

〉
[P]εX ]

〉
where mX

ε : P]εX � T X = P[εX is the injection given in the definition of the conser-

vative restriction model.

We defined the category of set-theoretic logical relations models and presented the

free lifting construction, culminating in our central result, Corollary 9.12.
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Chapter 10

Generic intermediate language

Speak my language!

—The Cure

In this chapter we give a general definition of a Gifford-style type-and-effect

system. We begin with a given source-level language with algebraic effects and

its semantics. We then define the type-and-effect system for this language. We think

of the annotated language as an intermediate language for code optimisation. Using

the semantic constructs of Part I we define semantics to the intermediate language, and

relate it to the source language semantics.

First, in Section 10.1, we define the source language, its type system, and its cat-

egorical and set-theoretic semantic structures. Next, in Section 10.2, we define the

intermediate language corresponding to this source language, together with its type-

and-effect system and categorical, relational, and set-theoretic semantic structures. Fi-

nally, in Section 10.3, we generate semantics for the intermediate language from a

given algebraic semantics to the source language, and relate this generated semantics

to the original, unannotated, semantics.

10.1 CBPV with algebraic operations

We need to develop our effect analysis over a concrete concise language. In order to

remain general, we need a fundamental lambda calculus that is well-designed to deal

with effects. Levy’s Call-by-Push-Value [Lev04] fits this description exactly. The ad-

ditional benefits of CBPV are: it subsumes both the call-by-value and call-by-name

paradigms, opening application areas in both ML and HASKELL; Pretnar and Plotkin’s

215
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account of effect handlers [PP09a, Pre09] is formulated in terms of CBPV, hence our

account requires less modifications to accommodate handlers; and, as we will see in

Section 11.2, the CBPV paradigm decomposes complicated optimisations into orthog-

onal ones.

10.1.1 Syntax and type system

We present a family of CBPV languages parametrised by signatures, at both the syntax

and the type system levels. We begin with the syntax level:

Definition 10.1. A CBPV syntax signature Πsyntax is a triple 〈Bsc,Π,S〉, where:

• Bsc is a set of basic types, ranged over by Q;

• Π is a set of effect operation symbols, ranged over by op; and

• S is a set of built-in constants, ranged over by c.

For example, Bsc may include the types:

• Word for 64-bit words;

• Loc for memory locations;

• Char for characters;

• Str for strings; and

• Exc for exceptions.

The set Π may include the operation symbols:

• lookup, update for accessing state.

• input, output for reading input and printing output.

• raise for raising an exception.

The set S typically includes primitives to manipulate basic values, such as:

• number literals 0, 1, 2, 0xFEED;

• boolean operations =, >=, <;

• string literals ”cabab”;

• string manipulation primitives, e.g.

string concatenation ++; and

• predefined exception constants

such as ArithmeticOverflow and

DivideByZero.
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Given a syntax signature Πsyntax, the syntax of CBPV is given by Figure 10.1. It

follows the CBPV dichotomy between values and computations. We make this distinc-

tion explicit using a kind system in preparation for the more sophisticated kind system

we will need for the intermediate language in the next section. Using a kind system

for both highlights the differences between and similarities of the two languages.

Our types are the standard CBPV types. Note that basic types are always value

types. The unit, product, zero, and sum value types are standard. The type UB is

the type of thunks, i.e., suspended computations, of type B. The returner type FA is

the type of computations that return a value of type A. It plays a similar rôle to that

of the monadic type T A (where T is a monad) in Haskell. We also have products of

computations, and functions that are computations that depend on a value. The ground

value types G ∈Gnd are those value types which do not include thunks. We call types

of the form FG ground returner types.

All of the built-in constants of CBPV are value terms. The variables, unit value, and

pairing construct are standard. Injections are annotated with their sum type. Computa-

tions M are thunked into values thunk M.

In CBPV, we can turn any value into a computation by returning it. The con-

struct M to x : A.N sequences computations; it is analogous to the HASKELL construct

x←M;N or the ‘let’ construct in ML. Note the intrinsic typing (a.k.a. Church-style

typing).

We briefly describe an operational intuition behind the CBPV syntax. The stan-

dard operational semantics of CBPV uses a stack machine, similar to other stack ma-

chines for call-by-value and call-by-name semantics of the lambda calculus, such as

Felleisen and Friedman’s CK-machine [FF86] and the Krivine machine1. The two

λ terms pop from the stack while the application terms V ‘M and i‘M push the onto

it. Thus, λ{1 7→M1,2 7→M2} pops a tag off the stack and executes M1 or M2 ac-

cordingly. In turn, 1‘M pushes the tag 1 onto the stack and continues to execute M.

Similarly, λx : A.M pops a value of type A and binds x to it, while V ‘M pushes V onto

the stack.

The pattern-matching terms eliminating products, zero and sum values are stan-

dard. Thunked computations are eliminated by forcing.

Importantly, computational effects are caused by the opB
AM terms. As an exam-

ple, the following computation consists of a memory lookup operation, dereferencing

1Jean-Louis Krivine, Un interpréteur du λ-calcul, unpublished, 1986.
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Kinds: K ::= Val | Comp

Value

Types: A,B, . . . ::= Q | 1 | A1×A2 | 0 | A1 +A2 | UB

Computation

Types: A,B, . . . ::= FA | B1×B2 | A→ B

Ground Value

Types: G ::= Q | 1 | G1×G2 | 0 | G1 +G2

Value

Terms: V ::= b | x | ? | (V1,V2) | injA1+A2
1 V

| injA1+A2
2 V | thunk M

Computation

Terms: M,N, . . . ::= returnV |M to x :A.N

| λ{1 7→M1,2 7→M2} | 1‘M | 2‘M | λx : A.M

|V ‘M | match V as (x1 : A1,x2 : A2) .M | match V : 0 as {}B

| match V as {inj1x1 :A1.M1, inj2x2 :A2.M2} | force V | opB
V M

Figure 10.1: CBPV syntax
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`k Q : Val `k 1 : Val
`k A1 : Val `k A2 : Val

`k A1×A2 : Val

`k 0 : Val
`k A1 : Val `k A2 : Val

`k A1 +A2 : Val

`k B : Comp

`k UB : Val

`k A : Val

`k FA : Comp

`k B1 : Comp `k B2 : Comp

`k B1×B2 : Comp

`k A : Val `k B : Comp

`k A→ B : Comp

Figure 10.2: CBPV kind system

memory location `, followed by returning the memory word w stored there:

deref!(`)B lookupFWord
` (λw : Word. return w)

The effect operation symbol lookup takes as a parameter the location ` to be derefer-

enced. It then dereferences the memory word at location `, binds the result to w, and

proceeds to execute return w.

As another example, consider a non-deterministic choice operator choose, and a

computation for non-deterministic coin tossing:

tossB chooseF(1+1)
? (λv : 1+1. returnv)

In this case the parameter is the unit value ?.

In general, opB
AM is an effect operation term with parameter V and argument M.

Terms of the form

genop (A)B opFA
V (λx : A. returnx)

are called generic effects. Thus deref! and toss are the generic effects corresponding

to lookup and choose respectively.

The kind system for CBPV, given a syntax signature Πsyntax, is displayed in Fig-

ure 10.2; it consists of a kind judgement relation `k between types and kinds. We

denote by Val the set of well-kinded value types {A |`k A : Val}. Similarly, we write

Comp for the set of well-kinded computation types. Normally, CBPV is not presented
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with a kind system, as the kind system can be enforced by the BNF grammar for types.

Thus, Val contains all value types, and Comp includes all computation types. A well-

kinded context Γ : Dom(Γ)→ Val is a function from a finite set of variables to Val.
We write Γ,x : A for the extension Γ[x 7→ A].

Given a term signature Πsyntax, an arity assignment type : Π→ Gnd×Gnd sends

elements of Π to pairs of ground types. When type(op) = 〈A,P〉 we write instead

op : A〈P〉. The first component A is called the arity type and the second component P

is called the parameter type. When the parameter type is P = 1 we simply write op : A.

When op : 0 we call op an (effect) constant symbol.

For example, lookup : Word〈Loc〉 as memory look-up takes a location as param-

eter and its argument expects the corresponding memory word. Similarly, choose : 2
where, 2 = 1+ 1, as choose has a trivial parameter. We say that choose is a binary

operation symbol.

A constant type assignment is any function A− : S→ Val. Example constant type

assignments are:

’a’ : Char

++ : U((Str×Str)→ F Str)

+ : U(Word×Word→ F Word)

call/ccV
B : U(U(V → B)→ B)→ B

We define type level CBPV signatures, and complete the parametrisation of our

CBPV language:

Definition 10.2. A CBPV signature is a triple ΠCBPV = 〈Πsyntax, type,A−〉 where:

• Πsyntax is a CBPV term signature;

• type is an arity assignment for Πsyntax; and

• A− : S→ Val is a constant type assignment for Πsyntax.

The type system of CBPV, given a signature ΠCBPV, is displayed in Figure 10.3; it

is given by type judgement relations Γ `v A : A and Γ `c M : B, where Γ, A, B are well-

kinded contexts, value types and computation kinds, respectively, and where A, M are

value and computation terms, respectively. Signatures ΠCBPV determine the language

of CBPV, meaning its syntax and kind and typing relations. We call closed ground

returners `c P : FG programs.
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Γ `v c : Ac
Γ(x) = A

Γ `v x : A
Γ `v ? : 1

Γ `v V1 : A1 Γ `v V2 : A2

Γ `v (V1,V2) : A1×A2

Γ `v V : Ai
(i = 1,2)

Γ `v injA1+A2
i V : A1 +A2

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : A

Γ `c returnV : FA

Γ `c M : FA Γ,x : A `c N : B

Γ `c M to x : A.N : B

Γ `c M1 : B1 Γ `c M2 : B2

Γ `c λ{1 7→M1,2 7→M2} : B1×B2

Γ `c M : B1×B2
(i = 1,2)

Γ `c i‘M : Bi

Γ,x : A `c M : B

Γ `c λx : A.M : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c V ‘M : B

Γ `v V : A1×A2 Γ,x1 : A1,y : A2 `c M : B
(x1 6= x2)

Γ `c match V as (x1 : A1,x2 : A2) .M : B

Γ `v V : 0

Γ `c match V : 0 as {}B : B

Γ `v V : A1 +A2 Γ,x1 : A1 `c M1 : B Γ,x2 : A2 `c M2 : B

Γ `c match V as {inj1x1 : A1.M1, inj2x2 : A2.M2} : B

Γ `v V : UB

Γ `c force V : B

Γ `c V : P Γ `c M : A→ B
(op : A〈P〉,op ∈Π)

Γ `c opB
V M : B

Figure 10.3: CBPV type system
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The type system is straightforward, apart from the rules for effect operation sym-

bols. The effect operation rules formalise the informal explanation given earlier. An-

other way to view this rule is via continuation passing — we pass a continuation M

that, depending on the effect’s result, proceeds after the effect has been caused. For

example, the rules for the I/O effects input : Char and output : 1〈Char〉 are:

Γ `c M : Char→ B

Γ `c inputBM : B

Γ `v A : Char Γ `c M : 1→ B

Γ `c outputBAM : B

The latter is analogous to Levy’s print statement [Lev04]. For the corresponding

generic effects we derive the familiar get, put:

Γ `c get : F Char
Γ `v A : Char

Γ `c put : F1

Theorem 10.3. Every well-kinded type has a unique kind, and every well-typed term

has a unique type.

Proof
Standard induction. �

We define capture avoiding substitution in the usual manner. We will only substi-

tute value terms for variables. The variable binders are the following constructs:

• M to x : A.N binds x in N;

• λx : A.M binds x in M;

• match V as (x1 : A1,x2 : A2) .M binds x1 and x2 in M; and

• match V as {inj1x1 : A1.M1, inj2x2 : A2.M2} binds x1 in M1 and x2 in M2.

As usual, we identify terms up to α-equivalence.

Lemma 10.4 (substitution). For every well-typed phrase (value term or computation

term) Γ ` P : X, for all well-kinded contexts ∆ and Dom (Γ)-indexed family of values

V−, satisfying, for all x ∈ Dom (Γ), ∆ `Vx : Γ(x), we have ∆ ` P [Vx/x]x∈Dom(Γ).

Proof
Standard induction. �
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V ⟦Q⟧B B ⟦Q⟧
V ⟦1⟧B 1

V ⟦A1×A2⟧B ⟦A1⟧× ⟦A2⟧
V ⟦0⟧B 0

V ⟦A1 +A2⟧B ⟦A1⟧+ ⟦A2⟧
V ⟦UB⟧B |⟦B⟧|

CT X ⟦Γ⟧B∏
x∈Dom(Γ)

⟦Γ(x)⟧

C ⟦FA⟧B F⟦A⟧
C ⟦B1×B2⟧B ⟦B1⟧× ⟦B2⟧
C ⟦A→ B⟧B ⟦B⟧⟦A⟧

Figure 10.4: CBPV type interpretation

10.1.2 Categorical semantics

We now turn to the denotational semantics of CBPV. Let V be a distributive

category, and Πsyntax a CBPV syntax signature. A base-type interpretation is an

assignment of a V -object B ⟦Q⟧ to every basic type Q ∈ Bsc. This assignment extends

to a ground-type interpretation G ⟦−⟧, which assigns, to every G ∈Gnd a V -object:

G ⟦Q⟧B B ⟦Q⟧
G ⟦1⟧B 1 G ⟦G1×G2⟧B ⟦G1⟧× ⟦G2⟧
G ⟦0⟧B 0 G ⟦G1 +G2⟧B ⟦G1⟧+ ⟦G2⟧

We will henceforth omit the name of the semantic function if it can be inferred from

the context. For example, we may choose B ⟦Word⟧ and B ⟦Loc⟧ to be 264 in a 64-bit

setting, and B ⟦Char⟧ to be 27 for ASCII characters. As these interpretations are finite

sets, every ground type involving them denotes a finite set.

Let
〈
V ,T

〉
be a CBPV model. Denote by F a |−| : V T → V the Eilenberg-Moore

resolution for the monad T . Given a term signature Πsyntax and a base-type inter-

pretation G ⟦−⟧, we define a type interpretation for kind judgements of types (see

Figure 10.4):

• values are interpreted as V -objects via V ⟦−⟧;

• computations are interpreted as V T -objects, i.e., algebras, via C ⟦−⟧; and

• contexts as finite products in V via CT X ⟦−⟧.

This interpretation is straightforward. Note that if B1, B2 are two algebras for T , then

the product of their underlying objects, |B1|× |B2| carries an algebra structure, given
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by:

B1×B2 ⟦−⟧ : T (|B1|× |B2|)
〈T π1,T π2〉−−−−−−→ T |B1|×T |B2|

B1⟦−⟧×B2⟦−⟧−−−−−−−−→ |B1|× |B2|

The fact that this is indeed an algebra for T follows from the solution of an exercise in

Mac Lane’s book [ML98, Exercise VI.2.2]. Similarly, the algebra structure on |B|A is

well-defined (see Lemma 4.3(2)).

Let
〈
V ,T

〉
be a CBPV model, ΠCBPV a CBPV signature, and B ⟦−⟧ a base-type in-

terpretation. We define a type assignment R ⟦type⟧ for Π in V by assigning op : ⟦A⟧〈⟦P⟧〉
to every op ∈Π, op : A〈P〉.

With these notions in place, we are ready to define the semantic data required for

modelling CBPV with effects:

Definition 10.5. Let ΠCBPV be a CBPV signature. A ΠCBPV-model M is a quintuple

〈
V ,B ⟦−⟧ ,T,O ⟦−⟧ ,K ⟦−⟧〉

where:

• V is a distributive category;

• B ⟦−⟧ is a basic-type assignment;

•
〈
V ,T,⟦type⟧ ,O ⟦−⟧〉 is a CBPV Π-model (cf. Definition 2.13);

• K ⟦−⟧ assigns to every constant c ∈ S an arrow

K ⟦c⟧ : 1→ ⟦Ac⟧

Let M =
〈
V ,B ⟦−⟧ ,T,O ⟦−⟧ ,K ⟦−⟧〉 be a ΠCBPV-model. We interpret the CBPV

terms as follows (see Figure 10.5):

• value terms Γ `v V : A are interpreted as V -morphisms

V T ⟦V⟧ : CT X ⟦Γ⟧→ V ⟦A⟧

• computation terms Γ `c M : B are interpreted as V -morphisms

CT ⟦M⟧ : CT X ⟦Γ⟧→ |C ⟦B⟧|
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⟦c⟧ : ⟦Γ⟧ !−→ 1
K ⟦c⟧−−−→ ⟦Ac⟧ ⟦x⟧ : ⟦Γ⟧= ∏

x∈Dom(Γ)

⟦Γ(x)⟧ πx−→ ⟦Γ(x)⟧ ⟦?⟧ : ⟦Γ⟧ !−→ 1

⟦(A1,A2)⟧ : ⟦Γ⟧ 〈⟦A1⟧,⟦A2⟧〉−−−−−−→ ⟦A1⟧× ⟦A2⟧

⟦injA1+A2
i V⟧ : ⟦Γ⟧ ⟦V⟧−−→ ⟦Ai⟧ ιi−→ ⟦A1⟧+ ⟦A2⟧ ⟦ thunk M⟧ : ⟦Γ⟧ ⟦M⟧−−→ |⟦B⟧|

⟦returnV⟧ : ⟦Γ⟧ V−→ ⟦A⟧ η−→ |F ⟦A⟧|

⟦M to x : A.N⟧ : ⟦Γ⟧ 〈id,⟦M⟧〉−−−−−→ ⟦Γ⟧×T ⟦A⟧ ⟦N⟧
†

−−−→ |⟦B⟧|

⟦λ{1 7→M1,2 7→M2}⟧ : ⟦Γ⟧ 〈⟦M1⟧,⟦M2⟧〉−−−−−−−→ |⟦B1⟧|× |⟦B2⟧|

⟦i‘M⟧ : ⟦Γ⟧ ⟦M⟧−−→ |⟦B1⟧|× |⟦B2⟧| πi−→ |⟦Bi⟧| ⟦λx : A.M⟧ : ⟦Γ⟧ λ⟦A⟧.⟦M⟧−−−−−→ |⟦B⟧|⟦A⟧

⟦V ‘M⟧ : ⟦Γ⟧ 〈⟦M⟧,⟦V⟧〉−−−−−−→ |⟦B⟧|⟦A⟧× ⟦A⟧ eval−−→ |⟦B⟧|

⟦match V as (x1 : A1,x2 : A2) .M⟧ : ⟦Γ⟧ 〈id,V 〉−−−→ ⟦Γ⟧× ⟦A1⟧× ⟦A2⟧ ⟦M⟧−−→ |⟦B⟧|

⟦match V : 0 as {}B⟧ : ⟦Γ⟧ ⟦V⟧−−→ 0
¡−→ |⟦B⟧|

⟦match V as {inj1x1 : A1.M1, inj2x2 : A2.M2}⟧ : ⟦Γ⟧ 〈id,⟦V⟧〉−−−−→ ⟦Γ⟧× (⟦A1⟧+ ⟦A2⟧)

∼=
↑

distributivity

(⟦Γ⟧× ⟦A1⟧)+(⟦Γ⟧× ⟦A2⟧) [⟦M1⟧,⟦M2⟧]−−−−−−−→ |⟦B⟧|

⟦ force V⟧ : ⟦Γ⟧ ⟦V⟧−−→ |⟦B⟧|

⟦opB
V M⟧ : ⟦Γ⟧ 〈id,⟦V⟧〉−−−−→ ⟦Γ⟧× ⟦P⟧ id×G⟦op⟧−−−−−−→ ⟦Γ⟧×T ⟦A⟧ ⟦M⟧

†

−−−→ |⟦B⟧|

Figure 10.5: term interpretation
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The type system and the definition of models ensure these denotations are well-defined.

Using α-equivalence, we may assume that all differently bound variable names in

terms are distinct. Thus, whenever we extend the context, we indeed have:

CT X ⟦Γ,x : A⟧∼= ⟦Γ⟧× ⟦A⟧

In addition, we use the generic model structure to simplify the denotations of effect

operation symbols.

The definition of an algebraic CBPV ΠCBPV-model is straightforward:

Definition 10.5+. Let ΠCBPV be a CBPV signature. An algebraic ΠCBPV-model M is a〈
λ,V ,B ⟦−⟧ ,L ,L ⟦−⟧,K ⟦−⟧〉

where:

• λ is a regular cardinal;

• V is a λ-Power category;

• B ⟦−⟧ is a basic-type assignment;

•
〈
λ,V ,L−,⟦type⟧ ,L ⟦−⟧〉 is an algebraic CBPV Π-model;

• K ⟦−⟧ assigns to every constant c ∈ S an arrow

K ⟦c⟧ : 1→ ⟦Ac⟧

Note that part of this definition requires our choice of basic-type assignment to

ensure all operation type assignments are λ-presentable objects. We can ensure this

condition if all ground types involved in effect operation type assignments are inter-

preted as λ-presentable objects. Indeed, as the λ-presentable objects in a λ-Power

category are closed under finite products and coproducts, a simple inductive argument

shows this condition on the type assignment holds in this case.

10.1.3 Set-theoretic semantics

We now spell out the special case where the semantics is given in terms of sets

and functions, i.e., V = Set. Let Πsyntax a CBPV term signature. A set-theoretic

base-type interpretation is an assignment of a set B ⟦Q⟧ to every basic type Q ∈ Bsc.
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V ⟦Q⟧B B ⟦Q⟧
V ⟦1⟧B 1

V ⟦A1×A2⟧B ⟦A1⟧× ⟦A2⟧
V ⟦0⟧B 0

V ⟦A1 +A2⟧B ⟦A1⟧+ ⟦A2⟧
V ⟦UB⟧B C ⟦B⟧

CT X ⟦Γ⟧B∏
x∈Dom(Γ)

⟦Γ(x)⟧

C ⟦FA⟧B T⟦A⟧
C ⟦B1×B2⟧B ⟦B1⟧× ⟦B2⟧
C ⟦A→ B⟧B ⟦B⟧⟦A⟧

Figure 10.4 (revisited): CBPV type interpretation

This assignment extends to a ground-type interpretation G ⟦−⟧, which assigns, to ev-

ery G ∈Gnd a set:

G ⟦Q⟧B B ⟦Q⟧
G ⟦1⟧B 1 G ⟦G1×G2⟧B ⟦G1⟧× ⟦G2⟧
G ⟦0⟧B 0 G ⟦G1 +G2⟧B ⟦G1⟧+ ⟦G2⟧

We will henceforth omit the name of the semantic function if it can be inferred from

the context. For example, we may choose B ⟦Word⟧ and B ⟦Loc⟧ to be 264 in a 64-bit

setting, and B ⟦Char⟧ to be 27 for ASCII characters. As these interpretations are finite

sets, every ground type involving them denotes a finite set.

Let T be a monad over Set. Given a syntax signature Πsyntax and a base-type

interpretation G ⟦−⟧, we define a type interpretation for kind judgements of types (see

Figure 10.4), where each type is interpreted as a set. Note that each interpretation of a

computation type C ⟦B⟧ comes equipped with a bind function

>>= : T X× (C ⟦B⟧)X → C ⟦B⟧

For the types T ⟦A⟧ (i.e., returners), the function >>= is the usual monadic bind func-

tion. For the computation products, given any a in T X and f in ⟦B⟧X , we define:

a>>= f B 〈a>>= f1,a>>= f2〉

where fi : X → ⟦Bi⟧ are the two component functions of f , i.e., for all x in X , f (x)

consists of the pair 〈 f1(x), f2(x)〉. For function types, given any a in T X and α in(
⟦B⟧Y

)X
, we define:

a>>=αB λy.(a>>=λx.α(x)(y))
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Let T be a strong monad over Set, ΠCBPV a CBPV signature, and B ⟦−⟧ a base-type

interpretation. We define a set-theoretic type assignment R ⟦type⟧ for Π by assigning

op : ⟦A⟧〈⟦P⟧〉 to every op ∈Π.

With these notions in place, we are ready to define the semantic data required for

modelling CBPV with effects using sets and functions:

Definition 10.5 (revisited). Let ΠCBPV be a set-theoretic CBPV signature. A set-

theoretic ΠCBPV-model M is a quadruple

〈T,B ⟦−⟧ ,G ⟦−⟧ ,K ⟦−⟧〉

where:

• B ⟦−⟧ is a basic-type assignment;

• T is a monad over Set;

• G ⟦−⟧ assigns to every op : A〈P〉 in Π a generic effect G ⟦op⟧ : ⟦P⟧→ T ⟦A⟧;

• K ⟦−⟧ assigns to every constant c ∈ S an element K ⟦c⟧ in ⟦Ac⟧.

Let M = 〈T,B ⟦−⟧ ,G ⟦−⟧ ,K ⟦−⟧〉 be a set-theoretic ΠCBPV-model. We interpret

the CBPV terms as Γ ` P : X as functions ⟦P⟧ : ⟦Γ⟧→ ⟦X⟧ (see Figure 10.5). The

denotations have straightforward definitions. Note our use of the monadic unit, η, and

bind functions. We denote the empty function /0→ X by ¡X . Note how the type system

and the definition of models ensure these denotations are well-defined.

By replacing the monad with a presentation and the generic effect with an indexed

family of terms we obtain the notion of a presentation ΠCBPV-model. Each presentation

model yields a set-theoretic model, and hence can be used to interpret CBPV.

10.2 Multi-adjunctive intermediate languages

We now introduce a type-and-effect refinement of our family of CBPV lan-

guages. In our semantics, for each effect set ε, we have a separate CBPV model,

all sharing the same values, hence we dub our family of languages as multi-adjunctive

intermediate languages (MAIL). We follow the structure of the previous section.
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V T ⟦b⟧(γ)B ⟦b⟧ V T ⟦x⟧(γ)B πx(γ) V T ⟦?⟧(γ)B ?

V T ⟦(A1,A2)⟧(γ)B 〈⟦A1⟧(γ),⟦A2⟧(γ)〉

V T ⟦injA1+A2
i A⟧(γ)B ιi(⟦A⟧(γ))

CT ⟦returnA⟧(γ)B η(⟦A⟧(γ))

CT ⟦M to x : A.N⟧(γ)B ⟦M⟧(γ)>>=(λa.⟦N⟧(γ [x 7→ a]))

CT ⟦i‘M⟧(γ)B πi(⟦M⟧(γ))

CT ⟦A‘M⟧(γ)B (⟦M⟧(γ))(⟦A⟧(γ))

CT ⟦match A : 0 as {}B⟧B ¡⟦B⟧

CT ⟦match A as {inj1x1 : A1.M1, inj2x2 : A2.M2}⟧(γ)

B

⟦M1⟧(γ [x1 7→ a1]) ⟦A⟧(γ) = ι1a1

⟦M2⟧(γ [x2 7→ a2]) ⟦A⟧(γ) = ι2a2

CT ⟦opB
AM⟧(γ)B G ⟦op⟧(⟦A⟧(γ))>>=(⟦M⟧(γ))

Figure 10.5 (revisited): CBPV term interpretation

10.2.1 Syntax and type-and-effect system

We begin by refining the syntax parameters:

Definition 10.6. A MAIL syntax signature Σsyntax is a triple 〈Bsc,Σ,S〉, where:

• Bsc is a set of basic types, ranged over by Q;

• Σ is an effect hierarchy (see Definition 3.1); and

• S is a set of built-in constants, ranged over by c.

Note that every MAIL syntax signature Σsyntax induces a CBPV syntax signature

Σ
syntax
\ , by erasing the hierarchy E . Conversely, every CBPV syntax signature can be

regarded as a MAIL syntax signature Πsyntax, by taking E to be the singleton {Π}.
Given a syntax signature Σsyntax, the syntax of MAIL is given by Figure 10.6. It

refines the CBPV dichotomy between values and computations. Instead of one kind of
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Kinds: K ::= Val | Compε

Value

Types: A,B, . . . ::= Q | 1 | A1×A2 | 0 | A1 +A2 | UεB

Computation

Types: A,B, . . . ::= FεA | B1×B2 | A→ B

Ground Value

Types: G ::= Q | 1 | G1×G2 | 0 | G1 +G2

Value

Terms: V ::= b | x | ? | (V1,V2) | injA1+A2
1 V

| injA1+A2
2 V | thunk M

Computation

Terms: M,N, . . . ::= coerceε1⊆ε2M | returnεV |M to x :A.N

| λ{1 7→M1,2 7→M2} | 1‘M | 2‘M | λx : A.M

|V ‘M | match V as (x1 : A1,x2 : A2) .M | match V : 0 as {}B

| match V as {inj1x1 :A1.M1, inj2x2 :A2.M2} | force V | opB
V M

Figure 10.6: MAIL syntax
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`k Q : Val `k 1 : Val
`k A1 : Val `k A2 : Val

`k A1×A2 : Val

`k 0 : Val
`k A1 : Val `k A2 : Val

`k A1 +A2 : Val

`k B : Compε

`k UεB : Val

`k A : Val

`k FεA : Compε

`k B1 : Compε `k B2 : Compε

`k B1×B2 : Compε

`k A : Val `k B : Compε

`k A→ B : Compε

Figure 10.7: MAIL kind system

computation we have ε-computations Compε, for each effect set ε ∈ E . These compu-

tation may only cause effects in ε. We view MAIL as multiple copies of CBPV, one for

each ε, sharing the same values. One can translate between these different CBPVs by

means of coercion (see below).

Our types are a slight variation on CBPV types. We modified the CBPV thunk and

returner types to thunks UεB of ε-computations of type B, and returner ε-computations

FεA returning a value of type A. Note that for every ground type G we have G\ = G.

Many type and effect systems contain a sub-effecting rule: if M is an ε1-computation

and ε1 ⊆ ε2 then M is an ε2-computation. One implication of such a rule is that well-

typed terms can have multiple types, and even multiple type derivations. As a conse-

quence, the denotational semantics can no longer be defined directly on terms. Instead,

it needs to be defined on the proofs that these terms are well-typed, and then coherence

results are needed to show that the different semantics are compatible with each other.

This issue is familiar from languages that support subtyping. One standard way

to circumvent it, followed here, is to use explicit coercion between a subtype and its

supertype [TCGS91]. The terms coerceε1⊆ε2M explicitly coerce ε1-computations to

ε2-computations.

The other terms of MAIL are identical to their CBPV counterparts. In particular,

note how erasing the effect annotation and coercions from any MAIL phrase P for some

signature Σsyntax yields the corresponding CBPV phrase P\ for the signature Σ
syntax
\ .



232 Chapter 10. Generic intermediate language

The kind system for MAIL, given a signature Σsyntax, is displayed in Figure 10.7.

It is mostly straightforward: the computational product is only well-kinded for two

computations of the same kind.

As for CBPV, we denote by Val the set of well-kinded value types {A |`k A : Val}.
Similarly, we write Comp(ε) for the set of well-kinded ε-computation types. Well-

kinded contexts are defined as for CBPV.

We define arity assignments for a syntax signature as for CBPV, i.e., type : Π →
Gnd×Gnd. As the ground types of MAIL are the same as CBPV, there is no need

to distinguish between an arity assignment and its erasure. Given a syntax signature

Σsyntax, a constant type assignment is still just a function A− : S→Val. Note, however,

that the types of MAIL are richer than those of CBPV, so we can have constants such

as:

++ : U /0((Str×Str)→ F /0 Str)

+ : U{ArithmeticOverflow}(Word×Word→ F{ArithmeticOverflow}Word)

We define type level MAIL signatures, and complete the parametrisation of our

CBPV language:

Definition 10.7. A MAIL signature is a triple ΣMAIL = 〈Σsyntax, type,A−〉 where:

• Σsyntax is a MAIL syntax signature;

• type is an arity assignment for Σsyntax; and

• A− : S→ Val is a constant type assignment for Σsyntax.

The type system of MAIL, given a signature ΠCBPV, is displayed in Figure 10.8. It

is similar to the type system of Figure 10.3, except that the single computation type

judgement relation Γ `c M : B is replaced by a collection of computation type judge-

ment relations Γ `ε M : B, indexed by ε ∈ E , where Γ, A, B are well-kinded contexts,

value types and ε-computation kinds, respectively, and where M is a computation term.

As for CBPV, we call closed ground returners `ε P : FεG programs.

The type system is similar to its CBPV counterpart, apart from the rules for coercion

and effect operation symbols. The coercion rule may seem surprising — we only allow

coercion of returners. However this restriction, which is semantically natural, allows

sufficient generality. For if ε⊆ ε′, then for any B : Compε one can inductively define a

type B′ : Compε′ by: (FεA)′= Fε′A, (B1×B2)
′= (B1)

′×(B2)
′, and (A→ B)′= A→ B′;

there is then an evident coercion from B to B′.
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Γ `v c : Ac
Γ(x) = A

Γ `v x : A
Γ `v ? : 1

Γ `v V1 : A1 Γ `v V2 : A2

Γ `v (V1,V2) : A1×A2

Γ `v V : Ai
(i = 1,2)

Γ `v injA1+A2
i V : A1 +A2

Γ `ε M : B

Γ `v thunk M : UεB

Γ `ε1 M : Fε1A

Γ `ε2 coerceε1⊆ε2M : Fε2A

Γ `v V : A

Γ `ε returnεV : FεA

Γ `ε M : FεA Γ,x : A `ε N : B

Γ `ε M to x : A.N : B

Γ `ε M1 : B1 Γ `ε M2 : B2

Γ `ε λ{1 7→M1,2 7→M2} : B1×B2

Γ `ε M : B1×B2
(i = 1,2)

Γ `ε i‘M : Bi

Γ,x : A `ε M : B

Γ `ε λx : A.M : A→ B

Γ `v V : A Γ `ε M : A→ B

Γ `ε V ‘M : B

Γ `v V : A1×A2 Γ,x1 : A1,y : A2 `ε M : B
(x1 6= x2)

Γ `ε match V as (x1 : A1,x2 : A2) .M : B

Γ `v V : 0

Γ `ε match V : 0 as {}B : B

Γ `v V : A1 +A2 Γ,x1 : A1 `ε M1 : B Γ,x2 : A2 `ε M2 : B

Γ `ε match V as {inj1x1 : A1.M1, inj2x2 : A2.M2} : B

Γ `v V : UεB

Γ `ε force V : B

Γ `ε V : P Γ `ε M : A→ B
(op : A〈P〉,op ∈ ε)

Γ `ε opB
V M : B

Figure 10.8: MAIL type system
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We note too that, from a CBPV perspective, call-by-value types are always trans-

lated into returners FεA [Lev04], hence the coercion rule seems sufficient to subsume

existing coercion effect systems. We do not know of any call-by-name effect systems,

and we conjecture that by following Levy’s call-by-name translation, we could produce

a call-by-name effect system.

Also note that in the typing rule for effect operations, only operations from the

current effect set ε may be used.

Theorem 10.8. Every well-kinded type has a unique kind, and every well-typed term

has a unique type.

Proof
Standard induction. �

We define capture avoiding substitution in the usual manner. We will only substi-

tute value terms for variables. The variable binders are the following constructs:

• M to x : A.N binds x in N;

• λx : A.M binds x in M;

• match V as (x1 : A1,x2 : A2) .M binds x1 and x2 in M; and

• match V as {inj1x1 : A1.M1, inj2x2 : A2.M2} binds x1 in M1 and x2 in M2.

Lemma 10.9 (substitution). For every well-typed phrase (value term or computation

term) Γ ` P : X, for all well-kinded contexts ∆ and Dom (Γ)-indexed family of values

V−, satisfying, for all x ∈ Dom (Γ), ∆ `Vx : Γ(x), we have ∆ ` P [Vx/x]x∈Dom(Γ).

Proof
Standard induction. �

We extend the erasure function to kind and type judgements and their derivations.

Theorem 10.10. Erasure maps well-kinded types to well-kinded types, well-typed terms

to well-typed terms, and well-formed derivations to well-formed derivations.

Proof
Straightforward induction. �
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V ⟦Q⟧B B ⟦Q⟧
V ⟦1⟧B 1

V ⟦A1×A2⟧B ⟦A1⟧× ⟦A2⟧
V ⟦0⟧B 0

V ⟦A1 +A2⟧B ⟦A1⟧+ ⟦A2⟧
V ⟦UεB⟧B |⟦B⟧|

CT X ⟦Γ⟧B∏
x∈Dom(Γ)

⟦Γ(x)⟧

Cε ⟦FεA⟧B F⟦A⟧
Cε ⟦B1×B2⟧B ⟦B1⟧× ⟦B2⟧
Cε ⟦A→ B⟧B ⟦B⟧⟦A⟧

Figure 10.9: MAIL type interpretation

10.2.2 Categorical semantics

The denotational semantics of MAIL follows the same lines of the CBPV se-

mantics. First we define a base-type interpretation B ⟦−⟧ for a syntax sig-

nature Πsyntax in a distributive category V . Such assignments extend to ground-type

assignments using the distributive structure. Given any functor P : E → CBPVV (cf.

Definition 2.12), we have, for every ε, a strong monad Tε. Thus, given such a P,

base-type assignments also extend to type interpretations of kind judgements (see Fig-

ure 10.9):

• value types are interpreted as V -objects via V ⟦−⟧, as in CBPV;

• ε-computation types are interpreted as V Tε-objects, i.e., algebras, via Cε ⟦−⟧;
and

• contexts as finite products in V via CT X ⟦−⟧, as in CBPV.

This interpretation treats MAIL types as a family of interpretations of CBPV types, one

in each computation category V T , sharing the same value category V . Note how the

product of two computations is only well-defined when they are of the same kind. We

define interpretations of type assignments R ⟦type⟧ given a basic-type assignment for

a MAIL signature as for CBPV.

With these notions in place, we are ready to define the semantic data required for

modelling MAIL:

Definition 10.11. Let ΣMAIL be a MAIL signature. A ΣMAIL-model M is a quintuple〈
V ,P,B ⟦−⟧ ,O− ⟦−⟧ ,K ⟦−⟧

〉
where:
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⟦c⟧ : ⟦Γ⟧ !−→ 1
K ⟦c⟧−−−→ ⟦Ac⟧ ⟦x⟧ : ⟦Γ⟧= ∏

x∈Dom(Γ)

⟦Γ(x)⟧ πx−→ ⟦Γ(x)⟧ ⟦?⟧ : ⟦Γ⟧ !−→ 1

⟦(A1,A2)⟧ : ⟦Γ⟧ 〈⟦A1⟧,⟦A2⟧〉−−−−−−→ ⟦A1⟧× ⟦A2⟧

⟦injA1+A2
i V⟧ : ⟦Γ⟧ ⟦V⟧−−→ ⟦Ai⟧ ιi−→ ⟦A1⟧+ ⟦A2⟧ ⟦ thunk M⟧ : ⟦Γ⟧ ⟦M⟧−−→ |⟦B⟧|

⟦coerceε1⊆ε2M⟧ : ⟦Γ⟧ ⟦M⟧−−→ Tε1 ⟦A⟧
mε1⊆ε2−−−−→ Tε2 ⟦A⟧

⟦returnεV⟧ : ⟦Γ⟧ V−→ ⟦A⟧ ηε−→ |F ⟦A⟧|

⟦M to x : A.N⟧ : ⟦Γ⟧ 〈id,⟦M⟧〉−−−−−→ ⟦Γ⟧×T ⟦A⟧ ⟦N⟧
†

−−−→ |⟦B⟧|

⟦λ{1 7→M1,2 7→M2}⟧ : ⟦Γ⟧ 〈⟦M1⟧,⟦M2⟧〉−−−−−−−→ |⟦B1⟧|× |⟦B2⟧|

⟦i‘M⟧ : ⟦Γ⟧ ⟦M⟧−−→ |⟦B1⟧|× |⟦B2⟧| πi−→ |⟦Bi⟧| ⟦λx : A.M⟧ : ⟦Γ⟧ λ⟦A⟧.⟦M⟧−−−−−→ |⟦B⟧|⟦A⟧

⟦V ‘M⟧ : ⟦Γ⟧ 〈⟦M⟧,⟦V⟧〉−−−−−−→ |⟦B⟧|⟦A⟧× ⟦A⟧ eval−−→ |⟦B⟧|

⟦match V as (x1 : A1,x2 : A2) .M⟧ : ⟦Γ⟧ 〈id,V 〉−−−→ ⟦Γ⟧× ⟦A1⟧× ⟦A2⟧ ⟦M⟧−−→ |⟦B⟧|

⟦match V : 0 as {}B⟧ : ⟦Γ⟧ ⟦V⟧−−→ 0
¡−→ |⟦B⟧|

⟦match V as {inj1x1 : A1.M1, inj2x2 : A2.M2}⟧ : ⟦Γ⟧ 〈id,⟦V⟧〉−−−−→ ⟦Γ⟧× (⟦A1⟧+ ⟦A2⟧)

∼=
↑

distributivity

(⟦Γ⟧× ⟦A1⟧)+(⟦Γ⟧× ⟦A2⟧) [⟦M1⟧,⟦M2⟧]−−−−−−−→ |⟦B⟧|

⟦ force V⟧ : ⟦Γ⟧ ⟦V⟧−−→ |⟦B⟧|

⟦opB
V M⟧ : ⟦Γ⟧ 〈id,⟦V⟧〉−−−−→ ⟦Γ⟧× ⟦P⟧ id×G⟦op⟧−−−−−−→ ⟦Γ⟧×T ⟦A⟧ ⟦M⟧

†

−−−→ |⟦B⟧|

Figure 10.10: MAIL term interpretation
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• V is a distributive category;

• B ⟦−⟧ is a basic-type assignment;

•
〈
V ,⟦type⟧ ,P,O ⟦−⟧〉 is a Σ-model (cf. Definition 3.2);

• K ⟦−⟧ assigns to every constant c ∈ S an arrow

K ⟦c⟧ : 1→ ⟦Ac⟧

Let
〈
V ,T,P,B ⟦−⟧ ,O ⟦−⟧ ,K ⟦−⟧〉 be a ΣMAIL-model. Denote by Fε a |−| the

Eilenberg-Moore resolution of Tε i.e., of the CBPV model Pε. Denote by mε1⊆ε2 the

monad morphism P(ε1 ⊆ ε2). We interpret MAIL terms as follows (see Figure 10.5):

• value terms Γ `v V : A are interpreted as V -morphisms

V T ⟦V⟧ : CT X ⟦Γ⟧→ V ⟦A⟧

• computation terms Γ `ε M : B are interpreted as V -morphisms

CT ε ⟦M⟧ : CT X ⟦Γ⟧→ |Cε ⟦B⟧|

Note that dropping the semantic function names from our denotations makes them

identical to that of CBPV. As a consequence, we will see in Section 11.2 that MAIL

inherits the equational theory of CBPV.

Recall that we chose our morphisms between CBPV to be monad morphisms. How-

ever, a different choice of morphisms between CBPV models may allow us to interpret

richer constructs. For example, we can change our notion of morphism from T to T ′ to

be an adjunction FT→T ′ aUT ′←T : V T ′ → V T that commute with the Eileberg-Moore

adjunctions. Such adjunctions certainly exist in the algebraic cases when ε⊆ ε′. In this

case, we can interpret a form of coercion at all computation types:

Γ `ε M : B

Γ `ε′ returnε⊆ε′M : Fε⊆ε′B

We can also interpret ‘partial thunking’ of effects:

Γ `ε′ M : B

Γ `ε thunkε⊆ε′ M : Uε⊆ε′B

However, we do not know any satisfactory computational understanding of for these

constructs. Therefore we chose monad morphisms as our notion of morphism, as these

lead to coercion of returners only, which have a computational interpretation as sub-

types.

We omit the definition of an algebraic MAIL model as it is straightforward.
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10.2.3 Relational semantics

We now study relational semantics for MAIL, taking advantage of our categor-

ical formulation of the semantics. Let B ⟦−⟧ be a base-type interpretation in

the category of logical relations LogRel, and B1 ⟦−⟧, B2 ⟦−⟧ be set-theoretic base-

type interpretations. We say that B ⟦−⟧ is a lifting of B1 ⟦−⟧, B2 ⟦−⟧, when, for every

basic type Q ∈ Bsc, B ⟦Q⟧ is a lifting of B1 ⟦Q⟧, B2 ⟦Q⟧. Let P : E → CBPVLogRel,

P1,P2 : E → CBPVSet be functors. We say that P is a lifting of P1, P2 if it is a

component-wise lifting, i.e., if, for every object or morphism x in E , Px is a lifting

of P1x, P2x.

Recall that R ⟦type⟧ assigns to every op : A〈P〉 the type ⟦A⟧〈⟦P⟧〉.

Lemma 10.12 (basic lemma for types). Let ΣMAIL be a MAIL signature, and B ⟦−⟧ a

lifting of base-type interpretations B1 ⟦−⟧, B2 ⟦−⟧.

• For every ground type G ∈Gnd, the relational ground type assignment G ⟦G⟧ is

a lifting of G1 ⟦G⟧, G2 ⟦G⟧.

• The relational type assignment R ⟦type⟧ is a lifting of the set-theoretic type as-

signments R 1 ⟦type⟧, R 2 ⟦type⟧.

Assume further a given lifting P : E → CBPVLogRel of P1,P2 : E → CBPVSet.

• For every `k A : Val, V ⟦A⟧ is a lifting of V 1 ⟦A⟧, V 2 ⟦A⟧.

• For every `ε B : Compε, Cε ⟦B⟧ is a lifting of C 1
ε ⟦B⟧,C 2

ε ⟦B⟧.

• For every well-kinded context Γ, CT X ⟦Γ⟧ is a lifting of CT X 1 ⟦Γ⟧, CT X 1 ⟦Γ⟧.

Proof

By induction on the various syntactic classes.

The statement for ground types holds, as ground types are interpreted using the

base-type interpretation, and finite products and coprodructs, which all lift. Component-

wise verification validates that the type assignments lift.

For value types, we use, in addition, the fact that if B is a T -algebra in LogRel
lifting two algebra B1, B2, then its carrier set is a lifting for the two corresponding

carrier sets.
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We turn to computation types. For returner types, assume that for some `k FεA : Val,

V ⟦A⟧ is a lifting of V 1 ⟦A⟧, V 2 ⟦A⟧. We have:

Cε ⟦FεA⟧= 〈Pε(V ⟦A⟧),µ〉
C i

ε ⟦FεA⟧= 〈Piε(V i ⟦A⟧),µi
〉

Because Pε is a lifting of P1,P2, we can conclude that Cε ⟦FεA⟧ is a lifting of C 1
ε ⟦FεA⟧,

C 2
ε ⟦FεA⟧. A similar argument shows the induction hypothesis also holds for compu-

tation products and function types, as the algebra structure on these is given using the

cartesian closed structure and the monadic structure, which all lift.

The statement about contexts holds for the same reasons. �

Note that we did not use the assumption that the morphism map of P is a lifting.

Consider any three ΣMAIL-models as follows:

M =
〈
LogRel,P ,B ⟦−⟧ ,O− ⟦−⟧ ,K ⟦−⟧〉

M 1 =
〈
Set ,P1,B1 ⟦−⟧ ,O1

− ⟦−⟧ ,K 1 ⟦−⟧〉
M 2 =

〈
Set ,P2,B2 ⟦−⟧ ,O2

− ⟦−⟧ ,K 2 ⟦−⟧〉
We say that M is a lifting of M 1, M 2 if:

• B ⟦−⟧ is a lifting of B1 ⟦−⟧, B1 ⟦−⟧;

• the Σ-model
〈
LogRel,R ⟦type⟧ ,P,O− ⟦−⟧

〉
is a lifting of the two Σ-models〈

Set,R 1 ⟦type⟧ ,P1,O1
− ⟦−⟧

〉
,
〈
Set,R 2 ⟦type⟧ ,P2,O2

− ⟦−⟧
〉

;

• for every constant c ∈ S, K ⟦c⟧ : 1→ V ⟦Ac⟧ is a lifting of K 1 ⟦c⟧, K 2 ⟦c⟧.

Lemma 10.13 (basic lemma for terms). Let ΣMAIL be a MAIL signature, and M a

lifting of M 1, M 2.

• For every Γ `v V : A, V T ⟦V⟧ is a lifting of V T 1 ⟦V⟧,V T 2 ⟦V⟧.

• For every Γ `ε M : B, CT ε ⟦M⟧ is a lifting of CT 1 ⟦M⟧,CT 2 ⟦M⟧.

Note how the basic lemma for types ensures these arrows are well-typed.

Proof
Straightforward induction over value and computation terms, as our assumptions imply

that all the structure involved in the denotational semantics of terms lifts. The only two

liftings we have not established yet are the distributivity isomorphism used to define

pattern-matching, and the generic effect interpretation. The distributivity isomorphism



240 Chapter 10. Generic intermediate language

V ⟦Q⟧B B ⟦Q⟧
V ⟦1⟧B 1

V ⟦A1×A2⟧B ⟦A1⟧× ⟦A2⟧
V ⟦0⟧B 0

V ⟦A1 +A2⟧B ⟦A1⟧+ ⟦A2⟧
V ⟦UεB⟧B |⟦B⟧|

CT X ⟦Γ⟧B∏
x∈Dom(Γ)

⟦Γ(x)⟧

Cε ⟦FεA⟧B F⟦A⟧
Cε ⟦B1×B2⟧B ⟦B1⟧× ⟦B2⟧
Cε ⟦A→ B⟧B ⟦B⟧⟦A⟧

Figure 10.9 (revisited): MAIL type interpretation

lifts because LogRel is distributive and its products and sums are liftings. For every

op ∈Π, the generic effect Gε ⟦op⟧ is expressible using Oε ⟦op⟧, the monadic structure,

and the cartesian closed structure (see Theorem 2.4). �

10.2.4 Set-theoretic semantics

We again specialise to sets and functions. The set-theoretic denotational se-

mantics of MAIL follow the same lines of the CBPV semantics. First we define

a set-theoretic base-type interpretation B ⟦−⟧ for a syntax signature Πsyntax. Such as-

signments extend to ground-type assignments using products and sums. Given any

family of monads T− indexed by E , such assignments also extend to type interpre-

tations of kind judgements as sets (see Figure 10.9 (revisited) on page 240). This

interpretation treats MAIL types as a family of interpretations of CBPV types, one for

each effect set, sharing the same interpretations for values. We define interpretations

of type assignments ⟦type⟧ given a basic-type assignment for a MAIL signature as for

CBPV.

With these notions in place, we are ready to define the semantic data required for

modelling MAIL using sets and functions:

Definition 10.11 (revisited). Let ΣMAIL be a MAIL signature. A set-theoretic ΣMAIL-

model M is a quintuple

〈B ⟦−⟧ ,T−,m−,G ⟦−⟧ ,K ⟦−⟧〉

where:

• B ⟦−⟧ is a basic-type assignment;
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V T ⟦b⟧(γ)B ⟦b⟧ V T ⟦x⟧(γ)B πx(γ) V T ⟦?⟧(γ)B ?

V T ⟦(A1,A2)⟧(γ)B 〈⟦A1⟧(γ),⟦A2⟧(γ)〉

V T ⟦injA1+A2
i A⟧(γ)B ιi(⟦A⟧(γ))

CT ε2
⟦coerceε1⊆ε2M⟧(γ)B mε1⊆ε2(⟦M⟧(γ))

CT ε ⟦returnεA⟧(γ)B ηε(⟦A⟧(γ))

CT ε ⟦M to x : A.N⟧(γ)B ⟦M⟧(γ)>>=(λa.⟦N⟧(γ [x 7→ a]))

CT ε ⟦i‘M⟧(γ)B πi(⟦M⟧(γ))

CT ε ⟦A‘M⟧(γ)B (⟦M⟧(γ))(⟦A⟧(γ))

CT ε ⟦match A : 0 as {}B⟧B ¡⟦B⟧

CT ε ⟦match A as {inj1x1 : A1.M1, inj2x2 : A2.M2}⟧(γ)

B

⟦M1⟧(γ [x1 7→ a1]) ⟦A⟧(γ) = ι1a1

⟦M2⟧(γ [x2 7→ a2]) ⟦A⟧(γ) = ι2a2

CT ε ⟦opB
AM⟧(γ)B Gε ⟦op⟧(⟦A⟧(γ))>>=(⟦M⟧(γ))

Figure 10.10 (revisited): MAIL term interpretation

• 〈⟦type⟧ ,T−,m−,G ⟦−⟧〉 is a Σ-model; and

• K ⟦−⟧ assigns to every constant c ∈ S an element K ⟦c⟧ in ⟦Ac⟧.

Let 〈B ⟦−⟧ ,T−,m−,G ⟦−⟧ ,K ⟦−⟧〉 be a ΣMAIL-model. We interpret MAIL terms

Γ ` P : X as functions ⟦P⟧ : ⟦Γ⟧→ ⟦X⟧ (see Figure 10.5 (revisited) on page 241). Note

that dropping the semantic function names from our denotations makes them identical

to that of CBPV. As a consequence, we will see in Section 11.2 that MAIL inherits the

equational theory of CBPV.

By replacing the Σ-model with a presentation Σ-model we obtain the notion of a

presentation ΣMAIL-model. Each presentation model yields a set-theoretic model, and

hence can be used to interpret MAIL.
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10.3 Model generation

Our goal is to generate most or all of the structure needed by MAIL models from a given

CBPV model. Most of the work has been done in previous chapters, but the choice of

built-in constants complicates matters slightly.

One case in which no complication arises is for the benchmark models, defined

in Example 7-2. Because these models ignore the effect annotations, the CBPV

semantics and the MAIL semantics agree on the nose.

Lemma 10.14. Let ΠCBPV be a CBPV signature, M =
〈
V ,B ⟦−⟧ ,T,O ⟦−⟧ ,K ⟦−⟧〉

a CBPV ΠCBPV-model, and Σ an effect hierarchy. Let
〈

V ,⟦type⟧ ,P[,O[
− ⟦−⟧

〉
be the

benchmark model corresponding to the CBPV model
〈
V ,⟦type⟧ ,T,O ⟦−⟧〉 (see Ex-

ample 7-2).

The benchmark MAIL model M [ is given by〈
V ,B ⟦−⟧ ,P[,O[

− ⟦−⟧ ,K ⟦−⟧
〉

and for every MAIL type, context, and term X, we have M [ ⟦X⟧= M ⟦X \⟧.

Proof
Straightforward calculation. �

We can always define benchmark models. However, they completely ignore effect

annotations. We are interested in obtaining a similar construction for the conservative

restriction models (see Theorem 7.12). However, as the built-in constants may have

arbitrary types and involve arbitrary effects, we do not have a canonical choice of their

types and interpretations.

For example, the arithmetic addition constant in CBPV:

+ : U(Word×Word→ F Word)

can have an effect-dependent type in MAIL:

+ : U{ArithmeticOverflow}(Word×Word→ F{ArithmeticOverflow}Word)

The situation becomes more complicated with higher-order built-in constants, due to

contravariance.

We have no general solution to this problem. However, the amount of work in-

volved in choosing the effect annotations and interpretations for the built-in constants

is linear in the number of the built-in constants. Therefore, we foresee no problems in
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leaving them unspecified by our general account, and manually choosing the appropri-

ate effect annotation and interpretation in any concrete case. We formulate our results

to be of use in this general case.

Nevertheless, under some simplifying assumptions on the MAIL and CBPV signa-

tures, we can guarantee a suitable choice of types and interpretations for the built-in

constants. We will describe the simplest such method, by restricting to a sub-class of

signatures, which we call simple signatures.

Definition 10.15. A simple MAIL signature is a MAIL signature ΣMAIL such that Π ∈E ,

and for each built-in constant c, the only effect set appearing in Ac is Π.

Thus, a simple signature may include number and string literals 1,0xFEED : Word,

and boolean operations =,>=,<: UΠ(Word×Word→ FΠ2) but not a pure string

concatenation function ++ : U /0(Str×Str→ F /0Str).

Our simplifying assumptions are:

• the CBPV model is algebraic, i.e., given by an enriched Lawvere theory L ;

• the operation set Π is surjective, in the sense that the (unique) morphism from

the initial 〈Π,⟦type⟧〉 theory L〈Π,⟦type⟧〉 to L is an E-morphism, i.e., surjective

in the set-theoretic case; and

• the MAIL signature is simple.

The first assumption is essential, as we cannot construct the conservative restriction

model otherwise. The second assumption is reasonable, as it means we include all

the effects in our effect analysis. If the initial morphism is not an E-morphism, the

theory L may include effects that lie beyond the reach of our type-and-effect analysis.

As we discussed, the last assumption is restrictive, but non-essential. We keep it as it

simplifies the account greatly.

Lemma 10.16. Let ΣMAIL be a simple MAIL signature, M =
〈
V ,⟦type⟧ ,T,O ⟦−⟧〉 a

CBPV ΣCBPV
\ -model, and

〈
V ,⟦type⟧ ,P,O− ⟦−⟧

〉
a Σ-model. If PΠ = T , then for every

built-in constant c ∈ S, the type interpretation of Ac induced by P is M ⟦Ac⟧.

Let E law be a class of morphisms in LawλV . We say that an algebraic CBPV

ΠCBPV-model is E law-covered if the initial morphism T : L〈Π,⟦type⟧〉→ L is an E law-

morphism.



244 Chapter 10. Generic intermediate language

Corollary 10.17. Let ΣMAIL be a simple MAIL signature, let

M =
〈
λ,V ,B ⟦−⟧ ,L ,L ⟦−⟧ ,K ⟦−⟧〉

be an algebraic CBPV ΣCBPV
\ -model, and let

〈
E law,M law

〉
be a factorisation system

of LawλV , such that M is E law-covered. Let〈
λ,V ,⟦type⟧ ,L−,O− ⟦−⟧

〉
be the conservative restriction model corresponding to the CBPV model〈

λ,V ,⟦type⟧ ,L ,L ⟦−⟧〉
(see Theorem 7.12).

The conservative restriction MAIL model M ] is given as the algebraic MAIL ΣMAIL-

model 〈
V ,B ⟦−⟧ ,L−,O− ⟦−⟧ ,K ⟦−⟧

〉
Proof
From the assumptions follows that LΠ

∼= L , hence by the previous lemma, the inter-

pretation for the built-in constants from M can be used in M ]. �

We now turn to construction of logical relations MAIL models.

Lemma 10.18. Let ΣMAIL be a simple MAIL signature, and let B ⟦−⟧ be the diagonal

base-type interpretation in LogRel, i.e., for every Q ∈ Bsc, B ⟦Q⟧ is the diagonal

relation. Then, for every ground type G ∈Gnd, G ⟦G⟧ is the diagonal relation.

Proof
By induction over ground types, noting that the diagonal relations are closed under

products and coproducts. �

We will use the following construction to relate different MAIL semantics.

Theorem 10.19. Given a MAIL signature ΣMAIL, consider any two MAIL ΣMAIL-models

sharing the same base-type interpretation:

M 1 =
〈
Set,P1,B0 ⟦−⟧ ,O1

− ⟦−⟧ ,K 1 ⟦−⟧〉
M 2 =

〈
Set,P2,B0 ⟦−⟧ ,O2

− ⟦−⟧ ,K 2 ⟦−⟧〉
Let
〈
LogRel,⟦type⟧ ,P,O− ⟦−⟧

〉
be the free lifting of the induced Σ-models〈

Set,⟦type⟧ ,P1,O1
− ⟦−⟧

〉
,

〈
Set,⟦type⟧ ,P2,O2

− ⟦−⟧
〉
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via the diagonal lifting of ⟦type⟧.
Denote by B ⟦−⟧ the diagonal lifting of the shared base-type interpretation B0 ⟦−⟧.

The assignment B ⟦−⟧ and the functor P then induce a logical relations MAIL type

interpretation V ⟦−⟧.
If, for every c ∈ S, the pair

〈
M 1 ⟦c⟧,M 2 ⟦c⟧

〉
lifts to a logical relations morphism

K ⟦−⟧ : 1→ V ⟦Ac⟧, then

M =
〈
LogRel,P,B ⟦−⟧ ,O− ⟦−⟧ ,K ⟦−⟧

〉
is a logical relation MAIL ΣMAIL-model. We call M the free lifting of M 1, M 2.

Proof
By the previous lemma, M ⟦type⟧ is the diagonal lifting of ⟦type⟧. Thus, by fiat, M is

a MAIL ΣMAIL-model. �

To aid accessibility, we recast the model generation process in terms of pre-

sentations.

Definition 10.15 (revisited). A simple MAIL signature is a MAIL signature ΣMAIL such

that Π ∈ E , and for each built-in constant c, the only effect set appearing in Ac is Π.

We say that a presentation CBPV ΠCBPV-model is fully-covered if the initial transla-

tion from the free presentation whose signature is generated by R ⟦type⟧ is surjective.

In simpler terms, a model is fully-covered if every term in its presentation can be ex-

pressed using the indexed terms that define the generic effects of this model.

Corollary 10.17 (revisited). Let ΣMAIL be a simple MAIL signature, let

M = 〈B ⟦−⟧ ,Ax,O ⟦−⟧ ,K ⟦−⟧〉

be a fully-covered presentation CBPV ΣCBPV
\ -model. Let〈⟦type⟧ ,Ax−,O− ⟦−⟧

〉
be the conservative restriction model corresponding to the pair Ax, O ⟦−⟧ (see Theo-

rem 7.12 (revisited)).

The conservative restriction MAIL model M ] is given as the presentation MAIL ΣMAIL-

model 〈
B ⟦−⟧ ,Ax−,O− ⟦−⟧ ,K ⟦−⟧

〉
To summarise, we defined a general type-and-effect system and its semantics, and

in the algebraic case we constructed the hierarchical semantics from the CBPV seman-

tics and related them to each other.





Chapter 11

Optimisations

The transformation was amazing

—Bon Jovi

In this chapter we develop a general account of semantics preserving, effect-

dependent program transformations. These are also known in the literature as

effect-dependent optimisations, although we make no attempt to establish that these

lead to more efficient code (see, for example, the “dragon book” [ALSU06, Subsec-

tion 1.4.2] for a similar usage of the term ‘optimisation’).

The optimisations we consider are conditional equations between MAIL phrases,

i.e., effect annotated CBPV terms. Such equations are valid in a MAIL model if their

denotations are equal. These equations consist of a simple, equational, program logic

which is strictly more powerful than its unannotated counterpart: erasing the effect

annotations from the terms may make a valid transformation invalid. We also show

that the annotated logic is sound and complete, and show its use as a formal basis for

the correctness of program optimisation based on these equations.

With the foundational notions in place, we then validate the optimisations in the

literature. Our general account describes the optimisations as falling into three natural

classes, based on which properties of the models validate them. Thus we locate the

semantic source of these optimisations. As a consequence, by searching these sources

for additional optimisations, we come across optimisations not covered by the current

literature.

First, in Section 11.1, we define the equational logic and its semantics. We then

show that the conservative restriction model is sound and complete with respect to the

original CBPV semantics. Next, we formally justify optimisation by effect-dependent

transformation. Then, in Section 11.2, we classify the optimisations existing in the

247
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literature. We show how the algebraic viewpoint explains the semantic origins of these

optimisations, and allows us to discover new ones.

11.1 Validity

First, we define denotational equivalence:

Definition 11.1. Let ΠCBPV be a CBPV signature, let M be a CBPV ΠCBPV-model, and

let Γ ` P1 : X and Γ ` P2 : X be two well-typed CBPV phrases (value or computation

terms). We say that the optimisation

Γ ` P1 = P2 : X

is valid in M if ⟦P1⟧= ⟦P2⟧.
When the optimisation is valid, we write M |= Γ ` P1 = P2 : X. When Γ and X can be

inferred, we simply write M |= P1 = P2.

We define validity of optimisations in MAIL models similarly.

Our goal is to validate equivalences between CBPV programs. The validation of

these equivalences may rely on effect analysis information, i.e., use MAIL models. We

thus relate MAIL semantics to CBPV semantics. Recall the erasure function (−)\ from

Section 10.2. We begin with the benchmark model.

Theorem 11.2. Let ΠCBPV be a CBPV signature, M a CBPV ΠCBPV-model, and Σ an

effect hierarchy. Let M [ be the benchmark model (cf. Lemma 10.14). Then for all

well-typed MAIL terms Γ ` P : X,

M [ ⟦P⟧= M ⟦P\⟧

As a consequence, for all MAIL terms Γ ` P1,P2 : X:

M |= P1
\ = P2

\ : X \ ⇐⇒ M [ |= P1 = P2 : X

Proof
Straightforward induction. �

However, using the benchmark model on its own serves no purpose, as we could

instead just validate the transformations in the CBPV model. Rather, we use the bench-

mark model to infer semantic equivalence of CBPV terms using conservative restriction

MAIL models.
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Lemma 11.3. Let ΣMAIL be a MAIL signature, and M be any set-theoretic algebraic

CBPV ΣCBPV
\ -model.

Let M ] be any presentation MAIL ΣMAIL-model such that the underlying Σ-model of

M ] is the conservative restriction model generated from the underlying Π-model of

M . (see Theorem 7.12 (revisited)). Let M [ be the benchmark MAIL ΣMAIL-model

arising from M .

Assume that the condition from Theorem 10.19 holds for the built-in constants:

for every built-in constant c ∈ S,
〈
M ] ⟦c⟧,M ⟦c⟧

〉
lifts to a logical relations

morphism:

K LogRel ⟦c⟧ : 1→M LogRel ⟦Ac⟧
For every pair of well-typed MAIL programs `ε P1,P2 : FεG,

M |= P1
\ = P2

\ : FG ⇐⇒ M ] |= P1 = P2 : FεG

Proof
By Theorem 10.19, we have a free lifting logical relations MAIL ΣMAIL-model

M LogRel. For every ε, let mε : TLε
→ TL be the componentwise injective

monad morphism from the construction of the conservative restriction model (see The-

orem 7.12).

Consider any MAIL program `ε P : FεG. By the basic lemma for terms (Lemma 10.13),

we deduce that: 〈
M ] ⟦P⟧,M [ ⟦P⟧

〉
∈ ṪεM LogRel ⟦G⟧

By Lemma 10.18, M LogRel ⟦G⟧ is the diagonal relation over ⟦G⟧. Therefore, by the

definition of the conservtive comparison logical relations model (see Corollary 9.12),

mε(M ] ⟦P⟧) = M [ ⟦P⟧
Theorem 11.2

↓
= M ⟦P\⟧

Consider any pair of well-typed MAIL programs `ε P1,P2 : FεG. By functionality

of mε we deduce that

M ⟦P1
\⟧= M ⟦P2

\⟧ ⇐= M ] ⟦P1⟧= M ] ⟦P2⟧

and by injectivity of mε we deduce that

M ⟦P1
\⟧= M ⟦P2

\⟧ =⇒ M ] ⟦P1⟧= M ] ⟦P2⟧

as desired. �
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The need to incorporate the built-in constants into the conservative restriction model

complicates our formulation of this lemma. Indeed, we expose the conditions on the

effect-annotated constants that enable to lift the two MAIL models. When we uniformly

incorporate these constants into the conservative restriction model, such as with simple

signatures (see Corollary 10.17), we obtain a more succinct result:

Theorem 11.4. Let ΣMAIL be a simple MAIL signature, and M be any fully-covered

presentation CBPV ΣCBPV
\ -model. Let M ] be the conservative restriction MAIL ΣMAIL-

model of Corollary 10.17.

For every pair of well-typed MAIL programs `ε P1,P2 : FεG,

M |= P1
\ = P2

\ : FG ⇐⇒ M ] |= P1 = P2 : FεG

Proof
Our assumptions ensure that Corollary 10.17 is applicable hence M ] is well-

defined. The surjectivity of the initial morphism ensures that the component-

wise injective monad morphism mΠ : TΠ → T is the identity function.

Let M ] be the conservative restriction Σ-model induced by M . Let M LogRel be the

free lifting model induced by the conservative restriction and the benchmark models,

as in the last lemma. A straightforward inductive argument shows that, as mΠ = id, the

interpretation of every value type and computation type containing only Π as an effect

set is the diagonal relation.

Therefore, for every built-in constant c ∈ S, the pair 〈⟦c⟧,⟦c⟧〉 is in M LogRelAc.

The previous lemma is applicable. �

We justify the process of effect-dependent program optimisation using effect-based

equational reasoning. We begin with a complete effect-annotated source code program

P, which we wish to transform, i.e., to optimise. To do so, we wish to apply a certain

effect-dependent transformation, such as the following Discard optimisation:
Γ `ε M : FεA Γ `ε′ N : B

(ε⊆ ε′)
M |= coerceε⊆ε′M to x : A.N = N

(11.1)

This optimisations states that if N does not directly depend on the result of the returner

M, then the computation M may be discarded without affecting the meaning. This

optimisation is valid if, for example, Lε is the environment theory LEnv(V). Note that

this transformation is not sound in general, by which we mean that, if we erase the

effect annotations, we obtain an optimisation that is not valid in the CBPV model for

global state:
Γ ` M : FA Γ ` N : B

M |= M to x : A.N = N
(11.1’)
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Interestingly, transforming Discard (11.1) into a higher-order equation

λm : UεFεA.λn : Uε′B. force m to x : A. force n= λm : UεFεA.λn : Uε′B. force n

yields a valid MAIL equation whose CBPV erasure may be invalid

λm : UFA.λn : UB. force m to x : A. force n= λm : UFA.λn : UB. force n

which shows that Theorem 11.4 fails at higher types.

We validate such effect-annotated transformations in the conservative restriction

model by straightforward calculation. Therefore, applying the transformation to the

effect-annotated source program, we obtain a transformed program P′. Standard tech-

niques show our denotational semantics is compositional, hence P = P′ in the con-

servative restriction model. By appeal to Theorem 11.4, the unannotated source code

of the original program and the transformed program are equal in the original CBPV

model, i.e. P\ = P′\. We can then continue to optimise the annotated source code,

or even perform further static analysis, adding tighter effect annotations in the source

code, enabling further transformations to occur. For example, if in the above exam-

ple N = coerceε′′⊆ε′N′ and ε′ = ε∪ ε′′, then after M is discarded, we may not need

to coerce N′ at all, and maintain the tighter effect-set ε′′. Thus, we formally justified

effect-dependent optimisation of programs.

First, note our notion of validity, denotational equivalence, is natural and, in any

adequate model, implies contextual equivalence. In contrast, Benton’s work validated

the same optimisations only up to contextual equivalence with respect to a restricted

class of ground contexts. Next, note that while the original semantics can prove the

same transformations the effect-annotated program can, the benefit of using the effect

analysis is in the locality of our reasoning. The use of the annotated transformation

(11.1) is validated based on local information, facilitated by the available effect sets.

In contrast, justifying the same transformation without the annotations requires some

form of global analysis, as demonstrated by the unsoundness of the unannotated trans-

formation (11.1’). Also note the bi-implication in Theorem 11.4. So far, we only used

this implication for deducing transformation validity in CBPV. The converse implica-

tion means that, while in essence our semantics of interest are the CBPV semantics, we

lose no expressiveness by moving to the MAIL semantics. However, we may make use

of incomplete models to validate optimisations. For example, in previous work [KP12]

we used the axiomatic restriction models, whose explicit presentation is straightfor-

ward, but may produce incomplete MAIL semantics. Finally, despite Theorem 11.4
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referring to programs only, we foresee no inherent difficulty in using it to justify opti-

misation of library modules. We outline how to do so. If effect analysis is performed

on all system modules and the interface signatures match-up, then Theorem 11.4 jus-

tifies the validity of the transformation to the entire system. If other modules are not

analysed, then the inter-module interfaces need to be annotated with the full effect-set

Π. For example, if an unanlysed module exposes the interface f : U1→ F1, we will

treat this interface as if it had the annotation f : UΠ1→ FΠ1. Theorem 11.2 guarantees

we can safely assume these annotations, and then invoke Theorem 11.4. We leave a

formal treatment of programming languages with explicit module support to further

work.

11.2 Optimisation taxonomy

We turn to validating effect-dependent optimisations, formulated as MAIL equations.

This is done semantically, using Theorem 11.4. We divide optimisations into struc-

tural, local algebraic, and global algebraic groups. We validate versions of almost all

the optimisations in Benton et al. [BK99, BKHB06, BB07, BKBH07, BKBH09], and

also some others, not previously considered in the semantics literature. The only opti-

misations considered by Benton et al. that we do not treat deal with exception handlers.

Structural optimisations reflect the general structure of our models. Let ΣMAIL be a

MAIL signature. Then a structural optimisation is one that is valid in all MAIL ΣMAIL-

models. Figure 11.1 shows example schemes for such optimisations. Note that the

β, η, and sequencing laws are the standard CBPV equational laws, found in the CBPV

literature [Lev04, PP08]. As the fragment of the language they deal with and their

denotational semantics are identical to CBPV, they are indeed true in all MAIL mod-

els. The equations for effect interaction are validated by straightforward calculation

using the monadic structure and the definition of the free, product, and exponential

algebras for a monad. Finally, the equations for coercion follow from functoriality of

the monad hierarchy, from basic properties of strong monad morphisms, and from the

definition of effect operation preservation. The structural optimisations are the basic

transformations in program optimisation, and they include well-known optimisations,

such as: constant unfolding and propagation, code inlining, common subexpression

elimination, and others.

Local algebraic optimisations originate from particular equations in the Lawvere

theory Lε associated to a given MAIL model. Each equation yields such an optimisa-
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β laws: match
(
A,A′

)
as
(
x : A,y : A′

)
.M = M

[
A/x,A′/y

]
match injA1+A2

i Aas {inj1x1 :A1.M1, inj2x2 :A2.M2}= Mi [A/xi]

force ( thunk M) = M (returnεA) to x : A.M = M [A/x]

i‘λ{1 7→M1,2 7→M2}= Mi A‘λx : A.M = M [A/x]

η laws: A = ?

M [A/z] = match A as
(
x : A,y : A′

)
.M [(x,y)/z] x, y fresh in M

M = match A : 0 as {}B

M [A/z] = match A as

inj1x : A .M [inj1x/z],

inj2y : A′.M [inj2y/z]
x, y fresh in M

A = thunk ( force A) M = M to x : A.returnεx

M = λ{1 7→ 1‘M,2 7→ 2‘M} N = λx : A.x‘N x fresh in N

Sequencing:

M to x :A.
(
N to y :A′.N′

)
=(M to x :A.N) to y :A′.N′ x fresh in N′

M to x : A.λ{1 7→ N1,2 7→ N2}= λ

1 7→M to x : A.N1,

2 7→M to x : A.N2

M to x : A.λy : A′.N = λy : A′.(M to x : A.N) y fresh in M

Effects: opB
Aλx :A.

(
M to y :A′.N

)
=
(
opFεA′

A λx :A.M
)

to y :A′.N x fresh in N

opB1×B2
A λx : A.λ

1 7→M1,

2 7→M2

= λ

1 7→ opB1
A λx : A.M1,

2 7→ opB2
A λx : A.M2

opA′→B
A λx : A.λy : A′.M = λy : A′.opB

Aλx : A.M x 6= y

Coercion: coerceε2⊆ε3(coerceε1⊆ε2M) = coerceε1⊆ε3M

coerceε1⊆ε2(returnε1M) = returnε2M

coerceε⊆ε′(M to x :A.N) = (coerceε⊆ε′M) to x :A.coerceε⊆ε′N

coerceε1⊆ε2

(
op

Fε1A′

A λx : A.M
)
= op

Fε2A′

A λx : A.coerceε1⊆ε2M

Figure 11.1: structural optimisations
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tion. To derive these optimisations from the equations, one follows Plotkin and Pret-

nar [PP08]. We just give an example here. The global state theory for a finite set of

storable values V = {v1, . . . ,vn} includes the axiom scheme

updatevi
(lookup(x1, . . . ,xn)) = updatevi

(xvi)

The corresponding algebraic optimisation is

updateB
V (lookupM) = updateB

V (V ‘M)

Such transformations are the bread-and-butter of effectful program optimisation.

Global algebraic optimisations follow from overall, global properties of the theo-

ries. Each appears in two forms, which we call utilitarian and pristine. The utilitarian

form readily applies to program optimisation; the pristine form is shorter and easier to

validate, but perhaps less useful. For example, the utilitarian form of Discard is

Γ `ε M : FεA Γ `ε′ N : B
(ε⊆ ε′)

M |= coerceε⊆ε′M to x : A.N = N

and its pristine form is

Γ `ε M : FεA

M |= M to x : A.returnε?= returnε?

The two forms can always be shown equivalent using structural optimisations. In-

stances of both appear in the work of Benton et al.

Validating the global algebraic optimisations denotationally reveals an intimate

connection1 to Führmann’s work on the structure of call-by-value [Füh00, Füh02]:

each has a characterisation in semantic terms. For example, the Discard optimisation

holds iff Lε is an affine theory [Koc71, Jac94, Füh00], that is, iff ηε
1 : 1→ T1 is an

isomorphism.

There are also algebraic characterisations of these semantic properties. For ex-

ample, a theory L is affine iff for every term t, t(x, . . . ,x) = x, that is, iff a global

absorption law holds. (Here, and below, we are displaying all the variables of the

terms at hand.) Such algebraic properties can be investigated using the equational pre-

sentation of the theory. As an example, the theory for environments LEnv(V) and the

semilattice theory are affine.

A summary of our results appears in Figure 11.2. In every row, all the conditions

are equivalent in any MAIL model, taking the condition in the first column as univer-

sally quantified over all ε′ such that ε′ ⊇ ε,ε1,ε2. As fully justifying these equivalences
1Alex Simpson, private communication.
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Figure 11.2: Global algebraic optimisations
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will require us to include 36 proofs, we omit them. Benton et al. (Führmann [Füh00,

Füh02]) considered call-by-value analogues of the optimisations labelled by B (respec-

tively F) in Figure 11.2, albeit for particular combinations of effects (respectively for

a fixed monad); Führmann also showed the equivalence of the pristine and utilitarian

form and the abstract side condition in his setting.

The abstract conditions in Figure 11.2 use the following standard categorical no-

tions. The diagonal function δB : B→ B×B is given by δ(b)B 〈b,b〉. The two double

strength functions ψ, ψ̃ : T A×T B→ T (A×B) are defined by ψ = θ◦T str′ ◦ str and by

ψ̃ = θ◦T str◦ str′.

The algebraic characterisations follow from the algebraic understanding of the

monadic structure. Note how Copy corresponds to a global idempotency law, and how

Swap corresponds to commutativity. This algebraic presentation using laws is mal-

leable to manipulation. Slight variations on these two laws generate the Weak Copy2,

and Weak and Isolated Swap optimisations, which are new in the formal methods opti-

misation literature. Thus, by understanding the semantic origins of these optimisations

in algebraic laws we were able to discover new ones. Also note the algebraic condition

for Pure Hoist. It means that Lε is either inconsistent, or the operations project one of

their arguments without effect.

Note too the two hoisting optimisations and compare them to the structural optimi-

sations dealing with effect operations (Figure 11.1). The simplicity of the latter over

the former suggests that the complications arise from the process of thunking rather

than abstracting over variables. This clean separation between thunks and abstraction

also supports our use of CBPV.

To summarise, we formalised effect-dependent optimisation and justified the con-

servative restriction model construction, in the set-theoretic case, as a sound and com-

plete model of type-and-effect analysis. We then used our models to validate and clas-

sify existing optimisations, discover new optimisations, and connect different strands

of the semantics literature.

2Paul B. Levy, private communication.
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Combining effects

We could be victims of a lethal combination

—The Bee Gees

A key advantage of the algebraic approach to semantics is modularity, where

several simple theories are put together via known combinators to give seman-

tics to a complex language. Hyland et al. [HPP06] study two such combinators, the

sum and tensor of two algebraic theories. These operations cover most of the known

combinations of effects. In terms of presentations, the sum and the tensor have simple

descriptions. In this chapter we will see how set-theoretic presentations of theories

assist in deriving the validity of optimisations in the combination of theories from their

validity in each component.

We introduce and investigate a novel class of optimisations that allow a highly

modular treatment, the operation-wise valid optimisations. We show which of the

global algebraic optimisations are operation-wise valid and which are not. For the non-

operation-wise valid optimisations, we achieve modularity by proving ad-hoc combi-

nation theorems.

In this chapter we will use the category of Lawvere theories Lawℵ0Set. However,

this category is equivalent to the category of theories Theory, i.e., the category of

presentations and∼-equivalence classes of translations. Therefore, we do not mark this

chapter with the “beware cats” sign, as each use of a Lawvere theory can be replaced

with a presentation. In particular, we denote by ThAx the Lawvere theory induced by a

presentation Ax.

First, in Section 12.1, we begin by recapitulating the known definitions of the sum

and the tensor of theories and express their known set-theoretic presentations, sum-

marising the relevant results from [HPP06]. Next, in Section 12.2, we turn to isolating

257
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the operation-wise valid optimisations. Finally, in Section 12.3, we conclude by ad-hoc

treatment of the rest of the optimisations.

12.1 Combining theories

The first way to combine theories is by taking their sum, i.e., coproduct, in the category

of (enriched) Lawvere theories. Viewed syntactically as presentations (cf. Chapter 8),

the sum of two theories has the following well-known straightforward description (see

Hyland et al. [HPP06]).

Let Ax = 〈σ1,E1〉, Ax = 〈σ2,E2〉 be two presentations. Denote by σ1+σ2 the sig-

nature consisting of the disjoint union of the two operation sets, maintaining their orig-

inal arities, i.e., assigning ιiop : n, for each op : n in σi, i = 1,2. The signature σ1 +σ2

induces, for i = 1,2, a family of relabelling maps ιi : Termsσi (X)→ Terms(σ1+σ2) (X),

homomorphically mapping each op(x1, . . . ,xn) to ιiop(x1, . . . ,xn). This relabelling

map extends componentwise to equations t = t ′. Define Ax1 +Ax2 as the presen-

tation 〈σ1 +σ2, ι1[E1]∪ ι2[E2]〉. Simply put, Ax1 +Ax2 consists of the union of the

operations of Ax1 and Ax2, possibly renamed to avoid conflict, and the union of the

equations, suitably renamed.

With this notation, we have:

Theorem 12.1 (see Hyland et al. [HPP06]). For every two presentations Ax1, Ax2,

ThAx1 +ThAx2
∼= Th(Ax1+Ax2)

Example 12-1. In the proof of Theorem 7.11 we constructed the initial theory Lσ of

a given signature σ as the coproduct ∑op∈σ Lop where Lop is the initial theory with a

single operation op with the same type as in σ. In light of the last theorem, in terms of

presentations this construction manifests as the following isomorphisms:

L{op1:n1,...,opn:nk}
∼= Th〈{op1:n1,...,opn:nk}, /0〉

∼= Th〈∑k
i=1{opi:ni}, /0〉

Theorem 12.1

↓
∼=

k

∑
i=1

Th〈{opi:ni}, /0〉

∼=
k

∑
i=1

L{opi:ni}
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The explicit description of the coproduct of two monads, even in the set-theoretic

case, is complicated, see Adámek et al. [AMBL12]. For our purposes it suffices to

refer to the special case where one of the theories is free, which Hyland et al. [HPP06]

treat. The full details of the general description are beyond the scope of this thesis, and

we merely instantiate it to obtain the following two examples.

Example 12-2. We describe the monad for combining terminal I/O with non-deterministic

choice. Let Char be a finite set denoting terminal characters. The signature for termi-

nal I/O (cf. Example 8-23) is given by

σIO(Char)B
{

input : |Char| , inputc : 1
∣∣∣c ∈ Char

}
and the theory for terminal I/O is the free theory L IO(Char)

∼= Th〈σIO(Char), /0〉. Let

LND∼= Th〈{∨:2},END〉 be the theory for non-determinism, i.e., END is the theory of semi-

lattices (cf. Example 8-4):

x∨ (y∨ z) = (x∨y)∨ z, x∨y = y∨x, x∨x = x

Recall that the corresponding monad to LND is the non-empty, finite powerset monad

P ℵ0
+ (−).

We follow Hyland et al. [HLPP07] and combine terminal I/O with nondeterminism

using the sum L IO(Char)+LND ∼= Th〈σ+,E+〉, where

σ+ = σIO(Char)+σND =
{
∨, input : |Char| ,outputc

∣∣∣c ∈ Char
}

E+ = END = {x∨ (y∨ z) = (x∨y)∨ z,x∨y = y∨x,x∨x = x}

We calculated the following monad T+ corresponding to L IO(Char)+LND using

the techniques of Hyland et al. [HPP06], which are beyond the scope of this thesis.

Let X be any set. The set T+X is given by P ℵ0
+ (SX), where SX is defined induc-

tively as follows.

• For every x ∈ X , x ∈ SX .

• For every family 〈τc〉c∈Char of non-empty, finite subsets τc ⊆ SX , 〈I,〈τc〉〉 ∈ SX .

• For every c ∈ Char, and every non-empty, finite subset τ⊆ SX , 〈O,c,τ〉 ∈ SX .

Let f : X → Y be any function. The function T+ f : T+X → T+Y is given by the

direct image T+ f : τ 7→ f̃ [τ], where f̃ : SX → SY is defined inductively as follows.

• For every x ∈ X , f̃ (x)B f (x).
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• For every family 〈τc〉c∈Char, f̃ (〈I,〈τc〉〉)B
〈
I,
〈

f̃ [τc]
〉〉

.

• For every c ∈ Char, and every τ, f̃ (〈O,c,τ〉)B
〈
O,c, f̃ [τ]

〉
.

The monadic unit is given by η+ : x 7→ {x}. The monadic multiplication is given

by the direct image µ+ : κ 7→
⋃

µ̃[κ], where µ̃ : ST+X → T+X is defined inductively as

follows.

• For every τ ∈ T+X , µ̃(τ)B τ.

• For every family 〈τc〉c∈Char, µ̃(〈I,〈τc〉〉)B
{〈

I,
〈

f̃ [τc]
〉〉}

.

• For every c ∈ Char, and every τ, f̃ (〈O,c,τ〉)B
{〈

O,c, f̃ [τ]
〉}

.

Finally, we define the generic effects for this monad:

toss : 1→ T+2

toss : ? 7→ {ι1?, ι2?}

get : 1→ T+Char put : Char→ T+1

get : ? 7→
{〈

I,〈{c}〉c∈Char

〉}
put : c 7→ {〈O,c,{?}〉}

We can also recover these effects by lifting via the coproduct injection monad mor-

phisms. The injection ι2 : P ℵ0
+ (−)→ T+ is given by the inclusions P ℵ0

+ (X) ⊆ T+X .

The coproduct injection ι1 : TI/O(Char)→ T+ is given, for every set X , inductively by

• For every x ∈ X , ι1(x)B {x}.

• For every family 〈tc〉c∈Char, ι1(〈I,〈tc〉〉)B {〈I,〈ι1(tc)〉〉}.

• For every c ∈ Char, and t ∈ TI/O(Char)X , ι1(〈O,c, t〉)B {〈O,c, ι1(t)〉}.

Straightforward calculation shows these injections are component-wise injective.

The following example is taken from Hyland et al. [HPP06]).

Example 12-3. We combine exceptions with other theories by summing. Let E be

a set denoting possible exceptions, for example 64-bit words, integers, or a set of

identifiers. Recall from Example 8-23 that the theory for exception raising is the free

theory LExc(E)
∼= Th〈σExc(E), /0〉, where

σExc(E)B {throwe : 0|e ∈ E}

Recall that the corresponding monad TExc(E) is E+−.
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Levy1 noted that summing with LExc(E) yields the exceptions monad transformer [KW93].

More precisely, given any theory L whose corresponding monad is T , the monad cor-

responding to LExc(E)+L is T (E+−). The monadic unit is given by

X
ηExc(E)

−−−−→ E+X
η−→ T (E+X)

The monadic multiplication is given by

T (E+T (E+X))
T [η◦ι1,id]−−−−−→ T 2(E+X)

µ−→ T (E+X)

The injections are given by

T
T ι2−−→ T (E+−) η←− E+−

We can use them to transport the operations from each monad into the combined monad

using Corollary 2.9.

We now turn to combinations in which effects from different theories commute.

The following universal characterisation of this combination is one of the main techni-

cal contributions of Hyland et al. [HPP06]:

Theorem 12.2 ([HPP06, Appendix A]). Let L1, L2 be (finitary) Lawvere (set-theoretic)

theories. There exists a Lawvere theory L1⊗L2, unique up to a canonical isomor-

phism, such that, for every category V with finite products:

Mod(L1⊗L2,V )'Mod(L1,Mod(L2,V ))

We call L1⊗L2 the tensor product of L1 and L2. Moreover, there exist a pair of

Lawvere theory morphisms

L1

⊗
ι 1−→ L1⊗L2

⊗
ι 2←− L2

such that, for every pair of morphisms T1 : L1 → L ′1, T2 : L2 → L ′2, there exists a

unique morphism T1⊗T2 : L1⊗L2→ L ′1⊗L ′2, satisfying:

L1

L ′1

L2

L ′2

L1⊗L2

L ′1⊗L ′2

⊗
ι1

⊗
ι2

⊗
ι1

⊗
ι2

T1 T2T1⊗T2= =

1Paul B. Levy, unpublished work.
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The tensor ⊗ equips the category of Lawvere theories with a symmetric monoidal

structure whose monoidal unit is the inital Lawvere theory Presop
ℵ0
∼= Th〈 /0, /0〉.

In terms of presentations, the tensor product has a straightforward characterisation.

Let σ1, σ2 be two signatures. Define Eσ1⊗σ2 to be the following set of equations over

the combined signature σ1 +σ2 consisting of the all the equations

op1(op2(x1,1, . . . ,x1,n), . . . ,op2(xm,1, . . . ,xm,n))

=

op2(op1(x1,1, . . . ,xm,1), . . . ,op1(x1,n, . . . ,xm,n))

for every op1 : m in σ1, and op2 : n in σ2. We can write these equations more succinctly

using tuples:

op1

〈
op2
〈
xi, j
〉n

j=1

〉m

i=1
= op2

〈
op1
〈
xi, j
〉m

i=1

〉n
j=1

We now define the tensor product of two presentations:

Ax1⊗Ax2B Th〈σ1+σ2,ι1[E1]∪ι2[E2]∪Eσ1⊗σ2〉

The tensor product has the following characterisation, commonly used to define it:

Theorem 12.3 (see Hyland et al. [HPP06]). For every two presentations Ax1, Ax2,

ThAx1⊗ThAx2
∼= Th(Ax1⊗Ax2)

The tensor morphisms L1

⊗
ι 1−→ L

⊗
ι 2←− L2 translate by relabelling the operations by i.

The action of ⊗ on translations T1 : Ax1→ Ax′1, T1 : Ax2→ Ax′2 acts by combining

the translation as for the sum.

Corollary 12.4. Th(Ax1⊗Ax2) is the initial theory L with two specified morphisms

L1

⊗
ι 1−→ L

⊗
ι 2←− L2 satisfying all the tensor equations in Eσ1⊗σ2 .

The next two examples are two of the main contributions of Hyland et al. [HPP06].

Example 12-4 (see Hyland et al. [HPP06, Theorem 10]). The state monad transformer

arises from tensoring with global state. Let V, |V|> 2 be a finite set denoting storable

values, and LGS(V) be the corresponding global state theory. Let L be any Lawvere

theory whose corresponding monad is T . Then the monad corresponding to LGS(V)⊗L
is the monad resulting from applying the global state monad transformer [Mog90,

Subsection 4.1.2] to T .
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Explicitly, the combined monad is given by (T (V×−))V. The monadic unit is

given by x 7→ λv.η〈v,x〉, and the monadic multiplication is given by(
T
(

V× (T (V×X))V
))V

∼=
(

T
(
(T (V×X))V×V

))V (T eval)V−−−−−→
(
T 2(V×X)

)V (µ)V−−→ (T (V×X))V

Note how instantiating with the identity monad, i.e., the monad resulting from the

initial Lawvere theory Presop
ℵ0

, yields the global state monad.

The morphism
⊗
ι1 : TGS(V)→ (T (V×−))V is given by

(V×X)V (η)V−−→ (T (V×X))V

or, more explicitly,
⊗
ι1 : f 7→ η◦ f

The morphism
⊗
ι2 : T → (T (V×−))V is given by

λV.
(
(T X)×V∼= V×T X str−→ T (V×X)

)
or, more explicitly,

⊗
ι2 : k 7→ λv.(T (λx.〈v,x〉)(k))

We can use these maps to transport the algebraic operations from each component to

the tensor using Corollary 2.9.

For every finitary monad morphism m : T → T ′, straightforward calculations show

that the tensor monad morphism TGS(V)⊗m is given by

TGS(V)⊗m : (T (V×−))V mV

−−→
(
T ′(V×−)

)V
To obtain the theory of finitely many memory locations ` ∈ L, we take the L-fold

tensor the global state theory with itself,
⊗

`∈L LGS(V).

Example 12-5 (see Hyland et al. [HPP06, Theorem 12]). The writer monad trans-

former arises from tensoring with the theory for the writer monad. Let M = 〈|M|, ·,1〉
be any monoid. The theory for the writer monad is LW(M) = Th〈σW(M),EW(M)〉 where

σW(M)B {actm : 1|m ∈ |M|}

and EW(M) consists of the following equations, for every m,m′ ∈ |M|:

act1(x) = x, actm(actm′(x)) = actm·m′x
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The corresponding monad TW(M) is |M|×−.

Let L be any theory and T the corresponding monad. Then the monad correspond-

ing to LW(M)⊗L is the monad resulting from applying the writer monad transformer

to L . This transformer was first introduced in Gurr’s thesis [Gur91, Subsection 4.2.3]

as the complexity monad constructor.

Explicitly, the combined monad is given by T (|M| ×−). The unit is given by

x 7→ η〈1,x〉. The monadic multiplication is given by

T (|M|×T (|M|×X))
T str−−→ T 2(|M|×|M|×X)

µ−→ T (|M|×|M|×X)
T (·×id)−−−−→ T (|M|×X)

Note how instantiating with the identity monad yields the writer monad.

The morphism
⊗
ι1 : TW(M)→ T (|M|×−) is given by the monadic unit

|M|×X
η−→ T (|M|×X)

The morphism
⊗
ι2 : T → (T (|M|×−)) is given by

T X
T (x 7→〈1,x〉)−−−−−−→ T (|M|×X)

We can use these maps to transport the algebraic operations from each component to

the tensor.

For every finitary monad morphism m : T → T ′, straightforward calculations show

that the tensor monad morphism TW(M)⊗m is given by

TW(M)⊗m : T (|M|×−) m−→ T ′(|M|×−)

To obtain the theory for finitely many write-only memory locations ` ∈ L, we in-

stantiate to the overwriting monoid over some finite set of storable values V , and take

the L-fold tensor of the overwrite theory with itself,
⊗

`∈L LOW(V).

The following example involving the environment monad transformer [LHJ95]

does not appear in Hyland et al.’s work [HPP06], but follows the same techniques,

and was known to its authors2.

Example 12-6. The environment monad transformer arises from tensoring with the en-

vironment theory. Let V, |V|= n> 2 be any finite set denoting storable values. Recall

the theory for the environment monad (cf. Example 8-17) LEnv(V)=Th〈{lookup:n},EEnv(V)〉
where EEnv(V) consists of the following two equations,

lookup(x, . . . ,x) = x

lookup(lookup(x1,1, . . . ,x1,n), . . . , lookup(xn,1, . . . ,xn,n)) = lookup(x1,1, . . . ,xn,n)

2Gordon D. Plotkin, private communication, 2009.
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The second equation may be more succinctly presented using tupling:

lookup
〈

lookup
〈
xi, j
〉n

j=1

〉n

i=1
= lookup

〈
xk,k
〉n

k=1

The corresponding monad TEnv(V) is −V.

Let L be any theory and T the corresponding monad. Then the monad correspond-

ing to LEnv(V)⊗L is the monad resulting from applying the reader monad transformer

to L .

Explicitly, the combined monad is given by (T−)V. The unit is given by x 7→ λv.x.

The monadic multiplication is given by

λV.


(

T (T X)V
)V
×V

δ−→
(

T (T X)V
)V
×V×V

eval−−→
(

T (T X)V
)
×V

costr−−→ T
(
(T X)V×V

)
T eval−−−→ T 2X

µ−→ T X


Note how instantiating with the identity monad yields the environment monad.

The morphism
⊗
ι1 : TEnv(V)→ (T−)V is given by the monadic unit

XV ηV

−→ (T X)V

or, more explicitly,
⊗
ι1 : f 7→ η◦ f

The morphism
⊗
ι2 : T → (T−)V is given by

T X
λV.π1−−−→ (T X)V

or, more explicitly,
⊗
ι2 : k 7→ λv.k

We can use these maps to transport the algebraic operations from each component to

the tensor using Corollary 2.9.

For every finitary monad morphism m : T → T ′, straightforward calculations show

that the tensor monad morphism TEnv(V)⊗m is given by

TEnv(V)⊗m : (T−)V mV

−−→
(
T ′−

)V
To obtain the theory for finitely many read-only memory locations ` ∈ L, take the

L-fold tensor the environment theory with itself,
⊗

`∈L LEnv(V).
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Example 12-7. We describe, in terms of monads, the action of tensoring any theory L
with the injective morphisms

LEnv(V)
mEnv(V) LGS(V)

mOW(V) LOW(V)

Straightforward calculations show that the morphism mEnv(V) is given by:

mEnv(V)⊗T : (T X)V→ (T (V×X))V

κ 7→ λv.(T (λx.〈v,x〉))(κ(v))

Analogous calculations show that the morphism mOW(V) is given by:

mOW(V)⊗T : T ((1+V)×X)→ (T (V×X))V

k 7→ λv.

(
T

(
〈ι1?,x〉 7→ 〈v,x〉
〈ι2v0,x〉 7→ 〈v0,x〉

)
(k)

)

12.2 Operation-wise validity

Note that the algebraic conditions in the first three rows and the last two rows of Fig-

ure 11.2 have the same form: we quantify over all terms t of a theory and require that

they satisfy an algebraic condition. We say that such an optimisation is operation-wise

valid if its validity follows from validating this algebraic condition for the terms of

the form t = op(x1, . . . ,xn), for every op : n in the theory. We do not provide a rigor-

ous definition of operation-wise validity. Rather, we will formulate an operation-wise

validity condition for each optimisation separately.

Theorem 12.5. The Discard optimisation is operation-wise valid: for every presenta-

tion Ax = 〈σ,E〉, the theory ThAx satisfies the Discard optimisation if and only if for

every op : n in σ,

op(x, . . . ,x) = x

Proof

The ‘only if’ implication is immediate. Let Ax = 〈σ,E〉 be a presentation such that for

every op : n in σ, op(x, . . . ,x) = x. We prove by induction that all terms t satisfy the

absorption law

t(x, . . . ,x) = x
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If t = x is a variable, we are done. Consider any

t(x1, . . . ,xk) = op(s1(y1,1, . . . ,y1,m1), . . . ,s
n(yn,1, . . . ,yn,mn))

where op : n in σ, {
yi, j
∣∣16 i6 n,16 j 6 mi

}
⊆ {xi|16 i6 k}

and s1, . . . ,sn satisfy the absorption law, then

t(x, . . . ,x) = op(s1(x, . . . ,x), . . . ,sn(x, . . . ,x))

induction hypothesis

↓
= op(x, . . . ,x)

assumption

↓
= x

Thus, by induction, ThAx satisfies the Discard optimisation. �

This last theorem gives an immediate proof that the theories for read-only state,

and semilattices validate the Discard optimisation.

The natural candidate for the operation-wise validity condition for the Weak Copy

is: each op : n satisfies the equation:

op(op(x1, . . . ,xn), . . . ,op(x1, . . . ,xn)) = op(x1, . . . ,xn)

The natural candidate for the Copy optimisation is similar, but with an additional index.

Counter-example 12-8. The Copy and Weak Copy optimisations are not operation-

wise valid. As validity of Copy implies that of Weak Copy, it is enough to show that,

for the theory of global state, Weak Copy satisfies the condition for operation-wise

validity, yet is not valid.

Indeed, if we denote V = {v1, . . . ,vn}, n> 2, we have:

lookup(lookup(x1, . . . ,xn), . . . , lookup(x1, . . . ,xn)) = lookup(x1, . . . ,xn)

updatev(updatev(x)) = updatev(x)

hence Weak Copy is operation-wise valid.

However, Weak Copy is not valid for global state. Indeed, consider the term

t(x)B lookup(updatevn
(x), . . . ,updatev1

(x))

Intuitively, t modifies the memory cell according to vi 7→ vn+1−i. Then t(t(x)) = x
follows from the global state equations. However, the equation t(x)= x does not follow

from the global state equations. Indeed its interpretation in TGS(V)1 in the environment

x 7→ ? is λvi.〈vn+1−i,?〉. As n> 2, this function is different from the function λv.〈v,?〉,
which is the interpretation of x in the same environment.



268 Chapter 12. Combining effects

We do now know any reasonable condition that can act as an operation-wise valid-

ity condition for the Unique optimisation.

Theorem 12.6. The Pure Hoist optimisation is operation-wise valid. Explicitly, for

every presentation Ax = 〈σ,E〉, the theory ThAx satisfies the Pure Hoise optimisation

if and only if for every op : n in σ there exists an 16 i6 n such that

op(x1, . . . ,xn) = xi

Proof
The ‘only if’ implication is immediate. Let Ax = 〈σ,E〉 be a presentation such that

for every op : n in σ, there exists an some 1 6 i 6 n such that op(x1, . . . ,xn) = xi. We

prove by induction that for all terms t(x1, . . . ,xm) there exists some 1 6 j 6 m such

that t(x1, . . . ,xm) = x j.

If t = x is a variable, we are done. Consider any

t(x1, . . . ,xk) = op(s1, . . . ,sn)

where op : n in σ, and s1, . . . ,sn satisfy the induction hypothesis. By our assumption,

there exists some 16 i6 n such that op(x1, . . . ,xn) = xi. By our induction hypothesis

for si, there exists some 16 j 6 mi such that si(x1, . . . ,xk) = x j. Therefore:

t(x1, . . . ,xk) = si(x1, . . . ,yk) = x j

Thus, t also satisfies the induction hypothesis. �

This theorem gives an immediate proof that the empty theory (and, of course, both

of the inconsistent theories) validate the Pure Hoist optimisation.

Theorem 12.7. The Hoist optimisation is operation-wise valid: for every presentation

Ax = 〈σ,E〉, the theory ThAx satisfies the Hoist optimisation if and only if for every

op : n in σ, either there exists some 16 i6 n, such that

op(x1, . . . ,xn) = xi

or, for every x1, . . . ,xn,x′1, . . . ,x
′
n,

op(x1, . . . ,xn) = op(x′1, . . . ,x
′
n)

Proof
The ‘only if’ direction is immediate. Let Ax = 〈σ,E〉 be a presentation satisfying the

condition of the theorem. We prove by induction that for all terms t(x1, . . . ,xk) either
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there exists some 16 j 6 k such that t(x1, . . . ,xk) = x j, or, for all x1, . . . ,xk,x′1, . . . ,x
′
k,

t(x1, . . . ,xk) = t(x′1, . . . ,x
′
k).

If t = x, we are done. Consider any

t = op(s1, . . . ,sn)

where op : n in σ, and s1, . . . ,sn satisfy the induction hypothesis. We proceed by case

analysis on our assumption.

Assume that for all x1, . . . ,xk,x′1, . . . ,x
′
k, op(x1, . . . ,xk) = op(x′1, . . . ,x

′
k). Consider

any x1, . . . ,xk,x′1, . . . ,x
′
k, and denote s′i = si(x′1, . . . ,x

′
k). Then:

t(x1, . . . ,xk) = op(s1, . . . ,sn) = op(s′1, . . . ,s
′
n) = t(x′1, . . . ,x

′
k)

Thus, in this case, the induction hypothesis holds for t.

Assume, therefore, that, op(x1, . . . ,xn) = xi for some i. As si also satisfies the

induction hypothesis, we can proceed by case analysis. If there exists some j such that

si(x1, . . . ,xk) = y j, we conclude as in the previous proof. Otherwise, for all x1, . . . ,xk,

x′1, . . . ,x
′
k, we have si(x1, . . . ,xk) = si(x′1, . . . ,x

′
k). Consider any x1, . . . ,xk, x′1, . . . ,x

′
k.

Then:

t(x1, . . . ,xk) = si(x1, . . . ,xk) = si(x′1, . . . ,x
′
k) = t(x′1, . . . ,x

′
k)

Thus, t also satisfies the induction hypothesis. �

This theorem gives an immediate proof that theories involving only constants vali-

date the Hoist optimisation.

Similarly, in the algebraic condition for the various Swap optimisations, we quan-

tify over pairs of terms t ′ and t ′ from a pair of theories. These three optimisations are

also component-wise valid.

Theorem 12.8. The Swap optimisation is operation-wise valid: for every triple of

presentations Ax1 = 〈σ1,E1〉, Ax2 = 〈σ2,E2〉, and Ax = 〈σ,E〉 and for every pair of

translations Ax1
T1−→ Ax

T2←− Ax2:

• ThAx1

ThT1−−−→ ThAx
ThT2←−−− ThAx2 satisfies the Swap optimisation if and only if for

every op1 : m in σ1 and op2 : n in σ2,

T1(op1)(T2(op2)(x1,1, . . . ,x1,n), . . . ,T2(op2)(xm,1, . . . ,xm,n))

=

T2(op2)(T1(op1)(x1,1, . . . ,xm,1), . . . ,T1(op1)(x1,n, . . . ,xm,n))
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• ThAx1

ThT1−−−→ ThAx
ThT2←−−− ThAx2 satisfies the Weak Swap optimisation if and only

if for every op1 : m in σ1 and op2 : n in σ2,

T1(op1)(T2(op2)(x1, . . . ,x1), . . . ,T2(op2)(xm, . . . ,xm))

=

T2(op2)(T1(op1)(x1, . . . ,xm), . . . ,T1(op1)(x1, . . . ,xm))

• ThAx1

ThT1−−−→ ThAx
ThT2←−−− ThAx2 satisfies the Isolated Swap optimisation if and

only if for every op1 : m in σ1 and op2 : n in σ2,

T1(op1)(T2(op2)(x, . . . ,x), . . . ,T2(op2)(x, . . . ,x))

=

T2(op2)(T1(op1)(x, . . . ,x), . . . ,T1(op1)(x, . . . ,x))

Proof
Consider any triple of presentations Ax1 = 〈σ1,E1〉, Ax2 = 〈σ2,E2〉, and Ax = 〈σ,E〉
and translations Ax1

T1−→Ax
T2←−Ax2. In all three statements, the ‘only if’ implications

are immediate, and it remains to establish the converse implications. We begin with

Swap, and assume the first condition.

To reduce syntactic clutter, we consider the presentation AxSwap whose signature

is σ1 +σ2, and consisting of all the equations:

op1(op2(x1,1, . . . ,x1,n), . . . ,op2(xm,1, . . . ,xm,n))

=

op2(op1(x1,1, . . . ,xm,1), . . . ,op1(x1,n, . . . ,xm,n))

for every op1 ∈ σ1, op2 ∈ σ2. Consider the translation T : AxSwap→Ax extending T1,

T2, i.e., T(op) = Ti(op) for every op in σi. This T is indeed a translation, as by our

assumption, ThAx satisfies all the T-translations of the equations in Ax0.

First, note that for every σ2-term s(x1, . . . ,xn) and every op1 : m in σ1,

op1(s(x1,1, . . . ,x1,n), . . . ,s(xm,1, . . . ,xm,n))

=

s(op1(x1,1, . . . ,xm,1), . . . ,op1(x1,n, . . . ,xm,n))

This fact is well-known, and its proof follows by straightforward induction over σ2-

terms. A similar inductive argument shows that for every σ1-term t(x1, . . . ,xm) and
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every σ2-term s(x1, . . . ,xn),

t(s(x1,1, . . . ,x1,n), . . . ,s(xm,1, . . . ,xm,n))

=

s(t(x1,1, . . . ,xm,1), . . . , t(x1,n, . . . ,xm,n))

Applying T to the last equation shows that ThAx1

ThT1−−−→ ThAx
ThT2←−−− ThAx2 satisfies the

Swap optimisation.

Repetition of the above argument with a careful modification of the indices proves

the statements for the remaining pair of Swap optimisations. �

We thus addressed the operation-wise validity of all the global algebraic optimisa-

tions in Figure 11.2.

12.3 Ad-hoc combination

Unfortunately, not all the global algebraic optimisations are operation-wise valid. The

Copy, Weak Copy, and Unique optimisations are not operation-wise valid. Thus, in

order to validate them in a combined theory, we need to employ ad-hoc methods. We

begin with a general tool: if a theory validates a global algebraic optimisation, then

every super-theory of it with the same signature also validates the same optimisation.

Proposition 12.9. If L = Th〈σ,E〉 validates one of the Discard, Copy, Weak Copy,

Unique, Pure Hoise, or Hoist optimisations, and if L ′ = Th〈σ,E ′〉 is any theory with

E ⊆ E ′, then L ′ validates the same optimisation.

Analogously, if Th〈σ1,E1〉
ThT1−−−→ Th〈σ,E〉

ThT2←−−− Th〈σ2,bE2〉 satisfy any the various

Swap optimisations, and if, further, Th〈σ1,E ′1〉
ThT′1−−−→ Th〈σ′,E ′〉

ThT′2←−−− Th〈σ′2,E ′2〉 are such

that σ⊆ σ′, E ⊆ E ′, for each i = 1,2, E1 ⊆ E, and for each op in σi, Ti(op) = T′i(op),

then Th〈σ1,E ′1〉
ThT′1−−−→ Th〈σ′,E ′〉

ThT′2←−−− Th〈σ′2,E ′2〉 validate the same swap optimisation.

Proof

Each of the algebraic characterisations of the optimisations only involves the provabil-

ity of certain equations over the sets of terms. Adding more axioms without changing

the signature maintains the provability of these characterisations, and the theorem fol-

lows. �
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The first two optimisation we consider are Copy and Weak Copy.

Theorem 12.10. Let L =Th〈σ,E〉 and L ′ be two Lawvere theories satisfying the (Weak)

Copy optimisation. If, for every op∈ σ, op : 0, then L +L ′ and L⊗L ′ satisfy the same

optimisation.

Note that, as L only has constant operations, it necessarily satisfies the (Weak)

Copy optimisation.

Proof
First, we assume L ′ validates the Copy optimisation, and prove the statement for the

sum L +L ′. Denote L ′ = Th〈σ′,E ′〉, and consider any σ+σ′-term u(x1, . . . ,xn). As

σ consists solely of constants, u must be of the form t(x1, . . . ,xn,c1, . . . ,ck), where

t(x1, . . . ,xn+k) is a σ′-term, and ci : 0 in σ, for every 1 6 i 6 k. Note that t, as a

σ′-term, satisfies the idempotency law.

First, we demonstrate the algebraic manipulation in the proof for the case n= k = 2.

u(u(x1
1,x

1
2),u(x

2
1,x

2
2))

= t(t(x1
1,x

1
2,c1,c2), t(x2

1,x
2
2,c1,c2),c1,c2)

=
↑
(∗)

t(t(t(x1
1,x

1
2,c1,c2), t(x2

1,x
2
2,c1,c2), t(x3

1,x
3
2,c1,c2), t(x4

1,x
4
2,c1,c2)),

t(t(x1
1,x

1
2,c1,c2), t(x2

1,x
2
2,c1,c2), t(x3

1,x
3
2,c1,c2), t(x4

1,x
4
2,c1,c2)),

t(x3
1,x

3
2,c1,c2),

t(x4
1,x

4
2,c1,c2))

(∗∗)

↓
= t(t(x1

1,x
2
2,c1,c2),

t(x1
1,x

2
2,c1,c2),

t(x3
1,x

3
2,c1,c2),

t(x4
1,x

4
2,c1,c2)) =

↑
(∗∗∗)

t(x1
1,x

2
2,c1,c2) = u(x1

1,x
2
2)

First, note how in transition (∗) we use the idempotency law to introduce new subterms.

In particular, we introduce four fresh variables, x3
1, x3

1, x4
1, and x4

2. The freshness of

these variables is not important, but merely illustrates that we may choose arbitrary

terms in their stead. In transition (∗∗), we simplify the first two arguments in the

outermost term using the idempotency law. We then simplify the entire term using the

idempotency law in transition (∗∗∗) to obtain the right-hand side of the idempotency

law.

This example generalises to arbitray n and k, but requires more complex index

manipulations. To clarify those manipulations, we write 〈n
i=1 xi〉 for the sequence
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〈xi〉ni=1 = 〈x1, . . . ,xn〉. This notation has the benefit of binding the index before usage,

while maintaining the lightweight syntax of the sequencing brackets. We suppress

string concatenation, by writing t(〈n
i=1 xi〉,〈k

j=1 ck〉) for t(x1, . . . ,xn,c1, . . . ,ck).

With these conventions, calculate:

u
〈n

i=1
u
〈n

i′=1 xi
i′
〉〉

= t
(〈n

i=1
t
(〈n

i′=1 xi
i′
〉
,
〈k

j′=1 c j′
〉)〉

,
〈k

j=1 c j
〉)

(∗)

↓
= t
(〈n

i′′=1
t
〈n+k

`=1
t
(〈n

i′=1
x`i′
〉
,
〈k

j′=1 c j′
〉)〉〉

,〈k

j′′=1
t
(〈n

i=1
xn+ j′′

i

〉
,
〈k

j=1 c j
〉)〉)

(∗∗)

↓
= t
(〈n

i′′=1
t
(〈n

i′=1
xi′

i′

〉
,
〈k

j′=1 c j′
〉)〉

,〈k

j′′=1
t
(〈n

i=1
xn+ j′′

i

〉
,
〈k

j=1 c j
〉)〉)

(∗∗∗)

↓
= t
(〈n

i=1 xi
i
〉
,〈k

j=1 c j
〉)

= u
〈n

i=1 xi
i
〉

Thus in L +L ′ the idempotency law holds, hence it validates Copy. To show that the

tensor also validates Copy, we appeal to Proposition 12.9.

To prove the statement for Weak Copy, erase the superscript from all the variables

xi
i′ in the proof. Note how every appeal to Copy can be soundly replaced with an appeal

to Weak Copy. Also note we no longer add any fresh variables in the first transition of

the calculation. �

Our proof consists of two steps. First, we use our assumption on L to iden-

tify a special form to which all σ + σ′ can be brought. In the last proof, it was

t(x1, . . . ,xn,c1, . . . ,ck). Then we establish the idempotency law by direct calculation

using the idempotency laws in each component theory. We use this tactic in all our

ad-hoc combination theorems for Copy and Weak Copy.

Theorem 12.11. Let Ax = 〈σ,E〉, Ax′ = 〈σ′,E〉 be two presentations such that ThAx

and ThAx′ validate the Copy (resp. Weak Copy) optimisation. If σ assigns arity 1 to all

operation symbols, then Th(Ax⊗Ax′) satisfies the Copy (resp. Weak Copy) optimisation.

The proof is straightforward, but technically involved. Therefore we first illustrate



274 Chapter 12. Combining effects

it with an example. First, a unary signature is a signature that assigns to every operation

symbol the arity 1, i.e., in which all operations are unary. A unary presentation is a

presentation with a unary signature. The first crucial observation is that if Ax is unary,

then every Ax+Ax′-term can be separated into an Ax′-term with Ax-terms substituted

for its variables.

For example, let σ′, and σ be given by { f ′ : 3} and {g,h : 1}, respectively. The

tensor equation for g and f ′ in this case is

g( f ′(x,y,z)) = f ′(g(x),g(y),g(z))

Using the tensor equations, we can separate any σ+σ′-term by cascading the unary σ

operations towards the variables. For example,

g( f ′(x,h(y),z)) = f ′(g(x),g(h(y)),g(z))

In this separated form, we have a σ′-term, f ′(x,y,z), in which we substitute the σ-

terms g(x), g(h(y)), g(z).
With this observation in place, we prove the theorem by directly establishing the

idempotency law. For example, consider the term u(x1,x2)B f ′(x1,g(x2),h(x1)). We

have:

u(u(x1
1,x

1
2),u(x

2
1,x

2
2)) = f ′( f ′(x1

1,g(x
1
2),h(x

1
2))),

g( f ′(x2
1,g(x

2
2),h(x

2
1))),

h( f ′(x1
1,g(x

1
2),h(x

1
1))))

tensor

equations
↓
= f ′( f ′(x1

1,g(x
1
2),h(x

1
2))),

f ′(g(x2
1),g(g(x

2
2)),g(h(x

2
1))),

f ′(h(x1
1),h(g(x

1
2)),h(h(x

1
1))))

idempotency

in L ′
↓
= f ′(x1

1,

g(g(x2
2)),

h(h(x1
1))) =
↑

idempotency in L

f ′(x1
1,g(x

2
2),h(x

1
2)) = u(x1

1,x
2
2)

The full proof generalises these two steps.

Lemma 12.12. Let σ be a unary signature, and σ′ be any other signature. For every

σ+σ′-term u(x1, . . . ,xk) there exist:

• a natural number m and a sequence i1, . . . , im from {1, . . . ,k};
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• a σ′-term t(x1, . . . ,xm); and

• σ-terms s1(x), . . ., sm(x)

such that Lσ⊗Lσ′ proves

u(x1, . . . ,xk) = t(s1(xi1), . . . ,sm(xim))

Proof
Given any k, we show by induction that u(x1, . . . ,xk) satisfies the lemma.

For u(x1, . . . ,xk) = xc, for some 1 6 c 6 k, choose mB 1, i1 B c, t(x)B x, and

s1(x)B x, and then

t(s1(xi1)) = xc = u(x1, . . . ,xk)

Consider any u(x1, . . . ,xk) = op(u1, . . . ,u`), such that, for every 1 6 d 6 `, the

σ+σ′-term ud(x1, . . . ,xk) satisfies the induction hypothesis. As op is in σ+σ′, we

may split into two cases.

Assume op is a σ-operation. Therefore, op is unary, hence ` = 1, and u = op(u′),

where u′(x1, . . . ,xk) satisfies the induction hypothesis, i.e., there exist:

• a natural number m and a sequence i1, . . . , im from {1, . . . ,k};

• a σ′-term t(x1, . . . ,xm); and

• σ-terms s′1(x), . . ., s′m(x)

such that Lσ⊗Lσ′ proves

u′〈k
c=1 xc〉= t ′

〈m
a=1 s′(xia)

〉
To establish the induction hypothesis, take m, 〈m

a=1 ia〉, and t〈m
a=1 xa〉 as themselves,

and for every 16 a6 m, take sa(x)B op(s′a(x)). We then have:

t〈m
a=1 s(xia)〉= t

〈m
a=1 op(s′(xia))

〉tensor equations

↓
= op(t

〈m
a=1 s′(xia)

〉
) = u〈k

c=1 xc〉

Thus, in this case, the induction hypothesis holds.

Assume op is a σ′ operation. Therefore, for every 16 d 6 `, there exist

• a natural number md and a sequence id1, . . . , i
d
md from {1, . . . ,k};

• a σ′-term td(x1, . . . ,xm); and
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• a σ-terms sd
1(x), . . ., sd

m(x)

such that Lσ⊗Lσ′ proves

ud〈k
c=1 xc〉= td

〈md

a′=1
sd

a′(xida′
)
〉

We establish the induction hypothesis.

• Take mB ∑
`
d=1 md . Denote by ιd :

{
1, . . . ,md}→ {1, . . . ,m} the canonical in-

jection. For every 16 d 6 `, and 16 a′ 6 md take iιda′ B ida′ .

• Take

t〈m
a=1 xa〉B op

〈 `

d=1
td〈md

a′=1 xιda′
〉〉

• Take, for every 16 d 6 ` and 16 a′ 6 md:

sιda′(x)B sd
a′(x)

We then have:

t〈m
a=1 sa(xia)〉= op

〈 `

d=1
td
〈md

a′=1
sιda′(xi

ιda′ )
〉〉

= op
〈 `

d=1
td
〈md

a′=1
sd

a′(xida′
)
〉〉

induction hypothesis

↓
= op

〈 `

d=1
ud〈k

c=1 xc〉
〉

= u〈k
c=1 xc〉

And the induction hypothesis holds. �

We return to the proof at hand:

Proof of Theorem 12.11
Let Ax = 〈σ,E〉, Ax′ = 〈σ′,E〉 be two presentations such that ThAx and ThAx′ validate

the Copy (resp. Weak Copy) optimisation. Assume further that σ is unary.

Consider any σ+σ′-term u〈k
c=1 xc〉. By Lemma 12.12, there exist:

• a natural number m and a sequence i1, . . . , im from {1, . . . ,k};

• a σ′-term t(x1, . . . ,xm); and

• σ-terms s1(x), . . ., sm(x)
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such that Lσ⊗Lσ′ proves, and hence Th(Ax⊗Ax′) also proves,

u〈k
c=1 xc〉= t〈m

a=1 sa(xia)〉

Calculate:

u
〈k

c=1
u〈k

c′=1 xc
c′〉
〉
= u
〈k

c=1
t
〈m

a′=1
sa′(xc

ia′
)
〉〉

= t
〈m

a=1
sa

(
t
〈m

a′=1
sa′(x

ia
ia′
)
〉)〉

tensor equations

↓
= t
〈m

a=1
t
〈m

a′=1
sa(sa′(x

ia
ia′
))
〉〉

idempotency in L ′

↓
= t
〈m

a=1
sa(sa(xia

ia))
〉

idempotency in L

↓
= t
〈m

a=1
sa(xia

ia)
〉

= u〈k
c=1 xc

c〉

Therefore Th(Ax⊗Ax′) proves the idempotency law. Note that by erasing the super-

scripts from variables in the proof we obtain a proof for the corresponding statement

for Weak Copy. �

The previous proof depended on the ability to push the operations from σ deeper

into the term, towards the variables. In the next theorem we depend on the ability to

pull them towards the root of the term.

Theorem 12.13. Let L , L ′ be two theories that validate the Copy (resp. Weak Copy)

optimisation. If L also validates the Discard optimisation, then L ⊗L ′ validates the

Copy (resp. Weak Copy) optimisation.

We first demonstrate how we separate each σ+σ′-term when Th〈σ,E〉 validates the

Discard optimisation, i.e., satisfies the absorption law

u(x, . . . ,x) = x

Consider a theory L consisting of two operations σB {g : 1,h : 3} in which the idem-

potency and absorption laws hold. Take L ′ to be any theory with a single binary oper-

ation L{ f ′:2} in which the idempotency law hold. In every σ+σ′-term we can bubble

the σ-operations towards the root of the term. For example:

f ′(g(x),h(y,z,y))

absorption in L

↓
= f ′(g(x),g(h(y,z,y)))
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tensor equation

↓
= g( f ′(x,h(y,z,y)))

absorption in L

↓
= g( f ′(h(x,x,x),h(y,z,y)))

tensor equation

↓
= g(h( f ′(x,y),h(x,z),h(x,y)))

Thus we may separate every σ+σ′-term into a σ-term substituted with σ′-terms.

With this observation we directly establish the idempotency law. For example, con-

tinuing the previous example, we verify that the term u(x1,x2)= g(h( f ′(x1,x2),x1,x2))

is idempotent.

u(u(x1
1,x

1
2),u(x

2
1,x

2
2)) = g(h( f ′(g(h( f ′(x1

1,x
1
2),x

1
1,x

1
2)),

g(h( f ′(x2
1,x

2
2),x

2
1,x

2
2))),

g(h( f ′(x1
1,x

1
2),x

1
1,x

1
2)),

g(h( f ′(x2
1,x

2
2),x

2
1,x

2
2))))

tensor

equations
↓
= g(h(g(h( f ′( f ′(x1

1,x
1
2), f ′(x2

1,x
2
2)),

f ′(x1
1,x

2
1),

f ′(x1
2,x

2
2)),

g(h( f ′(x1
1,x

1
2),x

1
1,x

1
2)),

g(h( f ′(x2
1,x

2
2),x

2
1,x

2
2))))

idempotency

in L
↓
= g(h( f ′( f ′(x1

1,x
1
2), f ′(x2

1,x
2
2)),

x1
1,

x2
2))

idempotency

in L ′
↓
= g(h( f ′(x1

1,x
2
2),

x1
1,

x2
2))

= u(x1
1,x

2
2)

Therefore u satisfies the idempotency law.

Lemma 12.14. Let L =Th〈σ,E〉 be a theory validating the Discard optimisation and L ′

be any other theory. Let op : ` be any operation in L ′. For every sequence of σ-terms

s1(x1, . . . ,xm1), . . ., s`(x1, . . . ,xm`) there exist:

• a natural number m and a doubly-indexed sequence
〈 `

d=1

〈m
a=1 jd

a
〉〉

; and
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• a σ-term s(x1, . . . ,xm),

such that

• for all 16 d 6 ` and 16 a6 m, jd
a is in

{
1, . . . ,md}; and

• L⊗L ′ proves

op
〈 `

d=1
sd
〈md

a′=1
xd

a′

〉〉
= s
〈m

a=1
op
〈 `

d=1
xd

jda

〉〉
Proof
Consider any L , L ′, op : `, and

〈 `

d=1
sd〈md

a′=1 xa′〉
〉

as in the Lemma’s statement. De-

note

uB op
〈 `

d=1
sd
〈md

a′=1
xd

a′

〉〉
For every 16 k 6 `, denote by Φk the following invariant: there exist

• a natural number mk and a doubly-indexed sequence
〈k

d=1

〈mk
a′′=1

kjd
a′′
〉〉

; and

• a σ-term sk(x1, . . . ,xmk),

such that

• for all 16 d 6 k and 16 a′′ 6 mk, kjd
a′′ is in

{
1, . . . ,md}; and

• L⊗L ′ proves

u = sk

〈mk

a′′=1

op

(〈 k

d=1
xd

kjda′′

〉
,

〈 `

d=k+1
sd
〈md

a′=1
xd

a′

〉〉)〉

Note that Φ0 holds, as, by taking m0 B 1 and t0(x) B x, the conclusion of Φ0

amounts to u = u. Also note that Φ` is the Lemma’s statement. Therefore, it suffices

to establish that, for every 16 k < `, Φk implies Φk+1.

Consider any 1 6 k < ` and assume Φk. Therefore, we have some number mk,

sequence
〈k

d=1

〈mk
a′′=1

kjd
a′′
〉〉

, and term sk(x1, . . . ,xmk) witnessing Φk.

Take mk+1B mk×mk+1. Denote by 〈−,−〉 the canonical bijection

〈−,−〉 : {1, . . . ,mk}×
{

1, . . . ,mk+1
}
∼= {1, . . . ,mk+1}

Take, for every 16 a′′ 6 mk, 16 a6 mk+1, and 16 d 6 k,

k+1jd
〈a′′,a〉B

kjd
a′′
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and, for d = k+1, take:

k+1jk+1
〈a′′,a〉B a

Note that in both cases indeed k+1jd
a′′ 6 mk. Finally, take

sk+1〈mk+1

a′=1 xa′〉B sk

〈mk

a′′=1
sk+1〈mk+1

a=1 x〈a′′,a〉
〉〉

Calculate, with care:

sk+1

〈mk+1

a=1

op

(〈k+1

d=1
xd

k+1jda

〉
,

〈 `

d=k+2
sd
〈md

a′=1
xd

a′

〉〉)〉
reindex

↓
= sk+1

〈mk+1

a=1

op

(〈k

d=1
xd

k+1jda

〉
,xd

k+1jda
,

〈 `

d=k+2
sd
〈md

a′=1
xd

a′

〉〉)〉

= sk

〈mk

a′′=1

sk+1

〈mk+1

a=1

op

〈k

d=1

xd
k+1jd

〈a′′,a〉

〉
,xd

k+1jd
〈a′′,a〉

,

〈 `

d=k+2
sd
〈md

a′=1
xd

a′

〉〉〉〉

= sk

〈mk

a′′=1

sk+1

〈mk+1

a=1

op

(〈 k

d=1
xd

kjda′′

〉
,xd

a,

〈 `

d=k+2
sd
〈md

a′=1
xd

a′

〉〉)〉〉
tensor

equations
↓
= sk

〈mk

a′′=1

op

〈k

d=1

sk+1
〈mk+1

a=1
xd

kjda′′

〉〉
,sk+1

〈mk+1

a=1
xd

a

〉
,

〈 `

d=k+2

sk+1
〈mk+1

a=1
sd
〈md

a′=1
xd

a′

〉〉〉〉
absorption

law
↓
= sk

〈mk

a′′=1

op

(〈 k

d=1
xd

kjda′′

〉
, sk+1

〈mk+1

a=1
xd

a

〉
,

〈 `

d=k+2
sd
〈md

a′=1
xd

a′

〉〉)〉
reindex

↓
= sk

〈mk

a′′=1

op

(〈 k

d=1
xd

kjda′′

〉
,

〈 `

d=k+1
sd
〈md

a′=1
xd

a′

〉〉)〉
Φk

↓
= u

Therefore Φk+1 holds. �

Based on this result, we separate arbitrary σ+σ′ terms:

Lemma 12.15. Let L = Th〈σ,E〉, L ′ = Th〈σ′,E ′〉 be two theories. If L validates the

Discard optimisation, then for every σ+σ′-term u(x1, . . . ,xc) there exist:
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• a natural number m, a sequence of natural numbers 〈m
a=1 na〉, and a doubly-

indexed sequence
〈m

a=1

〈na
b′=1 iab′

〉〉
over {1, . . . ,k};

• a σ-term s(x1, . . . ,xm); and

• a sequence of σ′-terms
〈m

a=1 ta〈na
b′=1 xb′〉

〉
such that L⊗L ′ proves:

u(x1, . . . ,xk) = s
〈m

a=1
ta
〈na

b′=1
xiab′

〉〉
Proof
Consider L and L ′ as in the Lemma’s statement, and any natural number k. We prove

the Lemma by induction over terms u(x1, . . . ,xk).

For u(x1, . . . ,xk) = xi, take mB 1, n1 B 1, i11 B i, s(x)B x, and t1(x)B x. We

indeed have:

s(t1(xi11
)) = xi = u(x1, . . . ,xk)

Consider any u = op
〈 `

d=1 ud〉 such that, for every 16 d 6 `, u satisfies the induc-

tion hypothesis, i.e., there exist:

• a natural number md , a sequence of natural numbers
〈md

a′=1 nd
a′
〉
, and a doubly-

indexed sequence
〈md

a′=1

〈nd
a′

b′′=1
ia
′

b′′

〉〉
over {1, . . . ,k};

• a σ-term sd(x1, . . . ,xmd); and

• a sequence of σ′-terms
〈md

a′=1
td
a′〈

nd
a′

b′′=1 xb′′〉
〉

such that L⊗L ′ proves:

ud(x1, . . . ,xk) = sd

〈md

a′=1

td
a′

〈nd
a′

b′′=1
xdia′b′′

〉〉

As op is in σ+σ′, we may split into two cases.

Assume op is in σ.

• Take mB ∑
`
d=1 md . For every 1 6 d 6 ` and 1 6 a′ 6 md , take nιda B nd

a , and

for every 16 b′′ 6 nd
a′ , take iιda

b′′ B
diab′′ .

• Take s(x1, . . . ,m)B op
〈 `

d=1
sd〈md

a′=1 xιda′
〉〉

.
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• For every 16 d 6 ` and 16 a′ 6 md , take tιda′(x1, . . . ,xnd
a′
)B td

a′〈
nd

a′
b′′=1 xb′′〉.

Calculate:

s
〈m

a=1
ta
〈na

b′=1
xiab′

〉〉
= op

〈 `

d=1

sd

〈md

a′=1

tιda′

〈n
ιda′

b′′=1

x
iιda′
b′′

〉〉〉

= op

〈 `

d=1

sd
〈md

a′=1
td
a′

〈n
ιda′

b′′=1
xdia′b′′

〉〉〉
induction hypothesis

↓
= op

〈 `

d=1
ud
〉
= u

Thus we established the induction hypothesis in this case.

Assume op is in σ′. We invoke Lemma 12.14, and deduce there exist:

• a natural number m and a doubly-indexed sequence
〈 `

d=1

〈m
a=1 jd

a
〉〉

; and

• a σ-term s(x1, . . . ,xm),

such that

• for all 16 d 6 ` and 16 a6 m, jd
a is in

{
1, . . . ,md}; and

• L⊗L ′ proves

op
〈 `

d=1
sd
〈md

a′=1
xd

a′

〉〉
= s
〈m

a=1
op
〈 `

d=1
xd

jda

〉〉

To establish the induction hypothesis,

• Take m as m from Lemma 12.14. For every 16 a6 m, take na B ∑
`
d=1 nd

jda
. For

every 16 b6 nd
jda

, take ia
ιdbB

di jda
b , and indeed ia

ιdb is in {1, . . . ,k}.

• Take s(x1, . . . ,xm) as the same s from Lemma 12.14.

• For every 16 a6 m, take:

ta〈na
b′=1 xb′〉B op

〈 `

d=1

td
jda

〈nd
jda

b=1 xιdb
〉〉
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Calculate:

s
〈m

a=1
ta
〈na

b′=1
xiab′

〉〉
= s

〈m

a=1

op

〈 `

d=1

td
jda

〈nd
jda

b=1
xiaιdb

〉〉〉

= s

〈m

a=1

op

〈 `

d=1

td
jda

〈nd
jda

b=1
x

di jda
b

〉〉〉

Lemma 12.14

↓
= op

〈 `

d=1

sd

〈md

a′=1

td
a′

〈nd
a′

b′′=1
xdia′b′′

〉〉〉
induction hypothesis

↓
= op

〈 `

d=1
ud
〉
= u

Thus the induction hypothesis holds in this case too. �

We are ready to prove our theorem:

Proof of Theorem 12.13

Consider theories L = Th〈σ,E〉, L ′ = Th〈σ′,E ′〉 that validate the Copy optimisation,

and assume L also validates the Discard optimisation. Consider any σ + σ′-term

u(x1, . . . ,xk).

By Lemma 12.15 there exist:

• a natural number m, a sequence of natural numbers 〈m
a=1 na〉, and a doubly-

indexed sequence
〈m

a=1

〈na
b′=1 iab′

〉〉
over {1, . . . ,k};

• a σ-term s(x1, . . . ,xm); and

• a sequence of σ′-terms
〈m

a=1 ta〈na
b′=1 xb′〉

〉
such that L⊗L ′ proves:

u(x1, . . . ,xk) = s
〈m

a=1
ta
〈na

b′=1
xiab′

〉〉
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Calculate:

u
〈 k

c=1
u〈k

c′=1 xc
c′〉
〉
= u
〈 k

c=1
s
〈m

a=1
ta′
〈na′

b′′=1
xc

ia′b′′

〉〉〉
= s

〈m

a=1

ta

〈na

b′=1
s
〈m

a′=1
ta′
〈na′

b′′=1
x

iab′
ia′b′′

〉〉〉〉
tensor equations

↓
= s

〈m

a=1

s
〈m

a′=1
ta

〈na

b′=1
ta

〈na′

b′′=1
x

iab′
ia′b′′

〉〉〉〉
idempotency

in L
↓
= s
〈m

a=1
ta

〈na

b′=1
ta
〈na

b′′=1
x

iab′
iab′′

〉〉〉
idempotency

in L ′
↓
= s
〈m

a=1
ta
〈na

b′=1
x

iab′
iab′

〉〉
= u〈k

c=1 xc
c〉

Thus L ⊗L ′ validates the Copy optimisation. Note that by erasing the superscripts

from variables in the proof we obtain a proof for the corresponding statement for Weak

Copy. �

Finally, we consider the Unique optimisation:

Theorem 12.16. Let L = Th〈σ,E〉 be a theory. Then L validates the Unique optimi-

sation if and only if every nullary operation in σ commutes with every operation in

σ.

The above condition, stated explicitly, requires that, for every c : 0 and op : n in σ,

L proves

op(c, . . . ,c) = c

In particular, for every two nullary operations c, c′, we have c = c′.

Proof
The ‘only if’ implication is immediate. For the converse, first note that if σ contains

no nullary operations, then it has no constant terms and the algebraic condition for the

Unique optimisation is vacuously true.

Assume σ contains at least one nullary operation c0 : 0. We prove by induction

that, for every nullary term u with no variables, L proves u = c0.

Assume u = op(u1, . . . ,u`) where, for all 16 d 6 `, L proves ud = c0. Therefore:

t = op(c0, . . . ,c0) = c0
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Therefore, L proves all nullary terms equal to each other, and L validates the Unique

optimisation. �

To summarise, we investigated the two common ways to combine effects, sum and

tensor. Six out of the nine global algebraic optimisation from Chapter 11 are operation-

wise valid and admit an extremely modular treatment: validity of an optimisation in

a combined theory follows from its validity in all component theories. The remaining

three optimisations also admit some modular treatment via ad-hoc combination results.

As we saw, the proofs of these ad-hoc results involve delicate algebraic manipulation

of the equational theories. It is therefore implausible that these arguments can be ap-

plied rigorously and without error to concrete programs without our general algebraic

scaffolding. Thus our abstract, algebraic, and general approach to effect-dependent

optimisations facilitates novel analysis.





Chapter 13

Use case

Let me demonstrate. . .

—No Doubt

We demonstrate how to use our rigorous tools to deal with the complexity of a

non-trivial language.

First, we validate the various optimisations from Chapter 11 and formulate proce-

dures for deciding when an optimisation holds for a given effect set. The modularity

results of Chapter 12 produce high-level proofs justifying our conditions.

We show our conditions necessary/complete: a compiler implementing our de-

cision procedures will not miss an opportunity to apply one of the effect-dependent

optimisations. We begin by establishing the necessity of the conditions via traditional

pencil-and-paper proofs, which involve some technical difficulties. We propose an al-

ternative treatment via a computational representation of our denotational models. We

construct such a model using the HASKELL programming language. We use this model

to demonstrate the necessity of our characterisations, under appropriate modelling as-

sumptions.

First, in Section 13.1, we present a language involving global state, exceptions,

and non-determinism, and its derived type-and-effect system. Next, in Section 13.2, we

present our validity decision procedures and their soundness. Then, in Section 13.3, we

establish the completeness of our procedures using pencil-and-paper proofs. Finally,

in Section 13.4, we establish their completeness using our HASKELL model.

287
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13.1 Language and semantics

Assume the memory has been partitioned into a finite set of disjoint regions [LG88]

Reg. The set Reg is partitioned into three subsets:

• read-only regions RegRO;

• write-only regions RegWO; and

• read-write regions RegRW.

We denote the following two sets:

• the read-able regions RegRB RegRO∪RegRW; and

• the write-able regions RegWB RegWO∪RegRW.

The MAIL signature in question ΣMAIL is given as follows. The basic types Bsc are

Char, Word, Str and Loc. The effect operations Π and their arities are:

• input : Char for terminal input;

• output : 1〈Char〉 for terminal output;

• raise : 0 for causing an exception;

• throw : 0〈Str〉 for causing an exception with an error message;

• rollback : 0 for causing a rollback exception;

• abort : 0〈Str〉 for causing a rollback exception with an error message;

• for all write-able regions ρ∈RegR, lookupρ : Word〈Loc〉, note that each region

consists of Loc-many locations;

• for all read-able regions ρ in RegW, updateρ : 1〈Loc×Word〉; and

• ∨ : 2 for non-deterministic choice.

The effect sets E are given by all (necessarily finite) effect operation subsets P (Π).

Finally, the built-in constants S we choose are:

• ’c’ : Char for each ASCII character c;

• n : Word for each 64-bit number n;
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• ”s” : Str for each character string s; and

• l : Loc for each 64-bit memory address `.

The resulting signature ΣMAIL is indeed simple (see Definition 10.15).

The CBPV signature ΣCBPV
\ is 〈〈Bsc,Π,S〉 , type,A−〉. The chosen CBPV model M

interprets the basic types as follows:

• ⟦Char⟧ is 28, the usual ASCII encoding;

• ⟦Word⟧ is 264, which we also denote by V;

• ⟦Str⟧ is ⟦Char⟧80 (see below regarding the length restriction) and

• ⟦Loc⟧ is 264, which we also denote by L.

The theory L is given as follows (cf. Hyland et al. [HPP06]):

L{raise,throw}+
(⊗

`∈L

ρ∈RegRO

LEnv(V)⊗
⊗
`∈L

ρ∈RegWO

LOW(V)⊗
⊗
`∈L

ρ∈RegRW

LGS(V)

⊗(L{rollback,abort}+L{input}+L{output}+LND)
)

where the lookup operations in the signature in the 〈ρ, `〉-th component of the folded

tensor
⊗

ρ∈RegRO
LEnv(V) are tagged with ρ and `, i.e. lookupρ

` , and similarly for the

other folded tensors. Finally, the constants are given the obvious interpretations.

We restricted the length of strings to 80 characters to ensure their parameter type

has a finite denotation. In this way we may use finitary Lawvere theories and presen-

tations interchangeably (cf. page 196).

Note our choice to combine the theory for non-deterministic choice with write-

only memory using the tensor. It is a natural design choice based on the current litera-

ture [HPP06]). In Section 13.3, however, our analysis of the conservative restrictions

of L shows that the tensor may be inadequate for combining these two effects, by ex-

hibiting an equation involving write-only memory and non-deterministic choice that is

not included in the tensor of the two theories.

By Corollary 10.17, we have a conservative restriction model M ]. By Theo-

rem 11.4, validating optimisations in this model yields valid optimisations for CBPV.
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13.2 Optimisation validation

We turn to validating optimisations, and begin with the operation-wise valid ones.

For each optimisation o in {Discard, Pure Hoist, Hoist}, we define a set ζo ⊆Π of

the operations that satisfy its algebraic condition:

ζ
DiscardB {∨, lookupρ |ρ ∈ RegR} ζ

Pure HoistB /0

ζ
HoistB {raise, throw,abort, rollback}

Proposition 13.1. For each optimisation o in {Discard, Pure Hoist, Hoist}, if ε ⊆ ζo

then o is valid in the theory Lε of M ].

Proof
Note that x∨x = x in LND and LND is a subtheory of L , not necessarily conservative.

Therefore x∨ x = x holds in L . Similarly, for every ρ in RegR, lookupρ satisfies the

absorption law in LEnv or LGS and hence L . Thus all operations in ζDiscard satisfy the

absorption law in L . If ε⊆ ζDiscard, then every op in ε satisfies the absorption law in L ,

and hence in the conservative restriction Lε. By Theorem 12.5 Lε satisfies the Discard

optimisation.

A similar argument using Theorem 12.7 shows the corresponding statement for

Hoist. Theorem 12.6 shows the statement for Pure Hoist holds. �

Analogously, for each o in {Swap, Weak Swap (WSwap), isolated swap (ISwap)}
and for each op ∈Π define the set ζo(op) of effect operations that o-commute with op.

For the non-symmetric Weak Swap, this condition is that for op : A〈P〉 and op′ : A〈P〉,
op′ ∈ ζWSwap(op) if and only if for all p ∈ ⟦P⟧ and p′ ∈ ⟦P′⟧, L proves that:

opp(op′p′(x1, . . . ,x1),op′p′(xn, . . . ,xn))

=

op′p′(opp(x1, . . . ,xn),opp(x1, . . . ,xn))

where n is the cardinality of ⟦A⟧.
Note that because Swap implies Weak Swap, which implies Isolated Swap, we have

ζSwap(op)⊆ ζWSwap(op)⊆ ζISwap(op). These sets are given in Figure 13.1.

From Theorem 12.8 we deduce the validity of swapping:

Proposition 13.2. Let o be one of the three Swap optimisations. Let ε1,ε2 ⊆ ε be three

effect sets. If ε2 ⊆
⋂

op∈ε1
ζo(op) then the optimisation o is valid for Lε1 → Lε← Lε2 .
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op ζSwap ζWSwap \ζSwap ζISwap \ζWSwap Π \ζISwap

input lookupρ, updateρ ∨ /0

input, output,

raise, throw,

rollback, abort

output lookupρ, updateρ ∨ /0

input, output,

raise, throw,

rollback, abort

raise lookupρ, raise, ∨ /0 /0

input, output,

throw, rollback,

abort, updateρ

throw lookupρ, ∨ /0 /0

input, output,

raise, throw,

rollback, abort,

updateρ

rollback
lookupρ, updateρ,

rollback, ∨
/0 /0

input, output,

raise, throw,

abort

abort
lookupρ, updateρ,

∨
/0 /0

input, output,

raise, throw,

rollback, abort

lookupρ0

input, output, raise,

throw, abort,

rollback, abort,

lookupρ, updateρ6=ρ0 ,

∨

/0 updateρ0 /0

updateρ0

input, output,

rollback, abort,

lookupρ6=ρ0 ,

updateρ6=ρ0 , ∨

lookupρ0 /0
raise, throw,

updateρ0

∨
raise, throw,

rollback, abort,

lookupρ, updateρ, ∨
/0 input,output /0

Figure 13.1: swap sets



292 Chapter 13. Use case

Proof

We omit the 48 calculations that show the operations in the middle three columns of

the table do indeed satisfy the corresponding swap law in L , and hence in Lε. Most

of these calculations follow from the tensor equations. All of these calculations are

straightforward. Theorem 12.8 completes the proof. �

Note that despite our brute force examination of about 160 pairs of effect oper-

ations, we are still exponentially better off than trying to exhaust the space of 216

possible pairs ε1, ε2. In Section 13.4 we will generate these optimisation tables me-

chanically.

We now turn to non-operation-wise valid optimisations, and begin with Copy.

Proposition 13.3. Let ε ⊆ Π be any effect set. If input,update,∨ /∈ ε and, for all ρ in

RegRW, {lookupρ,updateρ}* ε, then Lε validates the Copy optimisation.

Proof

The premise of the proposition guarantees that Lε has a sub-signature of the signature

for

L ′B L{raise,throw}+(L{rollback,abort}⊗
⊗

LEnv⊗
⊗

LOW)

Moreover, if L ′ε is the conservative restriction of L ′ to ε, then Lε satisfies all L ′ε-

equations, and possibly more.

Each combined theory validates the Copy optimisation. The first two theories

contain only constants, hence Theorem 12.10 is applicable. As LOW is unary, The-

orem 12.11 is applicable for its combination. As LEnv also validates Discard, Theo-

rem 12.13 is applicable for its combination. Thus, L ′ satisfies the idempotency law,

hence L ′ε also satisfies it. Consequently, Lε satisfies this law too, and therefore vali-

dates Copy. �

We treat the Weak Copy optimisation similarly:

Proposition 13.4. Let ε ⊆ Π be any effect set. If input,output /∈ ε and for all ρ in

RegRW, {lookupρ,updateρ}* ε, then Lε validates the Weak Copy optimisation.

Proof

The difference from the previous proof is that we also need to consider the theory for

non-determinism LND, which satisfies both Weak Copy and Discard. Therefore, we

may apply Theorem 12.13. The rest of the proof is identical. �
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Finally, we treat the Unique optimisation:

Proposition 13.5. Let ε ⊆ Π be any effect set. If ε∩ {raise, rollback} = {op} and

ε⊆ ζSwap(op), or if the intersection is empty, then Lε validates the Unique optimisa-

tion.

Proof

If the intersection is empty, then vacuously all nullary operations commute with every

operation. If ε∩{raise, rollback}= {op}, then op is the only nullary constant in ε. The

condition ε ⊆ ζSwap(op) guarantees all ε-operations commute with op. Either way,

Theorem 12.16 ensures Lε validates the Unique optimisation. �

13.3 Completeness

In the previous section we gave sufficient conditions in terms of effect sets for the va-

lidity of the global algebraic optimisations. We now consider whether these conditions

are necessary. We will do so by showing that whenever the conditions in the previous

section do not hold, we can construct a counter-example to the validity of the optimisa-

tion. The counter-example is an algebraic term that does not satisfy the corresponding

algebraic condition.

This process is conceptually straightforward for the operation-wise valid optimisa-

tions. All we need is to show that every op /∈ ζo, when substituted in the corresponding

algebraic characterisation, violates it. For example, raise /∈ ζDiscard, it suffices to show

that the Lε 0 raise = x for every ε containing raise. For the other optimisations, we

need to exhibit ad-hoc ε-terms that violate the algebraic characterisation in Lε. For

example, if ε contains both lookupρ0 and updateρ0 for some ρ0, it suffices to show that

for

t B lookupρ0(updateρ0
∼0(x), . . . ,updateρ

∼(264−1)(x))

where ∼ is the bit-wise NOT function,

Lε 0 t(t(x)) = t(x)

(cf. Counter-example 12-8).

Unfortunately, as the explicit description of Lε is not readily available, establishing

non-provability in Lε is difficult. We outline two methods to get around this obstacle.

The first method, which we pursue in the next section, relies on the defining property



294 Chapter 13. Use case

of Lε as the conservative restriction of L :

Lε ` t = s ⇐⇒ L ` t = s

It suffices, therefore, to analyse provability in L . Recall that the provability relation is

captured completely via validity in the free models given by the monad T correspond-

ing to L . Therefore, if we know the precise description of T , we can calculate the

interpretations ⟦t⟧, ⟦s⟧. By showing they have different interpretations, we deduce the

invalidity of the optimisation in Lε. Recall that the theory L is given by:

L{raise,throw}+
(⊗

`∈L

ρ∈RegRO

LEnv(V)⊗
⊗
`∈L

ρ∈RegWO

LOW(V)⊗
⊗
`∈L

ρ∈RegRW

LGS(V)

⊗(L{rollback,abort}+L{input}+L{output}+LND)
)

Using Examples 12-2–12-6, we deduce that T is given by(
TND+IO(Char)

(
Str+1+

(
(1+V)RegWO×L×VRegRW×L× (Str+1+−)

)))VRegR×L

Our example language is still simple enough to be manageable with paper-and-pencil

calculations with this monad. However, it is clear that with more complicated lan-

guages such calculations will become much more error-prone and complicated. In the

next section we will demonstrate how to deal with this complexity using mechanised

assistance.

The second method for establishing non-provability in Lε is to give an explicit

description of the conservative restriction Lε by describing its corresponding monad.

We obtain such descriptions by taking the explicit descriptions of the conservative

restrictions of the component theories, such as LGS(V), and combining them to obtain

explicit descriptions of their sum and tensor. We pursue this method in the remainder

of this section.

Lemma 13.6. For every pair of injective translations L1
T1 L ′1, L2

T2 L ′2, their

sum is also injective:

L1 +L2
T1+T2 L ′1 +L ′2

Proof
We use the more general results of Adámek et al. [AMBL12], who proved this lemma

when L ′1 +L ′2 is consistent. We prove the lemma for the additional simple case when

L ′1 +L ′2 is inconsistent.
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Assume L ′1 +L ′2 is inconsistent. Therefore, for some i ∈ {1,2}, L ′i is inconsis-

tent [AMBL12, Corollary VI.6]. As Ti is injective:

L ′i ` Ti(x) = x = y = Ti(y) =⇒ L i ` x = y

and therefore L i is inconsistent, hence L1+L2 is inconsistent too. But any translation

from an inconsistent theory is injective, and we are done. �

We can now deduce an explicit description of the conservative restriction of the

sum of two theories from the restrictions of its components.

Theorem 13.7. Let L1 = Th〈σ1,E1〉, L2 = Th〈σ2,E2〉 be two theories, and let L be their

sum L1+L2. Let ε1⊆σ1, ε2⊆σ2 be two effect-sets. Then the conservative restrictions

satisfy:

Lε1+ε2
∼= L1

ε1
+L2

ε2

Proof
Let L i

εi

Ti L i be the translation mapping each εi-term t to itself. By the definition

of the conservative restriction, this translation is injective. Therefore, by Lemma 13.6,

L1
ε1
+L2

ε2

T1+T2 L1+L2 =L is injective. This translation maps every ε1+ε2-term

to itself, and therefore, for every pair of ε1+ε2-terms t, s satisfying L ` t = s, we have:

L ` (T1 +T2)(t) = t = s = (T1 +T2)(s) =⇒ L1
ε1
+L2

ε2
` t = s

hence L1
ε1
+L2

ε2
is the conservative restriction of Lε1+ε2 . �

The situation for the tensor of two theories is more delicate. In particular, the

analogous result for tensor does not hold. More precisely, given two conservative

restrictions L1� L ′1 and L2� L ′2, their tensor L1⊗L2→ L ′1⊗L ′2 may not form a

conservative restriction.

Example 13-1. Let LMon be the theory of monoids, given by two operations, · : 2 and

1 : 0, subject to the three equations:

1 ·x = x = x ·1 x · (y · z) = (x ·y) · z

The Eckmann-Hilton argument [EH62] shows that LMon⊗LMon is the theory of com-

mutative monoids LComMon, i.e., with the additional equation

x ·y = y ·x

We recount this argument.
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First, construct a translation T : LMon⊗LMon → LComMon, identifying the two

monoid operations and the two monoid units. The four tensor equations:

(x ·2 y) ·1 (z ·2 w) = (x ·1 z) ·2 (y ·1 w) 11 = 12 11 ·2 11 = 11 12 ·1 12 = 12

translates into

(x ·y) · (z ·w) = (x · z) · (y ·w) 1 = 1 1 ·1 = 1 1 ·1 = 1

All these equations hold in the theory of commutative monoids.

Conversely, LMon⊗LMon proves 11 = 12. Substituting these mutual units into both

y and z in the first tensor equation proves:

x ·1 w = (x ·2 12) ·1 (12 ·2 w) = (x ·1 11) ·2 (11 ·1 w) = x ·2 w

Thus, the two monoid products coincide. Substituting the units into x and w in the

tensor equation proves:

y ·1 z = (12 ·2 y) ·1 (z ·2 12) = (11 ·1 z) ·2 (y ·1 11) = z ·2 y

Therefore, the mutual product is commutative. Thus, we may define a translation

T2 : LComMon→LMon⊗LMon by T2(x ·y)B x ·1 y, T2(1)B 11. The monoid equations

hold in LMon, and, as we have just shown, the commutativity equation also holds.

Clearly T1 ◦T2(t) = t. In the other direction, T2 ◦T1(t) = t, by relabeling all

monoid multiplication and units in t with 1. Therefore LMon⊗LMon ∼= LComMon.

Take L1, L2, ε1 and ε2 to be LMon, LMon, σMon and /0, respectively. Then L1
ε1

is

LMon; as the theory of monoids is consistent, L2
ε2

is Presop
λ

Set; and L B L1⊗L2 is

LComMon. Consequently,

L1
ε1
⊗L2

ε2
= LMon⊗Presop

λ
Set∼= LMon � LComMon = Lε1+ε2

Therefore, the analogous conservativity result for tensor does not hold.

The merit of the previous example lies in the familiarity of the Eckmann-Hilton

argument. However, it has no evident computational interpretation, as the tensor is not

usually used for combining the theory for monoids, equivalently, the list monad, with

other theories, let alone for combining it with itself. We therefore present an example

with a computational interpretation.
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Example 13-2. Let V, |V| > 2 be a finite set denoting storable values. We show that

LOW(V)⊗LND→ LGS(V)⊗LND is not conservative, even though LOW(V)� LGS(V)

and LND� LND are conservative.

Consider the following σOW(V)+σND-equation:

x∨
∨
v∈V

updatevx =
∨
v∈V

updatevx (13.1)

Our notation is well-defined as LND proves ∨ to be associative and commutative, and

as V is non-empty and finite. This equation holds in LGS(V)⊗LND:

x∨
∨
v∈V

updatevx

LGS(V)

↓
= lookup

〈
v′∈V

updatev′

(
x∨

∨
v∈V

updatevx

)〉
⊗-equations

↓
= lookup

〈
v′∈V

(updatev′x)∨
∨
v∈V

updatev′(updatevx)

〉
LGS(V)

↓
= lookup

〈
v′∈V

(updatev′x)∨
∨
v∈V

updatevx

〉
∨ commutativity and

absorption
↓
= lookup

〈
v′∈V

∨
v∈V

updatevx

〉
lookup absorption

↓
=

∨
v∈V

updatevx

Equation (13.1) does not hold in LOW(V)⊗LND. Indeed, consider the free model

over 1, P ℵ0
+ ((1+V)×1) ∼= P ℵ0

+ (1+V). The interpretations of both sides of Equa-

tion (13.1) are

LPPPPN
x∨

∨
v∈V

updatevx
MQQQQO
= {ι1?}∪ ι2[V] 6= ι2[V] =

LPPPPN
∨
v∈V

updatevx
MQQQQO

Thus LOW(V)⊗LND→ LGS(V)⊗LND is not conservative.

Equation (13.1) has a natural computational interpretation: the action of a compu-

tation that writes all possible states and also does not change the state is subsumed by

a computation that simply writes out all possible states. If the memory cell we model

has additional states that are not captured by V, such as reserved bits only accessible
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via the built-in constants, then we should carefully consider the validity of this equa-

tion, as a pure computation may leave these additional states unchanged, but the other

values may affect them.

We do not have a general condition on an arbitrary pair of theories guaranteeing

Lε1+ε2
∼= L1

ε1
⊗L2

ε2

However, in our example language we only tensor with the three theories for interact-

ing with a global memory cell. Therefore, as an intermediate remedy, we show that

they possess the required property, apart from the restriction LOW(V)� LGS(V).

Lemma 13.8. Let V, |V| > 2 be a finite set. Let L ′1 be one of LGS(V), LEnv(V), and

LOW(V).

• For every injective translation T2 : L2 � L ′2, the tensored translation is also

injective, i.e.,

L ′1⊗T2 : L ′1⊗L2� L ′1⊗L ′2

• LetL1 be a conservative restriction of L ′1 to a sub-signature

ε⊆ {lookup : V,update : 1〈V〉} , ε 6= {update}

Let T1 : L1� L ′1 be the induced injectivet translation given my T1(t) = t. For

every theory L ′2, the tensored translation is also injective, i.e.,

T1⊗L ′ : L1⊗L ′2� L ′1⊗L ′2

Proof
Let T2 : L2�L ′2 be any injective translation, and let m2 : T2→ T ′2 be its corresponding

monad morphism.

Recall from Examples 12-4–12-6 the three monad morphisms corresponding to

tensoring with L ′1:

TGS(V)⊗m2 : (T2(V×−))V mV
2

(T ′2(V×−))
V

TEnv(V)⊗m2 : (T2( −))V mV
2

(T ′2( −))V

TOW(V)⊗m2 : T2((1+V)×−)
m2 T ′2((1+V)×−)

The first two morphisms are injective as exponentials of injective functions are also

injective.
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Next, consider any theory L ′2 whose corresponding monad is T ′2. If L ′2 is incon-

sistent, the statement follows trivially. Therefore, assume L ′2 consistent, and therefore

η is injective. Below, we will make use of the fact that all monads over Set preserve

injections [AMBL12, Lemma IV.1].

Because LEnv(V) and LOW(V) are conservative restrictions of LGS(V), and because

the tensor ⊗ is bifunctorial, it suffices to prove the statement for the following three

monad morphisms:

TGS(V)

id

TEnv(V) TOW(V)

ηEnv(V) ηOW(V)

mEnv(V)

The tensors with the bottom two morphisms are given by the injective tensor maps
⊗
ι2:

ηEnv(V)⊗L ′2 : T ′2
ηV

(T ′2−)V

ηOW(V)⊗L ′2 : T ′2
η

T ′2((1+V)×−)

Recall from Example 12-7 that the tensor with the top morphism is:

mEnv(V)⊗T ′2 : (T ′2X)V→ (T ′2(V×X))V

κ 7→ λv.(T ′2(λx.〈v,x〉))(κ(v))

Note that for every v ∈ V, λx.〈v,x〉 is injective, and therefore T ′2(λx.〈v,x〉) is injective.

As |V|> 1, we deduce that mEnv(V)⊗T ′2 is injective. �

Note how the argument we applied to mEnv(V) fails for mOW(V). Indeed, by Exam-

ple 12-7 the tensor with mOW(V) is given by:

mOW(V)⊗T ′2 : T ′2((1+V)×X)→ (T ′2(V×X))V

k 7→ λv.

(
T ′2

(
〈ι1?,x〉 7→ 〈v,x〉
〈ι2v0,x〉 7→ 〈v0,x〉

)
(k)

)

As the map
〈ι1?,x〉 7→ 〈v,x〉
〈ι2v0,x〉 7→ 〈v0,x〉

is not injective, we may not proceed as with mEnv(V). Indeed, as Example 13-2 shows,

the conservativity result fails for this morphism.
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Using Theorem 13.7 and Lemma 13.8, we establish the necessity of conditions for

the validity of the optimisations. We first deal with the operation-wise valid optimisa-

tions:

Lemma 13.9. For every op in Π, the conservative restriction L{op} of L is given by

the conservative restriction of the component involving op. Explicitly,

• L{raise} ∼= L{rollback} ∼= Th〈{raise:0}, /0〉;

• L{throw} ∼= L{abort} ∼= Th〈{aborts:0|s∈Str}, /0〉;

• L{lookupρ} ∼=
⊗

`∈L LEnv(V);

• L{updateρ} ∼=
⊗

`∈L LOW(V); and

• L{∨} ∼= LND.

Similarly, for every pair op, op′ of operations in Π, op,op′ 6= update, the conservative

restriction L{op,op′} of L is given by combining the conservative restrictions of the

components involving op and op′.

Proof

Recall L’s definition:

L{raise,throw}+
(⊗

`∈L

ρ∈RegRO

LEnv(V)⊗
⊗
`∈L

ρ∈RegWO

LOW(V)⊗
⊗
`∈L

ρ∈RegRW

LGS(V)

⊗(L{rollback,abort}+L{input}+L{output}+LND)
)

Let op be any operation in Π, and let L0 be the component in the combination that

involves op. We combine the trivial restrictions Presop
ℵ0
� L ′ for each component

L ′ not involving op. For these trivial restrictions, we may use Theorem 13.7 and

Lemma 13.8 to deduce that L0� L is conservative.

Similarly, let op, op′ be a pair of different operations in Π, op,op′ 6= update. As

update /∈ {op,op′}, we can apply Theorem 13.7 and Lemma 13.8 and deduce that

L{op,op′}� L is conservative. �
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Proposition 13.10. The validity conditions for the operation-wise valid optimisations

(Proposition 13.1 and in Proposition 13.2) are necessary.

Proof

Consider any o ∈ {Discard,Pure Hoist,Hoist} and ε* ζo. Then there is some op ∈ ε,

satisfying op /∈ ζo. By Lemma 13.9, we know the monadic description of T{op}, and

a case-by-case calculation shows that if op /∈ ζo, then T{op} violates the corresponding

law.

Similarly, let o be one of the Swap optimisations and consider any triple ε1,ε2 ⊆ ε

such that ε2 * ∩op∈ε1ζo(op). Therefore, there exist op2 ∈ ε2 and op1 ∈ ε1, such that

op2 /∈ ζo(op1). We need to show that L{op1,op2} invalidates the corresponding Swap

condition for op1, op2. For op1,op2 6= update, we may use Lemma 13.9 to obtain the

monadic description of T{op1,op2}, and a (lengthy!) case-by-case calculation shows that

if op2 /∈ ζo(op1), the Swap condition does not hold.

It remains to check the cases in which one of the optimisations is updateρ0 , and the

other is one of updateρ0 , lookupρ0 , raise, or throw. Note that in all these cases we may

apply Theorem 13.7 and Lemma 13.8 to obtain the explicit description of L{op1,op2},

and case-by-case calculations complete the proof. �

We proceed to deal with the non-operation-wise valid optimisations, beginning

with the two Copy optimisations.

Proposition 13.11. The conditions for the two Copy optimisations (Proposition 13.3

and Proposition 13.4) are necessary.

Proof

We begin with the Copy optimisation. We need to show that if at least one of input,

output, or ∨ is in ε, or if {lookupρ,updateρ} ⊆ ε for some ρ, then Copy does not hold.

Note that in each of the first three cases, we may use Lemma 13.9 to calculate

L{input}, L{output}, or L{∨}, accordingly. As these three theories violate the algebraic

characterisation (i.e., idempotency), so does every conservative extension of them.

Thus, in this case, Lε violates the Copy optimisation.

Assume, therefore, that for some ρ, {lookupρ,updateρ} ⊆ ε. Therefore, we may

use Theorem 13.7 and Lemma 13.8 to deduce the injectivity of
⊗

`∈L LGS(V)� L .

Therefore, L{lookupρ,updateρ} =
⊗

`∈L LGS(V). This theory violates the Copy optimisa-

tion.

We treat Weak Copy analogously, excluding the case ∨ ∈ ε. �
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Proposition 13.12. The condition for the Unique optimisations (Proposition 13.5) is

necessary.

Proof
Consider any ε that does not satisfy the condition in Proposition 13.5, i.e., either

{raise, rollback} ⊆ ε or ε∩{raise, rollback}= {op} but ε* ζSwap(op).

Assume {raise, rollback} ⊆ ε. We apply Lemma 13.9 and deduce that

L{raise,rollback} = L{raise}+L{rollback} = Th〈{raise:0,rollback:0}, /0〉

Thus L{raise,rollback} has two distinct constants, and therefore Lε too. Therefore, in this

case, Unique optimisation is not valid.

Assume ε∩{raise, rollback}= {op} but ε* ζSwap(op). By Proposition 13.10, the

Swap optimisation does not hold for ε,{op} ⊆ ε, and therefore there exist some op′ ∈ ε

such that Lε does not prove the equation:

op′(op, . . . ,op) = op

Thus, the two sides of this equation constitute two different constant terms, and Lε

violates the Unique optimisation. �

13.4 Mechanised analysis

As we saw in the previous section, calculating a precise description of the conservative

restriction Lε is subtle. We therefore investigate the use of mechanised assistance in

analysing the combined theory L directly. We construct a HASKELL data structure

representing the free models and use HASKELL to analyse it.

Our approach suffers from several limitations. First, HASKELL does not have a

complete formal semantics, and the implementation used is not certified to produce

correct code against any formalisation of the language. Moreover, we make no attempt

to neither specify nor certify our code. Therefore, there is a gap between our analysis

and a formal proof of the various completeness propositions.

In addition, we make some simplifying assumptions on our model. For example,

instead of studying arbitrarily many regions ρ ∈Reg, arbitrarily many locations ` ∈ L,

and an arbitrary set of storable values V, we use two different regions, two different

locations, and the concrete V = Bool to represent our storable values. We leave the

rigorous justification of such simplifying assumptions to further work. We state these

simplifying assuptions explicitly as we encounter them.
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HASKELL [HHPJW07] has an expressive type system, importantly, it has type

classes [WB89], which help us manage the complexity of constructing the model and

its associated operations. In addition, HASKELL has library support and syntactic con-

structs for manipulating data structures representing monads which also ease our model

construction.

We present the code in its entirety in literate programming style [Knu84]. This

code was developed with the Glasgow Haskell Compiler (v. 7.4.2) with the following

extensions enabled:

• TypeSynonymInstances;

• FlexibleInstances;

• FlexibleContexts;

• OverlappingInstances ;

• RankNTypes; and

• ImpredicativeTypes

We use following standard libraries:

import Data.Char

import Data.Maybe

import Data.Monoid

import Data.List

import Text.Printf

We also use the monad transformer library [Jon95] (mtl v. 2.1.1) and the library

for free monads (free v. 3.4.1):

import Control.Monad.Error

import Control.Monad.Identity

import Control.Monad.State

import Control.Monad.Trans.Free

import Control.Monad.Trans.Reader

import Control.Monad.Trans.Writer

Represting TL

We begin by defining a datatype represetntation of the monad corresponding to the

theory
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L{raise,throw}+
(⊗

`∈L

ρ∈RegRO

LEnv(V)⊗
⊗
`∈L

ρ∈RegWO

LOW(V)⊗
⊗
`∈L

ρ∈RegRW

LGS(V)

⊗(L{rollback,abort}+L{input}+L{output}+LND)
)

Our model needs to be a monad in which we can test equality.

class (Monad m)⇒ EqMonad m where
eqLift :: Eq a⇒ m a→ m a→ Bool

instance (Eq a,EqMonad m)⇒ Eq (m a) where
(≡) = eqLift

We will also need to iterate over certain types, crucially over all arity types.

class WithRange a where
range :: [a ]

instance WithRange () where
range = [()]

instance WithRange Bool where
range = [False,True]

instance (WithRange a,WithRange b)⇒WithRange (a,b) where
range = [(x,y) | x← range,y← range]

We also model algebraic operations and generic effects.

type AlgOp m a p = Monad m⇒∀c.(a→ m c)→ (p→ m c)

type GenOp m a p = Monad m⇒ p→ m a

Note that HASKELL’s type system is not strong enough to ensure all instances of

AlgOp m a p are in fact algebraic operations of type a〈p〉 for m.

We will use the bijection between algebraic operations and generic effects (Theo-

rem 2.4):

op :: Monad m⇒ GenOp m a p→ AlgOp m a p

op gen k p = gen p>>= k

gen :: Monad m⇒ AlgOp m a p→ GenOp m a p

gen op = op (return)
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We will also use monad morphisms to map the various operations between monads

(Theorem 2.8).

type MonadMorphism m m’ = (Monad m,Monad m’)⇒∀a.(m a→ m’ a)

mapGen :: (Monad m,Monad m’)⇒
MonadMorphism m m’→ GenOp m a p→ GenOp m’ a p

mapGen mor gen = mor◦gen

mapOp :: (Monad m,Monad m’)⇒
MonadMorphism m m’→ AlgOp m a p→ AlgOp m’ a p

mapOp mor mop = op (mapGen mor (gen mop))

We now implement the various monads and monad morphisms involved in our

construction.

The identity monad

Even when the monad is completely defined by the standard libraries, we need to show

it allows equality testing.

instance EqMonad Identity where
eqLift a b = (runIdentity a)≡ (runIdentity b)

Exceptions

We use the exception monad transformer ErrorT to sum the theories for exceptions

with other theories (Example 12-3).

instance (EqMonad m,Eq e,Error e)⇒ EqMonad (ErrorT e m) where
eqLift a b = (runErrorT a)≡ (runErrorT b)

We will use the following two monads (and their transformers):

instance Error () where
noMsg = ()

instance Error Str where
noMsg = "Default exception." -- Required by the Error type class.

type T{raise} = Either ()

type T{throw} = Either Str
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To implement the algebraic operations for these monads, we need an empty type.

data Empty

instance Eq Empty where
(≡) a b = True

instance WithRange Empty where
range = [ ]

We will also need to eliminate the empty type. Unfortunately, this version of

HASKELL does not support empty pattern matches, therefore, we use HASKELL’s

built-in exceptions.

whatever :: Empty→ a

whatever = (λz→
error $"GHC bug #2431"++

"http://hackage.haskell.org/trac/ghc/ticket/2431")

We make use of the injections T{raise} → T{raise}+ T ← T , and similarly for throw.

The injection ι2 is the lift function given by the ErrorT monad transformer. For ι1, we

define:

ιraise
1 :: Monad m⇒MonadMorphism T{raise} (ErrorT () m)

ιraise
1 = ErrorT◦ return

ιthrow
1 :: Monad m⇒MonadMorphism T{throw} (ErrorT String m)

ιthrow
1 = ErrorT◦ return

Finally, we define the operations:

errorRaise :: GenOp T{raise} Empty ()

errorRaise () = Left ()

errorThrow :: GenOp T{throw} Empty Str

errorThrow s = Left s

errorRaiseOp = op errorRaise

errorThrowOp = op errorThrow

Global state

It is crucial that we model memory locations using a small number of values. By

having a store type S with a small range of values, we avoid a state space explosion in
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our model. This is a simplifying assumption on our model that further work needs to

justify.

type V = Bool

type L = Bool

type S = L→ V

instance Eq S where
(≡) s s′ = (s True≡ s′ True) ∧ (s False≡ s′ False)

We use an instance of the global state monad transformer StateT to tensor the theory

of global state with other theories (Example 12-4).

type TGS⊗= StateT S

instance (EqMonad m)⇒ EqMonad (TGS⊗ m) where
eqLift a b = helper (runStateT a) (runStateT b)

where
helper x y = all (λv0→

all (λv1→
let s = (λ`→ if ` then v1 else v0)

in (x s)≡ (y s)) range) range

type TGS = TGS⊗ Identity

We implement the monad morphisms
⊗
ι1 : TGS(V)→ TGS(V)⊗T .

⊗
ι

GS(V)
1 :: Monad m⇒MonadMorphism TGS (TGS⊗ m)

⊗
ι

GS(V)
1 k = StateT (λs→ let r = runStateT k s

in return◦ runIdentity $ r)

Finally, the operations:

ref :: GenOp TGS V L

ref `= StateT (λs→ return (s (`),s))

set :: GenOp TGS () (L,V)

set (`0,v0) = StateT (λs→ return ((),λ`→ if (`≡ `0)

then v0

else s (`)))

lookupOp = op ref

updateOp = op set
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Read-only memory

Implementing read-only memory is nearly identical to implementing global state.

type TEnv⊗= ReaderT S

instance EqMonad m⇒ EqMonad (TEnv⊗ m) where
eqLift a b = helper (runReaderT a) (runReaderT b)

where helper x y = all (λv0→
all (λv1→

let s = (λ`→ if ` then v1 else v0)

in (x s)≡ (y s)) range) range

type TEnv = TEnv⊗ Identity

⊗
ι

Env
1 :: Monad m⇒MonadMorphism TEnv (TEnv⊗ m)
⊗
ι

Env
1 k = ReaderT (λs→ let r = runReaderT k s

in return◦ runIdentity $ r)

refRO :: GenOp TEnv V L

refRO `= ReaderT (λs→ return (s (`)))

lookupROOp = op refRO

Write-only memory

We use HASKELL’s monoid library. First, we represent the overwrite monoid:

type MOW = L→Maybe V

instance Eq MOW where
(≡) a b = all (λ`→ (a `)≡ (b `)) range

instance Monoid (MOW) where
mempty = λ`→ Nothing

mappend δ1 δ2 = λ`→ case δ2 ` of
Nothing→ δ1 `

Just v → Just v

We now define the write-only monad transformer:

type TOW⊗= WriterT MOW

instance EqMonad m⇒ EqMonad (TOW⊗ m) where
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eqLift a b = (runWriterT a)≡ (runWriterT b)

type TOW = TOW⊗ Identity

⊗
ι

OW
1 :: Monad m⇒MonadMorphism TOW (TOW⊗ m)
⊗
ι

OW
1 = WriterT◦ return◦ runIdentity◦ runWriterT

setWO :: GenOp TOW () (L,V)

setWO (`0,v0) = WriterT $ return ((),λ`→ if (`≡ `0)

then Just v0

else Nothing)

updateWOOp = op setWO

I/O

We use HASKELL’s representation of characters and strings. To make computations

tractable, we only range over a small number of characters. This is a simplifying

modelling assumption.

type Char = Char

instance WithRange Char where
range = [’a’ . .’z’]

type Str = String

We will need to range over strings. We assume it is enough to check two different

strings. We leave to further work justifying this modelling assumption.

instance WithRange String where
range = ["DivideByZero","RuntimeException"]

We use Haskell’s implementation of free monads. We define the following signature

functor:

data ΣIO a = Input (Char→ a)

| Output (Char,a)

instance Functor ΣIO where
fmap f (Input g) = Input (f◦g)

fmap f (Output (c,a)) = Output (c, f (a))

instance Eq a⇒ Eq (ΣIO a)
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We lift equality testing to the carrier of the free monad corresponding to ΣIO:

instance (Eq a,Eq b)⇒ Eq (FreeF ΣIO a b) where
(≡) (Pure a) (Pure a’) = a≡ a’

(≡) (Free (Input g)) (Free (Input h)) = all (λa→
(g a)≡ (h a)) range

(≡) (Free (Output (c,g))) (Free (Output (c’,g’))) = (c≡ c’) ∧ (g≡ g’)

(≡) = False

With everything in place, we can sum a representation of a monad with the I/O

monad by using the appropriate free monad transformer:

type TI/O+= FreeT ΣIO

instance (EqMonad m)⇒ EqMonad (TI/O + m) where
eqLift a b = (runFreeT a)≡ (runFreeT b)

type TI/O = TI/O + Identity

ιIO
1 :: Monad m⇒MonadMorphism TI/O (TI/O + m)

ιIO
1 k = helper (runIdentity (runFreeT k))

where
helper (Pure a) = FreeT (return (Pure a))

helper (Free (Input g)) = FreeT (return (Free

(Input (ιIO
1 ◦g))))

helper (Free (Output (c,g))) = FreeT (return (Free (Output (c, ιIO
1 g))))

ioInputOp :: AlgOp TI/O Char ()

ioInputOp = λk → FreeT (return (Free (Input k)))

ioOutputOp :: AlgOp TI/O () Char

ioOutputOp = λk c→ FreeT (return (Free (Output (c,k ()))))

Non-determinism

We represent the finite powerset monad using HASKELL lists.

type P ℵ0
+ = [ ]

instance EqMonad (P ℵ0
+ ) where

eqLift a b = (all (λx→ elem x b) a) ∧
(all (λy→ elem y a) b)
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ndToss :: GenOp P ℵ0
+ Bool ()

ndToss = [True,False]

ndChoiceOp :: AlgOp P ℵ0
+ Bool ()

ndChoiceOp = op ndToss

The model

Everything is in place to represent our theory

L{raise,throw}+
(⊗

`∈L

ρ∈RegRO

LEnv(V)⊗
⊗
`∈L

ρ∈RegWO

LOW(V)⊗
⊗
`∈L

ρ∈RegRW

LGS(V)

⊗(L{rollback,abort}+L{input}+L{output}+LND)
)

type Model

= ErrorT () (ErrorT Str

(TEnv⊗ (TEnv⊗ (TOW⊗ (TOW⊗ (TGS⊗ (TGS⊗
(ErrorT () (ErrorT Str (TI/O + P ℵ0

+ ))))))))))

Note that to avoid a state space explosion, we only consider two regions of each kind

of memory. We leave the justification of this modelling assumption to further work.

We lift the various operations along the monad morphisms. The following ↑ nota-

tion will make the process succinct.

↑ ::(Monad m,MonadTrans t)⇒ AlgOp m a p→ AlgOp (t m) a p

↑ a = mapOp lift a

raiseOp :: AlgOp Model Empty ()

raiseOp = mapOp ιraise
1 errorRaiseOp

throwOp :: AlgOp Model Empty Str

throwOp = ↑ $ mapOp ιthrow
1 errorThrowOp

lookupROOp1 :: AlgOp Model V L

lookupROOp1 = ↑ $ ↑ $ mapOp
⊗
ι

Env
1 lookupROOp

lookupROOp2 :: AlgOp Model V L
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lookupROOp2 = ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

Env
1 lookupROOp

updateWOOp1 :: AlgOp Model () (L,V)

updateWOOp1 =↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

OW
1 updateWOOp

updateWOOp2 :: AlgOp Model () (L,V)

updateWOOp2 =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

OW
1 updateWOOp

lookupOp1 :: AlgOp Model V L

lookupOp1 = ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

GS(V)
1 lookupOp

updateOp1 :: AlgOp Model () (L,V)

updateOp1 =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

GS(V)
1 updateOp

lookupOp2 :: AlgOp Model V L

lookupOp2 =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

GS(V)
1 lookupOp

updateOp2 :: AlgOp Model () (L,V)

updateOp2 =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp
⊗
ι

GS(V)
1 updateOp

rollbackOp :: AlgOp Model Empty ()

rollbackOp =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp ιraise
1 errorRaiseOp

abortOp :: AlgOp Model Empty Str

abortOp =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp ιthrow
1 errorThrowOp

inputOp :: AlgOp Model Char ()

inputOp =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp ιIO
1 ioInputOp

outputOp :: AlgOp Model () Char

outputOp =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ mapOp ιIO
1 ioOutputOp

choiceOp :: AlgOp Model Bool ()

choiceOp =↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ ↑ $ndChoiceOp

Analysing Copy and Weak Copy

We validate that the necessity of the conditions for the validity of the Copy and Weak

Copy optimisations (Proposition 13.3 and Proposition 13.4). Thus our model demon-

strates Proposition 13.11. The following code tests whether an arbitrary, possibly com-

posite, algebraic operation satisfies the weak idempotency law.
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checkWeakIdempotency :: Eq a⇒ AlgOp Model a ()→ Bool

checkWeakIdempotency mop =

let t1 = mop (λi→ mop (λj→ return (i)) ()) () in
let t2 = mop (λk→ return (k)) () in

t1≡ t2

We now supply this function with the three terms from the proof of Proposi-

tion 13.11. The crucial difference is that this time we calculate both sides of the

idempotency law in the full monad TL , rather than its conservative restrictions.

> checkWeakIdempotency inputOp

False

> checkWeakIdempotency (λx ()→ outputOp x ’a’)

False

> let `0 = True

in checkWeakIdempotency (λx ()→
lookupOp1 (λi→

updateOp1 (\ → x ())

(`0,¬ i))

(`0))

False

Thus the condition for Weak Copy is necessary.

To show the necessity of the criterion for Copy, we can use the previous three

calculations, together with an additional calculation for non-deterministic choice:

checkIdempotency :: Eq a⇒ AlgOp Model a ()→ Bool

checkIdempotency mop =

let t1 = mop (λi→ mop (λj→ return (i, j)) ()) () in
let t2 = mop (λk→ return (k,k)) () in

t1 ≡ t2

> checkIdempotency choiceOp

False
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Analysing Unique

Consider the necessity proof of the Unique condition (Proposition 13.12). The only

part of the proof that relies on conservative restriction is the case in which we consider

an ε containing both raise and rollback. The other case reduces to the necessity of the

Swap condition.

Therefore, we only need to show that raise and rollback have different interpreta-

tions in our model:

> let t1 :: Model Empty

t1 = raiseOp whatever () in
let t2 = rollbackOp whatever () in

t1 ≡ t2

False

Analysing operation-wise valid optimisations

We turn to establish the completeness of our optimisation tables (Proposition 13.10).

Here we can automate our analysis even further by systematically substituting all effect

operations into each algebraic law.

However, the effect operations have different types. In particular, we cannot easily

store the operations in data structures. We therefore introduce an enumeration of the

various effects:

data OpName = In | Out | Raise | Throw

| Abort | Rollback | Lookup1 | Lookup2

| Update1 | Update2 | RLookup1 | RLookup2

|WUpdate1 |WUpdate2 | Choice

deriving (Show,Enum,Eq,Bounded)

allOps = [minBound . .maxBound]

To manipulate the various algebraic laws we introduce term continuations:

type TermCont b = ∀a.(Eq a,WithRange a)⇒ (AlgOp Model a ()→ b)

Note that we require the parameter to be the unit type ().

The following helper function converts a parameterised operation into a family of

terms.
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deparameterise :: (Eq a,WithRange p,WithRange a)⇒
TermCont b→ (AlgOp Model a p)→ [b ]

deparameterise law mop = map (λp→ law (λx → mop x p)) range

We call the act of invoking a continuation with a given effect operation dispatching:

dispatch :: TermCont b→ OpName→ [b ]

dispatch law In = deparameterise law inputOp

dispatch law Out = deparameterise law outputOp

dispatch law Raise = deparameterise law raiseOp

dispatch law Throw = deparameterise law throwOp

dispatch law Rollback = deparameterise law rollbackOp

dispatch law Abort = deparameterise law abortOp

dispatch law Lookup1 = deparameterise law lookupOp1

dispatch law Lookup2 = deparameterise law lookupOp2

dispatch law RLookup1 = deparameterise law lookupROOp1

dispatch law RLookup2 = deparameterise law lookupROOp2

dispatch law Update1 = deparameterise law updateOp1

dispatch law Update2 = deparameterise law updateOp2

dispatch law WUpdate1 = deparameterise law updateWOOp1

dispatch law WUpdate2 = deparameterise law updateWOOp2

dispatch law Choice = deparameterise law choiceOp

Note we make another crucial simplifying assumption. When we deparameterise Str,

we consider only two different exceptions. As we will be iterating many times over

this list, it is crucial it is finite and short.

Analysing Discard, Pure Hoist and Hoist

We capture the algebraic laws characterising Discard, Pure Hoist, and Hoist by the

following type of term continuation:

type SimpleLaw = TermCont Bool

absorption :: SimpleLaw

absorption mop = (mop (λi→ return ()) ())≡ return ()

pureHoist :: SimpleLaw

pureHoist mop = any (λj→ mop (λi→ return i) ()≡ return j) range
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hoist :: SimpleLaw

hoist mop = (pureHoist mop) ∨ (mop (λi→ return (True, i)) ()

≡
mop (λi→ return (False, i)) ())

Given any such a simple law, we generate its optimisation table:

optTable :: SimpleLaw→ [OpName]

optTable law = filter (λname→
all id ( -- typechecker needs help instantiating

(dispatch :: SimpleLaw→ OpName→ [Bool])

law name))

allOps

The following interaction validates Proposition 13.10 for Discard, Pure Hist and

Hoist:

> optTable absorption
[Lookup1,Lookup2,RLookup1,RLookup2,Choice]

> optTable pureHoist
[ ]

> optTable hoist
[Raise,Throw,Abort,Rollback ]

Note that the lists we computed correspond precisely to the optimisation tables in

Proposition 13.1. Therefore, any operation not present in these tables invalidates the

corresponding algebraic law in our model, hence the condition given by the optimisa-

tion tables is necessary.

Analysing the Swap optimisations

Finally, we consider the three swap optimisations. The corresponding algebraic laws

are parameterised by two terms:

type SwapLaw = TermCont SimpleLaw

swap :: SwapLaw

swap mop mop′ = (mop (λi→ mop′ (λj→ return (i, j)) ()) ())

≡
(mop′ (λj→ mop (λi→ return (i, j)) ()) ())

weakSwap :: SwapLaw
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weakSwap mop mop′ = (mop (λi→ mop′ (λj→ return i) ()) ())

≡
(mop′ (λj→ mop (λi→ return i) ()) ())

isoSwap :: SwapLaw

isoSwap mop mop′ = (mop (λi→ mop′ (λj→ return ()) ()) ())

≡
(mop′ (λj→ mop (λi→ return ()) ()) ())

To check whether two given operations satisfy a given swap law, we despatch the law

over both and check all possible combinations.

commute :: SwapLaw→ OpName→ OpName→ Bool

commute law op1 op2 =

let swapWithOp1 :: [SimpleLaw]

-- The typechecker needs help instantiating

swapWithOp1 = (dispatch :: SwapLaw→ OpName→ [SimpleLaw])

law op1

op2Satisfies :: SimpleLaw→ [Bool]

-- The typechecker needs help instantiating

op2Satisfies law = (dispatch :: SimpleLaw→ OpName→ [Bool])

law op2

in all id $ concat $ map op2Satisfies swapWithOp1

We calculate swap-sets by brute force:

swapSet :: SwapLaw→ [(OpName, [OpName])]

swapSet law = [(op1, [op2 | op2← allOps,commute law op1 op2]) |
op1← allOps]

We calculate all three swap sets into a data structure as in Figure 13.1, i.e., each row in

the table is of the form (op,(ζSwap,ζWSwap \ζSwap,ζISwap \ζISwap ))

swapsets = let allsets = zip3 (swapSet swap)

(swapSet weakSwap)

(swapSet isoSwap)

in map (λ((op,sw),( ,wsw),( , isw))→ (op,(sw,wsw\\ sw,

isw\\wsw,
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allOps\\ isw)))

allsets

The following interaction validates Proposition 13.10 for the Swap optimisations.

By computing the swap sets mechanically we found our previously published swap

sets [KP12] were incorrect. The correct swap sets state that output and input do not

satisfy Isolated Swap with themselves, and non-deterministic choice does in fact com-

pletely commute with both abort and throw.

We use the following ad-hoc pretty printer to display the swapsets

printSwapSets :: IO ()

printSwapSets =

do {
mapM (λ(op,(sw,wsw, isw,none))→

do {
printf ("%-8s: swap = ") (show op);

printOpList " " sw;

putStr " weakSwap = ";

printOpList " " wsw;

putStr " isoSwap = ";

printOpList " " isw;

putStr " none = ";

printOpList " " none})
swapsets :: IO [()];

return ()}
where n = 4

printOpList :: String→ [OpName]→ IO ()

printOpList prefix lst = if length lst6 n

then putStrLn ((show lst))

else do {printf "%s++\n%s" (show (take n lst)) prefix;

printOpList prefix (drop n lst)}

> printSwapSets

In : swap = [Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate1,WUpdate2 ]

weakSwap = [Choice]
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isoSwap = [In]

none = [Out,Raise,Throw,Abort]++

[Rollback]

Out : swap = [Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate1,WUpdate2]

weakSwap = [Choice]

isoSwap = [ ]

none = [In,Out,Raise,Throw]++

[Abort,Rollback ]

Raise : swap = [Raise,Lookup1,Lookup2,RLookup1]++

[RLookup2,Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [In,Out,Throw,Abort]++

[Rollback,Update1,Update2,WUpdate1]++

[WUpdate2]

Throw : swap = [Lookup1,Lookup2,RLookup1,RLookup2]++

[Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [In,Out,Raise,Throw]++

[Abort,Rollback,Update1,Update2]++

[WUpdate1,WUpdate2 ]

Abort : swap = [Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate1,WUpdate2]++

[Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [In,Out,Raise,Throw]++

[Abort,Rollback]

Rollback : swap = [Rollback,Lookup1,Lookup2,Update1]++

[Update2,RLookup1,RLookup2,WUpdate1 ]++

[WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [ ]
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none = [In,Out,Raise,Throw]++

[Abort]

Lookup1 : swap = [In,Out,Raise,Throw]++

[Abort,Rollback,Lookup1,Lookup2]++

[Update2,RLookup1,RLookup2,WUpdate1]++

[WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [Update1]

none = [ ]

Lookup2 : swap = [In,Out,Raise,Throw]++

[Abort,Rollback,Lookup1,Lookup2]++

[Update1,RLookup1,RLookup2,WUpdate1]++

[WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [Update2]

none = [ ]

Update1 : swap = [In,Out,Abort,Rollback ]++

[Lookup2,Update2,RLookup1,RLookup2]++

[WUpdate1,WUpdate2,Choice]

weakSwap = [Lookup1]

isoSwap = [ ]

none = [Raise,Throw,Update1]

Update2 : swap = [In,Out,Abort,Rollback ]++

[Lookup1,Update1,RLookup1,RLookup2]++

[WUpdate1,WUpdate2,Choice]

weakSwap = [Lookup2]

isoSwap = [ ]

none = [Raise,Throw,Update2]

RLookup1 : swap = [In,Out,Raise,Throw]++

[Abort,Rollback,Lookup1,Lookup2 ]++

[Update1,Update2,RLookup1,RLookup2]++

[WUpdate1,WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [ ]
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RLookup2 : swap = [In,Out,Raise,Throw]++

[Abort,Rollback,Lookup1,Lookup2]++

[Update1,Update2,RLookup1,RLookup2]++

[WUpdate1,WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [ ]

WUpdate1 : swap = [In,Out,Abort,Rollback]++

[Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate2,Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [Raise,Throw,WUpdate1]

WUpdate2 : swap = [In,Out,Abort,Rollback]++

[Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate1,Choice]

weakSwap = [ ]

isoSwap = [ ]

none = [Raise,Throw,WUpdate2]

Choice : swap = [Raise,Throw,Abort,Rollback ]++

[Lookup1,Lookup2,Update1,Update2]++

[RLookup1,RLookup2,WUpdate1,WUpdate2]++

[Choice]

weakSwap = [ ]

isoSwap = [In,Out]

none = [ ]

Thus our model confirms the necessity of our characterising conditions, up to the

simplifying assumptions we described. HASKELL’s native support for monads and

monad transformers, and its type class mechanism were pivotal for our model con-

struction. In particular, during the development of the model, the type system pre-

vented numerous errors that a less expressive type system, such as ML’s, would not be

able to track. However, HASKELL’s type system was not expressive enough for our

treatment of the operation-wise valid optimisations and their algebraic laws. Although

we worked around the problem by using boilerplate code such as the dispatch func-
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tion, we should investigate in the future whether a dependently-typed implementation,

using e.g. Agda [Nor07] or the Coq [Cdt12] proof assistant, is more suitable for this

purpose.

However, we also desire library support for lists and strings. We therefore use

HASKELL, despite its limited type-system, and comment on the parts of the code

that would benefit from better type support. Brady’s Idris [Bra11] may be a suitable

dependently-typed alternative to HASKELL.

To summarise, we analysed the global algebraic optimisations in a simple functional-

imperative language. However, even our simple language involved more than a thou-

sand effect sets. Such complexity cannot be addressed intuitively without error. Our

theory allows a rigorous and high level treatment of these optimisations.
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Conclusion

But before you come to any conclusions

Try walking in my shoes
—Depeche Mode

We set out to establish the existence of a general applicable theory of Gifford-

style type-and-effect systems. In the first part of the thesis, we presented a

spectrum of type-and-effect models accounting for set-theoretic models, domain the-

oretic models, algebraic models, and logical relations model. Our general account

culminated in the categorical conservative restriction construction, establishing that

semantics for type-and-effect systems arise as a property of an algebraic model, rather

than a separately specified structure. In the second part of the thesis, we presented our

theory’s account of the various aspects of effect-dependent optimisations, ranging from

the syntax of type-and-effect systems, through its semantics, the soundness and com-

pleteness of the optimisation process, modular treatment of optimisation validity, and a

use case for synthesising sound and complete validity decision procedures. We report

that, once the semantic constructions were in place, each of these areas required little

effort to fit within the theory, and we expect other aspects of type-and-effect systems

to follow suit.

The algebraic approach provides a valuable and general point of view, resulting in:

the connection between effect operations and effect sets; the conservative restriction

construction; the free lifting construction; optimisation classification and discovery of

new optimisations; criteria for the validity of abstract optimisations; and methods to

derive the validity of optimisations for combinations of effects modularly.

The use of CBPV highlights the interplay between functional constructs and ef-

fects. We advocate its use as a fundamental lambda-calculus involving computational

323
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effects. The categorical language greatly helped the organisation of this work, by al-

lowing much reuse of concepts and proofs. It was also crucial in seeing the connection

with Führmann’s work, and unifying it with Benton et al.’s.

Further work abounds:

Generality. Our claim for generality will be much strengthened by generalising the

logical relations argument of Corollary 9.12 from its current (set-theoretic) pre-

sentation models to the (categorical) algebraic models. Doing so will tie the

conservative restriction construction to the original non-hierarchical semantics.

We conjecture that by imposing sufficiently strong conditions on the factori-

sation system
〈
E ,M

〉
of the enriching category, the M -morphisms behave as

predicates and allow us to generalise the proof.

Going further, we would then like to generalise the constructions in Part II from

the set-theoretic case to the categorical case. However, such generalisation will

require more syntactic views of enriched Lawvere theories [Plo06].

Applicability. We would like to incorporate more facets of type-and-effect analysis

into our theory. An immediate first step is to incorporate Plotkin and Pretnar’s

effect handlers [PP09a, PP09b] so our theory can account for exception handlers.

We foresee no problem in doing so in light of our work equipping a calculus of

effect handlers with a type-and-effect system [KLO13] and Bauer and Pretnar’s

type-and-effect system for the Eff programming language [BP13].

Effect reconstruction is of immediate importance. It should be possible to derive

general algorithms for type-and-effect annotation. Our semantics can then be

used to give semantics to such programs. Levy’s translations of call-by-value

and call-by-name into CBPV could then be used to generalise call-by-value

type-and-effect systems and discover novel call-by-name type-and-effect sys-

tems. Another closely related direction is region inference [BT01]. Bauer and

Pretnar’s work on effect handlers [BP13] suggests region inference may gener-

alise from memory accesses to arbitrary algebraic effects.

Additional effects. Another direction is to better fit additional computational effects

into the algebraic theory of effects in the first step, and then into our theory of

type-and-effect systems. Notions of locality, particularly local state, are very

important. It may be possible to make use of work on the algebraic treatment

of locality, e.g., Plotkin and Power [PP02], Melliès [Mel10], and Staton [Sta09,
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Sta13b] to obtain a more general optimisation theory. This should enable incor-

porating the work of Benton et al. on dynamic allocation [BKBH07]. Interest-

ingly, it should also incorporate Staton’s account for logic programming [Sta13a].

Incorporating higher-order store [BKBH09] would require solving recursive do-

main equations [AJ94, Lev02]. We are also very interested in accounting for

parallelism, as in Gifford’s work [LG88].

We outline further work arising from each chapter:

Algebraic operations. In Chapter 2 we considered only Eilenberg-Moore CBPV mod-

els. It would be interesting to generalise our account to arbitrary CBPV models.

Models. While we used categorical language to formulate our models, we did not con-

sider any category of models. It would be interesting to identify the appropriate

notions of morphisms for each of our model classes. We could then formulate the

relationship between our different categories of models using categorical notions

like isomorphism and equivalence of categories. More speculatively, categories

of models would also include categorical constructions such as limits and col-

imits, and would perhaps give an abstract account of our conservative restriction

construction.

Lawvere theories. As we noted on page 196, there is a mismatch between presen-

tations and Lawvere theories: presentations allow us to have arbitrarily infinite

parameter types, whereas λ-Lawvere theories are restricted by the cardinal λ. It

is possible that there are other equivalent descriptions of algebraic theories that

avoid this mismatch. Melliès1 suggests there might be a connection with monads

with arities [BMW12].

Another shortcoming of our account is the large amount of intimidating com-

mutative diagrams. We obtained these proofs by translating proofs devised in

our own variant of string diagrams [BS11] for symmetric monoidal closed cat-

egories. As we are not aware of any standard notation for string diagrams of

(symmetric) monoidal closed categories, we decided to use the widely familiar

commutative diagrams. (See Selinger [Sel09] for a survey of such notations.)

We leave to further work to recast our proofs in a familiar string diagrammatic

form.

1Paul-André Melliès, private communication, 2013.
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In this context, Fiore2 suggested to us to use monoidal actions instead of enrich-

ment. Fiore conjectures that monoidal actions produce a more pleasant theory of

generalised Lawvere theories that does not involve as complicated commutative

diagrams. We leave the investigation of his suggestion to further work.

Atkey used parameterised monads [Atk09b] to account for type-and-effect sys-

tems, and more generally, capabilities [Atk09a]. It would be interesting to inves-

tigate whether parameterised monads have a parameterised notion of Lawvere

theories, and whether these can be used to extend our theory to the parameterised

case.

Algebraic models. Our construction of a factorisation system of enriched Lawvere

theories from a given factorisation in the enriching category is unsatisfactory,

as we do not have an explicit characterisation of the left orthogonality class of

M law. Our free lifting construction suggests this class may have to coincide with

its subclass E law of all morphisms whose A, I components are E-morphisms, as

is certainly the case in Set. Thus we are interested to find out whether E law may

be a proper subclass of the left orthogonality class and under what conditions

they coincide.

Presentation models. We would like to give a syntactic generalisation of presenta-

tion models to complement enriched Lawvere theories. However, the appropri-

ate generalisation of equational logic has not yet been developed [Plo06]. It is

possible that Staton’s notion of parameterised theories [Sta13b] would serve this

purpose.

Predicate models. Our notion of predicate models is general enough to include Ben-

ton et al.’s relational models. It is important to recast their models in terms of

predicate models and compare them with the conservative restriction construc-

tion.

Our free lifting construction is a form of inductive lifting. It would be inter-

esting to compare it to other lifting constructions, most notably Katsumata’s

categorical->>-lifting [Kat05, Kat13] and Larrecq et al.’s use of sconing [GLLN05,

GLLN02].

Intermediate language. Despite having the domain-theoretic machinery in place (see

Chapter 4), we did not incorporate recursion into our source language in order to
2Marcelo P. Fiore, private communication, 2013.
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focus on the shortest account towards effect-dependent optimisation. However,

not accounting for recursion detracts from our applicability. Thus, an immediate

next step is to give semantics to a MAIL variant with recursion [KP12] using

our recursion models. To achieve establish the connection with the conservative

restriction model, we use a continuous variant of our free lifting construction.

Another limitation of our intermediate language is caused by restricting arities

to be of ground type. Generalising arities to non-ground types may involve re-

cursive domain equations, as in the hypothesised treatment of higher-order store.

Optimisations. The logic we used for our optimisations is a simple equational logic

— we have only considered equations between terms. It seems straightfor-

ward to devise a richer effect-dependent counterpart to Plotkin and Pretnars

logic [PP08, Pre09]. Another direction is an effect-dependent account of re-

finement types, starting with Denney’s thesis [Den99].

We did not fully treat the local algebraic optimisations, those optimisations that

originate from particular equations in the Lawvere theory. A full treatment

would present a systematic translation from equations in the Lawvere theory

into equations between program phrases, as Plotkin and Pretnar’s logic [PP08].

We did not supply any of the 36 proofs justifying the equivalent conditions for

the global algebraic optimisations in Figure 11.2. We conjecture that there is

a more basic description of these global optimisations using quantification over

terms in the presentation Lε. This desription may lead to a meta-theory of these

optimisations. By exposing this syntax, we could generate both pristine and

utilitarian forms mechanically from the more basic description. Their equiva-

lence to the algebraic characterisation (and to each other using structural rules

only) could then prove wholesale 27 of the proof obligations. The remaining 9

obligations are the equivalence of the monadic condition and either of the other

characterisations. This basic description of the global optimisations would also

allow us to uniformly define the notion of operation-wise validity, rather than

give an ad-hoc definition for each of the optimisations.

Combining effects. We concentrated on the more common sum and tensor combina-

tors. Hyland and Power’s distributive combination of theories [HP06] (used for

combining ordinary and probabilistic computation) should be investigated too.

The combination of write-only state and non-determinism should be re-examined
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in light of Example 13-2.

Use case We are interested in a tensor analogue of the sum conservativity theorem The-

orem 13.7. However, in light of Example 13-2 where we combined write-only

state and non-determinism, we cannot hope to a sufficient condition that encom-

passes all practical cases.

Our HASKELL model for validating the completeness of our decision procedures

is limited by the HASKELL type system. We are therefore interested in a similar

model in a dependently-typed programming language, such as Idris [Bra11],

Agda [Nor07] or the Coq [Cdt12] proof assistance, which seem more suitable

for this purpose.

We aspire to change the effect systems discussion. Rather than proceeding from

case to case by analogy, we hope that the generality and applicability of our approach

will provide a first step on the way to obtaining a scientifically-based engineering

methodology to type-and-effect systems.



Appendix A

Conventions

Here’s a one of a kind

Convention of the mind
—Red Hot Chili Peppers

Sections indicated with a “beware cats” sign assume deeper, but standard,

knowledge of category theory. The assumed knowledge includes: (co)limits,

adjunctions, (co)continuity, and monads, as covered by Mac Lane [ML98], and sym-

metric monoidal closed categories, and enrichment, as covered by Kelly [Kel82a].

The “cat-free” parts assume only basic categorical notions, previously used in

the semantics and functional programming communities. We assume familiar-

ity with functors, monads, natural transformations, and monad morphisms. These parts

may be read sequentially, skipping over “beware cats” sections. While the statements

are formulated in these more accessible terms, their proofs may rely on categorically

involved accounts. The scope of these two modifiers extends to the end of the literary

unit they are introduced in, such as Chapter, Section, or Proof.

We revisit definitions, examples, and theorems during the development. Shading

indicates the difference from the original unit. An asterisk, e.g., Definition 3.2*, indi-

cates the revisited unit is recast in terms of generic effects. An ω, e.g., Definition 3.1ω,

indicates the revisited unit is a domain-theoretic specialisation. A (revisited) mark,

e.g., Definition 2.10 (revisited), indicates the revisited unit is a set-theoretic reformula-

tion of a categorically involved unit. A plus,e.g. Definition 3.2+, indicates the revisited

unit is an algebraic reformulation in terms of theories and/or presentations. These mod-

ifiers combine, e.g., Definition 3.2* (revisited)+, meaning an algebraic reforumaltion

of the set-theoretic instance of the generic effects alternative to Definition 3.2. Elec-

tronic versions of this document use hyper-references to ease cross-references.
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