
.... -:;.'-:• ... -:. 

' ' . 

Dissertation submitted for the degree of Ph oD. 
in the University of Cambridgeo 

ON AXIOMATIC SYSTEMS IN MATHEMATICS AND THEORIES 

IN PHYSICS 

King's College, 
CAMBRIDGE. 

by 

Ro O. GANDY 

Se:ptember 9 1952 



:·.·.-:..;.-.; ...... · . 

CONTENTS 

Preface . . . . . . . . . . . . i 

Chapter I 

Section 1 The system of Logic ... . . . 1 

2 Ma ps and Permutations . . . . .. 28 

3 Virtual Types ... . . . ... 39 

4 Models . . . . . . ... . .. 62 

5 Closed Formulae ... . . . ... 84 

Chapter II 

Section 1 The deduction theorem ... . . . 104 

2 Mathematical Structure ... . .. 116 

3 Theories . . . . .. ... 126 

Appendix I . . . . . . . . . . . . • • • 138 

Appendix III ... . .. ... . . . 141 

Bibliography . . . . . . 142 

Index . . . . . . ... . .. 144 



PREFACE 

A possible subtitle for this dissertation would be: "Studies 

in the technique and application of the simple theory of types". 

This may suggest that the interest of the work is strictly limited: 

but I hope on the contrary that the per s·:eivering reader will find -

and perhaps be surprised to find - that the range of topics 

discussed is extremely wide; and that type theory provides an 

elegant and adequate syrrl)mlism for all those discussions. And I 

think that even the purely technical parts have a significance 

which goes beyond the particular system used. 

There are several reasons for this fruitfulness of type 

theory. Firstly it is natural, in almost all branches of mathe-

matics, to distinguish the different logical types of the 

quantities involved; and it is therefore right and proper that a 

system of mathematical logic which is to be generally useful should 

recognise those distinctions. Secondly the particular system of 

logic here used follows normal mathematical practice in several 

other important ways: namely, in its use of, though not in its 

notation for, functional abstraction; in its admission of a 

descriptions operator; in its extensional character; and in its 

employment of the deduction theorem. This system of logic is due 

to Alonso Church, and it has played an indispensable part in the 

clarification of my ideas. 

Chapter I is concerned with the formal development of type 

theory. In Section 1 an account is given of Church's system, and 
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also of an alternative system which I invented to facilitate the 

proofs of some of the theorems of later sections. I think I may 

have overestimated the degree of this facilitation, but the system 

has some intrinsic interest. The two systems considered are 

logically equivalent; I intended to give a demonstration of this 

equivalence in Appendix II, but my proof, though in principle 

straightforward, was rather tedious and inelegant, so I have 

omitted it. 

In Section 2 the effect of maps of one type into another on 

objects of higher type is considered, and it is shown that the 

logical constants are all invariant under permutations of the type 

of individuals. This section represents the first steps in what, 

for want of a better term, I will call abstract structure theory; 

this is on the borderline of mathematics and symbolic logic, and 

it is an open question whether it is better to use the techniques 

of logic or of ordinary mathematics in discussing it. I think 

possibly the best answer is to use a formal logical notation, but 

to forgo the formalities of logical proof. 

In Section 3 a method for consistently introducing new types -

virtual types - is elaborated. As an example of its application 

the problem of forming quotient structures is discussed; this is 

another piece of abstract structure theory. 

In Section 4 the making of inner models in the theory of 

types is discussed, and a rather general set of sufficient conditions ' 

for the existence of a model is given. This result is then used 

to give a short proof of the independence of the selection axiom. 

I 
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It is clear to me, and I hope it will also become clear to 

the reader, that there is a fundamental distinction between elements 

of the system which can be described by closed formulae ( i.e. 

formulae without free variables) and those which cannot be so 

described. In Section 5 an attempt is made to describe this 

distinction within the system itself. Theorem VIII shows that the 

description can be made by means of an infinite list of formulae. 

Sipce here it is the final result rather than the details which is 

important, I have proceeded rather informally, and have omitted a 

large number of formal proofs; I hope this treatment will make 

the work easy to follow, while yet convincing the reader that the 

result is correct. 

Chapter II is concerned with applications; in view of the 

length of Chapter I, I have confined myself to giving a rough 

outline; I hope it will not prove too sketchy to be of value. 

Section 1 is philosophical; in it I dispute the popular opinion 

that propositions must either be synthetic or analytic, and also 

give a theory of names. Section 2 is concerned with the defini-

tion of the notion of mathematical structure; the definition given 

can be regarded as the ultimate generalisation of the ideas of 

Klein's Erlanger programme. Section 3 deals with the logical 

analysis of theories. I show how the nature of the concepts of 

a theory is revealed by a consideration of the way in which the 

corresponding logical objects occur in a formal statement of the 

theory; and I give examples of the application of the kind of 

analysis proposed. 
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There is not much in this dissertation which is really new. 

Some of the more important results of Chapter I - the invariance 

of the logical constants, the independence of the selection axiom 

in the theory of types, and the possibility of giving a formula 

for 'n-C1o' - have previously been obtained by members of the 

Polish school; in fact I had convinced myself of the truth of 

these results before I became aware of their work. Theorem V, 

the method by which it is proved, and the rather similar method used 

in proving Theorem III are, I think, original. The idea of 

Theorem III, and the notion of nonsense elements are due to 

A.M. Turing. 

The debt which I owe to Bourbaki and to Philip Hall for the 

development of abstract structure theory is obvious; what is new 

here is perhaps the technique of extending the usual definitions to 

objects of arbitrarily high type. Similarly my debt to Klein and 

Weyl will be apparent. From the many writers on mathematical and 

" natural philosophy who have influenced me I single out Poincare, 

Russell and Ramsey. 

Finally I must try and show the extent of my debt to A.M. Turing 

He first called my somewhat unwilling attention to the system of 

Church, and to the importance of the deduction theorem. Much of 

the work on permutations and invariance, and on the form of 

theories was done in conjunction with him. ~ithout his encourage-

ment I should long ago have given way to despair; without his 

criticism my ideas would have remained shallow and obscure. 

:S eptember 1952. 



CHAPTER I. 

Section 1. Tbe system of -logic. 

We are going to consider certain kinds of theoretical 

system, and so we wish to be able to characterise and to 

exemplify such systems as clearly as possible; and this is 

most conveniently done by introducing a system of formal logic 

in which the formation of expressions and the inference from 

one expression to another are governed by definite rules. A 

theoretical system may then be described in terms of some 

particular class of expressions. The systems of logic must be 

sufficiently wide and flexible, so that any argument of 

classical mathematics may be represented within ·it; in fact, 

the less specialised it is, the better will it suit our pur

pose. But we must choose one particular system - 'pour fixer 

les idees'; and having made the choice we shall use all the 

technical facilities it provides. This means that some of our 

results will be theorems about the particular system used) and 

all the results will only be proved for that system: but the 

most important results will also be true for any other system 

that is capable of bearing the same - intuitive - interpretation 

as does the chosen system. 

There seem to be two general kinds of system suitable for 

our purpose: the set theoretical kind - for example that used 

by Godel in 'The consistency of the continuum hypothesis', or 
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that used by Quine in his ' Mathematical logic'; and the type 

theory kind - for example that used in 'Principia Mathematica'. 

The advantages of the second kind are many, its disadvantages 

few. For, firstly, we are primarily interested in the applica

tions of symbolic logic to mathematics and to theoretical 

science; and it is then important to preserve the distinctions 

between objects of different logical type - for example, the 

distinction between functions and functionals. Secondly, the 

axioms and the rules of the · system we adopt are closer to 

normal mathematical argument than are those of any of the set

theoretic systems, so that translation into and from the formal 

system can be done with little effort. Thirdly, we shall see 

tblat by introducing different basic types - that is, different 

types of 'individuals' - some of the disadvantages of type 

theory may be overcome. (This process is analogous to the 

representation of any given axiomatic system within the 

functional calculus of the first order.) The fact that, in 

type theory, many definitions and theorems have to be stated 

separately in each type, has sometimes been urged as an ob

jection; but in practice it does not lead to much complication, 

because one can use symbols to stand for arbitrary types in 

just the same way that one uses a free variable; so that, for 

example, · Q 0~~ is interpreted as the identical relation between 

objects in any type ~ . Lastly - for what it is worth - the 

consistency of a type theoretical system seems less open to 
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The system we shall use is substantially the same as that 

introduced by Church in Church (1). We shall actually describe 

two different systems, and show that they are equivalent. The 

first is Church's with some very minor modifications; the second 

is useful because the proofs of some metalogical theorems are 

shorter for it than for the first system, while the theorems 

themselves can be taken over from one system to the other. 

Church's system is a version of the simple theory of types; 

but we shall see that it is possible to make definitions which 

are rather analogous to the definitions of the 'orders' in the 

branched theory of types, and which, like those, serve to show 

that contradictions will not arise from paradoxes similar to 

Grelling's or Richard's. 

(A) Type symbols. 

These are made up from lower case greek letters, and 

' ( ' , and')' . Letters, other than particularly designated ones, 

are used as type-symbol variables ; in particular a( , (1 , ( ' ~ ' 
are used in this way. Any one particular type symbol may be 

substituted for each of the occurrences of a type-symbol vari

able in a logical or metalogical statement. 

The rules for the formation of type symbols are as 

follows : 

E. 
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1) If ,).,_ and f are type symbols, then ( ,,ff ) is a 

complex type symbol; anti the parts of ( vl..f ) are r:J.. , (3, 
the parts of d.. and the parts of f . ( ,/ ) designates 

the type of functions whose arguments range over type (1 , 

and whose values lie in type 

2) o is a basic type symbol. (It designates the type 

of propositions, in which there are just two objects, 

representing truth and falsehood.) 

3) l is a basic type symbol. (It designates the type 

of individuals.) Sometimes we shall need further basic 

type symbols r , t ; and we shall then suppose that the 

definitions and statements made for type . l are extended to 

the types· l"-, A-. 
4) Certain further type symbols (e. g. Y andr:' ) will 

be introduced by the method of virtual types (see section 3). 

5) No expression is a type symbol unless it is one in 

virtue of 1) - 4). 

Brackets may be conventionally omitted from type symbols. By 

'a pair of brackets ' we mean a left and a right bracket between 

which there are an equal number of left and right brackets. A 

pair of brackets may be omitted from a type symbol if there is 

a left bracket or nothing at all im~ediately to the left of the 

left bracket of the pair. This convention allows omitted 

brackets to be restored in an unambiguous way. Thus we write 
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(B) Well formed formulae. 

The expressions of the two systems (C) and (G) which we 

are describing are made up from the foll owing symbols : 

(a) Impr oper symbols: ( and 

(b) Constant symbols: N,, ., , A cov , 60(0) , lrL(ot-) , C0 , ·C{,; 
these are common to both systems. Also (C) has the 
symbols 1'°Lou1..) , and (G) has the symbols Q oct{ . 

(c) Symbols for variables: ' .§; I\} • • • ' ..s.""-' .§ <(_ ' • • • • 

The meaningful expressions of the systems are the well formed 

formulae; the rules of formation of these are as follows: 

1) Any constant or variable symbol standing on its 

own is a well formed formula, and its type is that 

designated by its suffix. 

2) If E~f ' ~f are well formed formulae of types ~f 

and f , then ( ~,~f .f:p ) is a well formula of type d... ; .and 

the parts of ('fcJ.rf: f ) are ~·-Zf and its parts, and ~f and 

its parts. 

3) If ~,J-.. is a well formed formula, then ( A °*f A,J is 

a well formed formula of type °"f , and all the occurrences 

of the variable ~f in it are bound occurrences. The 

parts of ( A ~f'~J..) are f:.J-. and its par.ts. 

4) A formula is well formed only if it is so in 

virtue of 1) ~ 3) ; and the occurrencesof a variable 

are bound only if they are so in virtue of 3). Occur-

rences of a variable which are not bound are free; .a 

variable is called bound or free according to the nature 

of its occurrences. 
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The process described in. 2) is to be interpreted as the 

application of the function represented by E4 f to the argu

ment represente·d by ~f' giving th:e value represented by 

(F A ) The process described in 3) is to be interpreted as 
r-'J.f .~If . 

the functional abstraction of the formula ~~ with respect to 

the variable ~r; i.e. C'A"*rf:,J.) represents the function whose 

values for a given argument are represented by the expression 

obtained by substituting for *f in A._z.an expression represent

ing the given argument. We shall in future use' formula' to 

mean 'well formed formula'. 

(C) Conventions and abbreviations. 

As - in the preceding paragraph, when making statements 

about the system we use bold face capitals .-~..<, · ~f, .... , to 

stand for arbitrary well formed formulae, and lower case 

bold face letters to stand for arbitrary variable symbols. 

We allow the other symbols of the system to stand for 

themselves, as also do such further symbols as are intro

duced as abbreviations . We always omit the suffix from all 

the occurrences of a bound variable except from the binding 

(i.e. the leftermost) occurrence. We often omit the suffix 

from constant symbols and from those introduced as abbrevia-

tions. 

We omit brackets, with association to the left, in exactly 

the same way as described f or type symbols. Further we omit 
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a pair of brackets if the left bracket occurs immediately to 

the right of the binding occurrence of a variable and the 

scope of the brackets is the same as the scope of the binding 

occurrence. We omit 'A' when it occurs immediately to the 

right of a binding occurrence of a variable which has the same 

scope. When there are one or more consecutive binding occur

rences of variables, we place a '.' immediately to the right of 

the rightermost such occurrences. Thus we write 

C\.!S~x~,,_ .f o(.~.!S(f <A-~-* (~! ) .!) ) ~ ... :!'!'. .. u .. 

for ( ( (.~.!StA.C\i:AA ( (! .,..!"'X(.f.AJ..ik (.l J.J.. .! t1) )~ "'))) )~J! .,_.,i. ) · 

We now introduce a number of abbreviations. The metalogical 

sign ' --) ' stands for 'is an abbreviation for' ; any formula 

containing abbreviations can be expanded into a formula con

taining only the symbols of the system. But, for the most part 

(and certainly whenever it has a type suffix), the newly intro

duced symbol represents a particular (constant) element in the 

interpretation of the system; and so, for example, ' Num ~~' ~> 

~ 0~· ' may be read as 'the element represented by ' Num' is 

defined by the formula ~ ~ 1 1 • Elements introduced in this way 

will be represented by single roman capitals, or by three 

letter combinations which are intended to bear some relation 

to the nature of the element int r oduced; for example ' NLim ' is 

short for 'number'. A dictionary of these signs is given at 

the back. 



·"' ~ 6 ~ N ,, ~" 

~o & Q ~~ 
•Y 

Aoc-o pc Q ·""' ·"'°' 
p (I v Q ~ N (.~P & "'9 ) ,... . ...,o _,i:i 

f ., ~ Q _, ( ~o v Q ) ... o ,.., 

p - ~o ~ ( ~o ? Q.) & ( Q :") ~ Ii ) -.:-'CJ ~..., .-o 

TCI~ Co ·-- cl) 

F -> 
I?> "' Tc. 

-. 
( ~.J) ( !!<>) ·-) ! I lo.A.) ( 1\ :z.J-·~0-) 
(:& J)(~o) -~ .Q oloJ..)lo <A. ) ( i\2£,J. ·~o )( i\~,A ·T c- ) 

( E~f..L) (~o ) -'> "' ( !,.J ("'4o ) 

~ c>(OJ..) ·-> 1\f 0.;,. • ( E)& ol)(f~) 

!::i.. = :§J.. ~ (f ~)(f~~ J f:§.J 
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System (C) 

System (G) 

System ( C) 

!::"' = :§J... ~ Q.i ,.LJ •. *.A. ~ll System ( G) 

~1~(<>i-<pl) ·-'> ~ ! o (<Afl) ~P" L~(o J.. ) (Ai~· ( E!_g«Af )(_g~:; 3. &: .fg)) 

c~r'-'> ~ 15 t .c,1 

(Since i and C are constants of the system for the basic types, 
.{ 

the two definitions above yield C...( £o . .q and C ii.. for every type 

symbol ,,(_) . 

( 1 ?f J) ( ~ D ) ·- > l ,.l, lo J..) ( ~ ~J. 1 4 ) 

( E!!.1 ) ( ~0 )-~ ( E1S.1)(( ~ .J (( A?Si1..·*o)l :) l = x) &_ 6 ) 
J c(p) ·-) ~f oJ. ' ( E~~.~) ( fx) 

I <( -~ \ 
~.l /\ 2£ ,t. ·~ 

>- 2f," xr . ~ 
A tJ. y&. 11 f !S .f~ ( ~) 

I 

K fJ.-'> 
w~Yt nl"- ,.)-' 

V 0 (.O~J..) ·-) A !lo JA· (_!.,A, ~-l' &,,J ( gxx .& · gg__ ::> ~ 
.. & • m & m ::> qxz) 
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0 tA.' ·-} .A .f ,{.}..! J.. . ! 
h I ' b t w ere u( is an ab revia ion 

1 ..<. ' ·-'J f ,{, ~1:1. . fx 
for J.J. ( .iJ. ) 

2,,,1. 1 -> Af~Eo{ . .f ( fx) 

................... 
S.1. 'o< ' ~ ,\,!!lo{ 1·f .. a.~g( . .f(~) 

Num0 ~' -)1\,!!1 "' 1. (.f otl( ') (.fO-< ' & (n ~1) ( fn .:::> f (Sn)). ::; fm) 

Unless otherwise stated all the above def initions apply 

to both systems. The introduction of binary connectives 

which stand between the formulae they connect complicate the 

conventions for omission of brackets, and we shall not attempt 

to introduce strict conventions ( which would probably be for- ' 

gotten as soon as made). Instead we shall rely on common sense, 

normal usage, and the meanings of formulae, to make it clear 

how the parts of a formula are connected together. It is more 

important ( especially with long formulae) that the interpreta

tion should be clear, than that the reintroduction of brackets 

should be a purely mechanical process. We treat the first 

occurrence of a quantified variable, or a variable in a des-

cription - i.e. '(x )' ' (Ex)' O:".' ' ( ., x )' - as a binding - ·/.... , - ·i.. , , - •,{ 

occurrence, preserving the suffix there, and dropping it from 

the other related occurrences. We always omit a pair of 

brackets the left bracket of which occurs between two such 

binding occurrences of variables. We always write ' ( ~ . .J ( ~ )~c/ 

for ' ( ~ ) ( ( ~~) (4 0 )) ' where ' ( !,~)' and ' ( l.. .J) ' are such 

binding occurrences ; if they are of the same kind we may run 
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them both together, writing '(E~~'~J. )( ~J' for '(E~J (E~ "")(~0)'. 

We regard t h e logical connectives '&·', 'v', ' = ' 
as being stronger than any others, so that for example, we 

write """ F & T = T , 

instead of ( <""' F ) & (T = T ); 

and we re gard ' ~ ' and ' -::. ' as stronger than '&' and I V 1 SO 
' 

that we write A & B :> B vD 

instead of ( A & B) :> (B v D); 

we emphasise this fact by placing dots beside a 'strong' 

connective. Further the associativity of '&' and 'v', and 

the fact that expressions on either side of a logical con-

nective must be of type o , imply further possible omissions 

of brackets. 

(D) Rules of inference. 

Rules I, II, III, V, are the same for both (C) and (G). 

I To replace any part ~~ of a formula by the result 

of substituting a variable :~f for 1Sr throughout ~vt' pro

vided that ~G is not a free variable of ~,J- and i /1 does 
occur ' 

not/in M~ · (i.e. to infer from a given formula the 

fo rmula obtained by this replacement). 

II To replace any part (( X ~F~~) ~f ) of a formula by 

the result of substituting ~f for ~f throughout ~.~ 

provided that the bound variables of M~ are distinct 

both from ~f ' and from the free variables of ~r · 
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III Where *A is the result of substituting ~f for ~/3 

throughout .~"' ' to replace any part ~Jo. of a formula by 

(( ~~fM~ )~f )' provided that the bound variables of M~ are 

distinct both from~ and from the free variables of ~p · 
I 

V From ~o .? ~a and ~ 0 to infer ~ e • 

The remaining rules are different in the two systems, and so 

are given a prefix 'C' or ' G' . 

C.IV From a formula ~0 to infer the result of substituting 

a :ormula ~p for the free occurrences of ~f throughout Mo, 
provided that the bound var .iables of ~ c. are distinct from '6f 

and the free variables of ~f · 
C.VI. From ~b to infer ( ~~)( Mo ). 

G.IV From ~r = ~r to infer ~,/.r 4r = ~1'~f · 
G.VI From ~ .... = ~11-. to infer 'Ax( .A 4 =Ax/ .B rJ... ,..,. ·""' r" <"" 

G.VII From A to infer A {J = T , and vice versa. 
r' ..... 

Rules I-III are the rules of ,\-convereaon; rules C .IV, 

C.VI, and G.VI, are, respectively, the rules for the substitu

tion for, the quantification of, and the abstraction of, the 

variable ~f . 

(E) Axioms. 

( P ) 1) _EVR_ J P; 

2)- p J p v 3- ; 

3) £ v 9: J 9:. v ~ ; 

4) ( £ :i .9,) "J ( !'.. v E. ::> r v .9.) ; 

5) c = c.., . (System (G) only.) 
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These are the axioms of the propositional calculus; 

_E, g, ~' are all Yariables of type o . 

(D) 1) (E~E ?. }(,f0 'l ~) :) f( iiz(" ~) fori ); 

2) iv ( E ~ .! v1)(fc.: ~t 2S) :> iq (cni·1fo12, = C'i . 

These are the axioms of description; here ~ is either o 

or i , so that there are al together four of the axioms. 

( E) (.!µ)(f 'f JS = _g{f ]f) 'J (f .J.. f = _g,f ) • 

This represents an infinite list of axioms - the axioms 

of extensionality - there being one for every complex type. 

(T) .E o ~ .9.o · J .E ..; = .sJ.., • 

This axiom asserts that there are only t wo elements in 

type c , viz. T a~d F; it may also be regarded as a further 

axiom of extensionality. 

( A ) 

( Q) 

,.- f ~ f x· 
I 10(0 ) - o · .J -cdl - ~ ' 

~~ = 'l. ~ ::>. f o.~!. ,{ 'J f.0.1,. ~:;{" 

System (C) 

System (G) 

These infinite lists are the axioms of universality and 

equality respectively. 

(s) (E.J ~ (ovt) )(f 0 J.)( i:' t :J t(J!)). 

These are the axioms of selection; we shall not often 

use them, and when we do we shall always make express mention 

of the fact. 

(I) 1) ( E~ L)( E.ii t.. )(.!fi.if.); 

2) Num x / & Num v / & S , , x / = S 1 1v. / """' x 1 = y / • 
-i,: lL (; ' ' - c.. t,.. tlL v ,. .../ -<. -1. 
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These are the axioms of infinity for the type ~ ; Newman 

and Turing (1) have shown that the corresponding propositions 

for any type (}.. whose parts are not all o, may be proved from 

(I) . 

(F) Notes and comments. 

1) We have said that the above axioms contain some infin-

ite lists; this is the usual view, and according to it the 

rules must also be regarded as infinite lists. But it is not 

necessary to accept it. For if we distinguish between the 

constant type symbols o and 1,, , and the variable type symbols 

~ ' f ' .. . , and add as further rule: 'From ~ to infer ~Q where 

_!30 is obtained from~~ by substituting a given type symbol for 

a particular variable type symbol wherever that variable type 

symbol occurs in ~o ', then the infinite lists are avoided. 

2) The constants C do not appear in the system (C' ) of 

Church (1); they may be described as 'nonsense elements'. 

They were first introduced, I believe, by Turing in Turing (1). 

Ce could of course be defined as, say, F (whose definition 

can be made independently of C) ; but it is convenient not to 

do this, for then it remains indeterminate whether C is equal 

to T, or equal to F. This means that although the logic 

represented by the type o is strictly two~valued, it is 

possible to express ignorance of the truth or falsity of a 

proposition f
0 

by asserting ' ;E
0 

5:: C0 ' • Of course this is not 
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entirely satisfactory since given two such dubious propositions 

Eo and ,g , one can infer '.:eo :; 'ie ' ; but one cannot make use 

( with modus ponens) of this equivalence, since if one of the 

propositions ceases to be dubious (e.g. by the discovery of a 

proof for it), the equivalence ceases to be provable. The 

reason for introducing the nonsense elements lies of course in 

the axiom (D2) (where, it should be noted, implication, not 

equivalence, is asserted). This axiom makes invariant 

under those permutations of the individuals which leave CL 

invariant. (See section 2.) It is shown in Appendix I that 

the C's may also be defined in the system (C'). 

3) In system (G) it will be noted that there is no rule 

of substitution, although of course such a rule can be derived 

from the given rules (see subsection (G) below); it is in this 

derivation that the slightly absurd looking G.VII is required. 

In either system the following proposition is provable: 

A oc.o = A E. o .Slc:. • ( ! ooo )( fml = fTT) ; 

but in system (G) .none of the abbreviations occurring in the 

expression on the right hand side involve A J~ ' so that the 

above could in fact be taken as a definition, and A coo omitted 

from the list of constants of (G). It should then, I suppose, 

be possible to produce rules and axioms involving only T , 

Neu , Q~vo , and involving them in a simpler way than do rule V 

and the axioms (P); but I have not been able to find a set of 

such rules and axioms of sufficient elegance to be worth 
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reproducing. It is of course well known that the propositional 

calculus on its own cannot be founded on N, T, and Q; but here 

we pave the higher types to play with. 

4) It is shown in Appendix I that the axiom 

( ~ ,~) ( E_ GI V f o.i-.2£) :> l?_ v V ( !J ( f~IA ~), 

of Church's system ( C') follows from the other axioms, pro

vided these include ( E) and (T). 

5) It might be thought that rules G.!V an~ G.VI made the 

axioms ( Q) and ( E) unnecessary in system (G). But firstly 

G.VI is not as strong as ( E); f or example, we have: 

C = Co 

f x - vq.. - ·J.... 

But we cannot prove 

~2C.A_·~ o~ 

= f x - o.k - { 

= f o-A. 

by ( P ) and ( T) 

by II 

by III 

without using (E). 'Secondly, both ( Q) and ( E) are necessary 

if we require the deduction theorem to hold for system (G). 

6) In both systems (:e,C' = g , ) = ( E_
0 

:= g,
0

) is provable, 

and therefore we shall use either ' = or ' ::::. ' between -
propositions, according as to which is most convenient. 

7) In order to show that the two systems are equivalent, 

we have to define a method of translation from one to the other. 



We d~note the translation of ( C) into (G) by T', and that of 

(G) into ( C) by T' I' and use T to stand for either of these. 

( ~ J T is the translation into one system of the formula f:J.. 

belonging to the other; (A )T 
-~ 

is defined inductively as follows: 

1 ) If A is a variable, or a constant other than ,..., 

'flu (o..A.) or Q ~;.._ , then ( ~~) T is 4_,,__. 

2) < ~J.r~r )T is < EJ.r)T <~r )T 

3) < ~~r~JT is }.~r< 4-J..)T 
T' . 4) ( 1T {oJ.}) is A f oJ...( Q o (o,J..)(O ) f ( ,l~~To )) 

T' I 

5) ( Qo,A ) is ~~i1-.¥..~( TT0 (o (oJ..l} ( ~fG ( fx ::> fx))) 

In Appendix II it is shown that: 

a) If k~ is an axiom of one system, then (~~)T 

is provable in the other. 

b) If ~D can be inferred from ~o by one of the 

rules, then (~ 0 ) T can be inferred from ( ~0 )T. Hence 

provable propositions are translated into provable 

propositions. 

c) ((A )T)' T " = ,..,..;._ 
T' ' T' 

f:,t., and ( ( ~,j ) = -!~ are 

provable. 

d) ( ~~ = ~.J T =::. ( ( ~ ~ T = ( ~ J T ) , and 

( ( ~.;) (-t1c) ) T :;::. ( ~,;) ( ( ~ 0 ) T), are provable. It follows 

that it is a matter of indifference whether we regard 

a formula written in ordinary logical notation as 

belonging to one system or the other. 



The equ i valence expressed is based on, but is 

rather stronger than that intro duced by Turing in Turing ( 1). 

He shows there that his definition defines an equivalence 

relation between systems, and so it follows that system (G) 

is equivalent, in his sense, to his nested type sys t em; for 

he has proved that the latter is equivalent to (C). 

8) We write ' ~~ ~ B ' as an abbreviation for 'A 0 can 
~~ ~o ~ 

• 
be derived from ~ by applying the rules and aocioms ' ; and 

r ~o ' for ' ~0 is provable ' . (A rather more accurate version 

of the meaning of these signs is due to Russell; ' r ~~ ' means 

that if ~0 is not provable then the author stands convicted of 

error.) The proofs we shall give will be of different kinds: 

a) True formal proofs; 

b) Proofs of propositions that involve a variable type 

symbol, and which proceed by an induction over the con-

struction of this type symbol; such proofs may be regarded 

as either showing how a formal proof - for any given 

type symbol - could be constructed, or as constituting 

a formal proof in a system containing the additional 
o (.. ( ./... f.i tff ) r rule: ' From ~0 & A6 & ~ & {SD . • ~ c to infer f:o ' 

)' 
( where ~ o represents the given proposition f or the 

type y); 

c) Proofs of propositions of a given general form; 

these proceed using metalogical symbols, and can be 

regarded as establishing schemes for formal proofs, or 

as establishing derived rules of inference. 
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We shall usually set out proofs - of whichever kind -

line by line. On the left hand side there appears a consecu~ 

tive numbering of the steps of the proof, wi th a prefixed 

letter to indicate the nature of the step; the letters we use 

are: ' H' to indicate the making of an hypothesis; ' A' to in

dicate the introduction of an abbreviation; and ' P ' to indicate 

a proposition which we desire to prove; steps without prefixed 

letters are propositions which are consequences of previous 

steps (excluding, of course previous steps having a prefix P). 

On the right hand side appears some indication of the way 

in which the proposition occurring in the middle is derived. 

The most important method of proof is the deduction theorem; 

this is, in effect, a derived rule of inference: 'If from the 

hypothesis ~o one can infer ~o by application of the rules and 

axioms, but without generalising on, or substituting for, or 

abstracting the free variables of f:v , then one can infer 

4 ~ ~e '. The free variables of ho are said to be restricted 

by hypothesis ; for each hypothe~is made in the course of a 

proof we indicate on the right hand side the variables which 

are restricted by it, and until the deduction theorem has been 

applied these variables appear without suffixes; this conven

tion ( which, like the similar one concerning bound variables, 

is due to Turing) serves to indicate those variables which may 

not be substituted for, etc. The step at which we apply the 

deduction theorem, and s o pass from conditional to provable 
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propositions is called 'the elimination of the hypothesis' and 

is indicated by placing the numb~r of the hypothesis in 

brackets on the right hand side. Thus a simple application 

of the deduction theorem might appear as follows: 

H .1 

... ............ ....................... 
n :l?.c L:' ! 

'~ 

n + 1 ~0 [.~,;.. ,Xp ] ~" i:, ( H.1). 

(We write ~ 0 [~~'l f ] etc. to indicate that the variables~ 

and Xp occur free in the pr oposition ~0 ; of course both or 

neither might also occur in ~0 ). Another kind of argument 

which is very frequent is of this kind: 

H.2 ( ~ ) 

....................................... 
n ~c 

( ~o [~ ~.J ,:) B ) 

( (E!_J ( f:o [~J) '.:'.) ~Cl ) 

n + 1 Jao (H.2 ), 1 • 

The steps in brackets would be omitted, and the right hand 

side of step n + 1 is put in to show that proposition 1 has 

been used after the elimination of H.2. A particular case of 

this form of argument is when H.2 is of the form: 

.2f ol = ~.:A.' 

where ~ ~ does not occur free in !J ; the proposition 1 is then 



trivially provable, and it and its mention in step n + 1 

would both be omitted. The introduction of abbreviations 

can be effected in this way. 
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The convention of indicating on the right of a hypothesis 

the variables which it restricts allows on~ to introduce also 

variables which are not restricted by it, but which are regarded 

as being bound by a universal quantifier; thus we may write: 

H .1 (~)' 

instead of 

H.1 (2£) • 

We use the number of a theorem, or of step, to stand for 

the appropriate proposition, and we sometimes use 'L.H.S.', 

'R.H.S.' to stand for the . proposition which is on the left or 

the right of the principal logical connective in the previous 

step . 

Of course we leave out a great many steps in the proof, 

especially those which represent well known properties of 

equality, the quantifiers, and the descriptions operator; a 

list of some of the most often used theorems of this kind is 

given in Appendix III. The sign ' /\ ' on the right hand side 

means that the rules of conversion have been used; 'P.C.' means 

that axioms (P) and rule V have been used. 

We shall often have occasion to prove the validity of 

certain inf~~ences; such a proof will also usually be set out 

line by line, _with the above conventions. The premise is marked 
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as a hypothesis; and the fact that, in general, the variables 

of the premise are not restricted ·is shown by the absence of a 

list of variables on the right. We also use . 'H ~ ~0 ' to mean 

'from the given premise~~ may be inferred' - it being evident 

from t h e context what 'the given premise' is. 

(G) Development o·r the system (fil. 

In this section we prove some theorems and modes of infer

ence in (G)~ partly because these results are needed for the 

demonstration of the equivalence of (C) and (G), and partly to · 

show how the system works. 

1 ) 

byG.IV. 

If. necessary, change the bound variables of ~ so that they are 

distinct from f ·A and the free variables of '! Y' and Q.i . • 

Then H \- F J.f iJ: P = ~ J.f f! P by II 

2) (Subetitution). Let ~o be a formula of which the bound 

variables are distinct both from ~f and from the free variabl es 

of ~f ' and let ~ ' be the result of substituting ~f for tlire 

:f'ree occurrences of x .... /l throughout M • then M /- M'. 
I ... o ' ,., c. ~ o 

For H.1 . M 
-:vO 

:~. 2 ~ o = T by G.VII 

3 o'* .~~ cJ = -~Jip .T by G.VI 
' 

4 < ~~r ·Mo ) ~~ = ( ~Jio .T)~ f by G.IV' 

5 M' ,.,,o = T by II 

6 M' by G.VII 
I"' 



3) (Generalisation). 

for H.1 

2 

M o ~ ( ~p) (Mt! )· 

Ma 
Mo= T 

3 

4 

,\3t .r~ o = A*r ·T 
I 

( ~r H ~ . > 

by G.VII 

by G.VI 

22 

by definition. 

It will be noted that G.VI is used in proving the validity 

of both substitution and generalisation. 

4) t- .! <il = ]f.( • 

For c C) = Co by ( P5 ) 

( XQ~ -~rJ) c0 · = (,\ Il .r .2£ ,J) Cc by G .IV 

}£ tJ. = ~,).. by II 

5) ~ J2.c> = .9.c • :::> • :12. ., '"J .9. ..., · 

By substituting(~~~·~) for f ~c in (Q), and using II. 

6) I- l. .;.. :) Jl. .j._ = ~.:{ 

For 3.. ,.;.. • ..) • (X..2 ,j,:-2 = 1£ ..i)~ ..\ :::> ( ~e~·e = .!J) 3.. .J.. by. sub~ 
. st1tut1on 

in ( Q) 

by II, P.C .,4). 

7) 1- y J = ~.,, • _:) . X · = y 1 :J X • = Z J . 
- 11\. ~ - ·l\.. - •JI\. - $... - ...... 

By substituting (X ~·2£~ = YJ.) for f. cJ, in ( Q) • 

8) t- ]ffl = Jl. f J !.1:fr = r.13..f · 

By substituting ()er .f. J.f ~f = f~ e) 

9 ) \- fc~ T & ! F • ':) • f oci.P • 

for f
0

tJ in (Q), using 4) and 
t P.C. 

By the same argument as is given to prove (C) in Appendix I. 
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1 o·) '-- . ( ) r T "':"> I!o = Q o. 

By P. C . and ( T) • 

11) )- ( .!f,J (F -:::> ~0-"'x ) = (F '::) ( .!f.1'.) ( f .._.!f)) . 

Both sides are provable by 3) and P.C., and therefore equal by 

( T) . 

1 2 ) \- ( i; ~ ( T :'.' ! .:,~ ) = ( T '.:) ( 1f ,;1..)( f~~ 1f)) . 

For ( T :) f~1fo1.) = f c.£1fcl by 10) 

X1f~.(T :> f oJ.....!f ) = f "~ by G. VI, ( E)' 7) . 

[C 1\~.j_ . ( T' ~ f ~]f)) = A .! .k• T] = (f 0~ = A1fi{· T) by substitution 
in 8 )~ 

(1fJ..) (T ~ f. c.i(!) = ( 1f J) ( f. c,j_!) by definition 

12) by 10)' 7). 

13) \-

By suitable substitution in 9), using 11) and 12), and V. 

) ( 1 n \ 14 The deduct ion theorem) . If /};,., , ..• , .!;; 0 - ~(I ' by an argument 
n not involving abstraction of the free variables of A 0 , then 

~ 

A1 n-1 I- n ~e ' ••• , A" A ..., -::::> ~~ · 
-"' · "'"' , ~ 

Let ~1 , ... ,Bm be the steps of tl:me argument, each ~~ being an 

~~ ' or an axiom, or an inference from tlioo preceding ~~ by a 

single application of one of the rules of the system (G). We 

1 n-1 L suppose that f::~ , .. . ,J,t;) r An ? Bk. has been demonstrated 
,_ () IV() 

for all k<i; we show that it will also be true fork= i. The 

theorem thert follows by induction over i, since is .~tP 

and the result is trivial f or i = 1 . 

If ~~ is an ~ ~ or an axiom this result is trivial. If 
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Bi is inferred bY. an applic ation of rules I, II, III, V, the 
~ 

result is easily obtained (see Church (1)). 

I:f }?~ is ! .if' 3r = ~"!' Xp , and is obtained from }?~ ( 'f-f = Xf ) 

by G.IV, then j- ~~ ~]: by substitution in 8) (which has no 

boundv· var iables) . Hence 

result follows. 

If ~; is A *-r ·T:d... = ~~f ·! .v and is obt a ined from ~! (!J.. = !J) 
n 

by G.VI, where ~f is not a free variable of t;0 , then: 

H f
H _ t-

( ~) (~~ ::> ~!) 
~~ :> < "5p )( ~J. = '£ .;) 

by generalisa tion 

by substitution in 
12) ( free variables 
of ~n distinct from 
x ) ' v . .... 
by I I I. 

by substitution in 
(E), V. 

Thus f:;,~ ,) ~! ~ {!; ~ ·_:> ~ ~ , and the result follows. 

If ~~ follows from ]~ by G. VII, then \- ~~ ':l ]~ ; 

for 

and 

(from 

I?. ·:> .2. o = T 

Q " = T ':) I?. o 

T = I?. o · :> · T :J Q o 

by P .O., (T). 

by 5) and P .O.) 

The argument is then as before: and this completes the 

demonstration. 

15) (Rule IX - the substitution of equals for equals.) Let 
I 

~~ be a part of ~, and let ~~ be like MJ. except that the 

part ~f has been replaced by .IJf ; and let £r .. . , ~h ' be a 

complete list of the variables whose occurrences in A are ,..., ~ 

I 
ii 



free in f:f" and bound in ~ ·.i.. . 1 

Then I- ( ~c r ···~·f!t = ,\ X. y · ··'i1 ~ ·~r) 
· Let M.;.. be represented by ' ( ... f!p· .. )'; 

25 

let £ pfs · .• r be a 
I 

variable that does not occur bound in ~ .,i, and let ~f be like 

~ except that its bound variables have been changed so that 
~ 

' .'2 y, • . • , ~ f> , do not occur bound in -!;/" • 
I 

1 . ~,J(. = ( •• • ( ( A ~y· .. ~a ·~r ) ~ r . .• ~b ) ••• ) 

2. MJ.. = ( A ff~ · .. v · (. .. ( i 2 ··· <!i, ) ... )) (~ )(.r ··· ~s ·~·\ ) 
I 

L\c ... de .AA ) = Oc r ... d c .B11 ) 
~ ~ ~ ~ ~ ~~ ~r 

H.3 

5, 
~.,i.. = ( ~ ~ i" s., - • ~ Y' ( •. • ( t ~ r . . . ~ ~ ) ... ) ) ( -l ~ Y • • • ~b • ~. ) 

M.1 = M° .J 
N '"- N~ 

6. 

by I, III. 

by III, I. 

by G.IV, 7 ). 

by II, I. 

by 14). 

It follows, of course, from the equivalence of ( C) and (G), 

that rule IX is also valid in ( C). 

( H) Closed Formulae. 

A closed formula is ·one which contains no free occurrences 

of variables. A closure of a formula {l~, is one of the 

formulae 

A b ,, • •• er .A, -
f"" I A ft"'-...,~ 

i 

where ~~ ' •.• ~~ Y' is a complete list of the free var iables of 

~. ; the only closure of a closed formula is the formula itself. 

A combinatorial formula is an abbreviated formula involving 

the constants of t h e system (( C) or (G)), and the symbols 

( 1) More precisely: ' the variablr~ whose free occurrences in 
f:f are bound occurrences in !tl . 
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Wrr.y l.pr)t.A.r (} and KJ.frA. , but not the symbol ,,\. . Thus a combina

torial formula consist.s of a single symbol, or is of the form 

*"f ~f , where 4J.f and ~f ar~ combinatorial formulae . . The 

variables of a combinatorial formula all occur freely in it. 

Theorem I 

Any formula is provably equal to a combinatorial 

formula. 

Lemma A 

= 
This follows from the definition of W and K and the rules of 

conversion. 

Lemma B 

If !.l,. is Ji combinatorial formula, then there exists a 

combinatorial formula ~"f ' such that: 

+- ~ ~f •~ c{. = 

For if ! f is not a free variable of 4~, ·then: 

I- ~~f ·~ .A. = K . .(/l ~~· 
If ~~ is ~P ' then the result follows from lemma A. We suppose 

I 

therefore that ~.l consists of more than one symbol, and that 

the lemma has been demonstrated for formulae whose length is 

less than that of *~ · But · 

t- ~<A. = ff<iy Y( , 

where ~ and '£ are combinatorial formul.ae. Therefore 

= ~~f . 0 ~r •!,{r) ~((,\~f . ¥1) z ) 

wt( f ( y (· J (·( y f J ( A~ f ·.~ .~ Y) ( .X ~ { • ¥, y) . = 
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But (,\~f .Jf.Ar ), ( A~t ·1y ) are provably equal to combinatorial 

formulae by hypothesis, and hence so is ( ~~t ·~~); the lemma 

now follows by induction over the length of the formula. 

We suppose now that the theorem has been proved for all 

formulae · in which there are less than n occurrences of the 

. symbol A, and we suppose that the formula ft.1. contains just n 

occurrences of A . At least one of these occurrences must be 

an innevmost one; i.e. there must be a part ( A ~ y · ~f ) of A ~ , 

where ) does not appear in ~f: but this is provably equal to a 

combinatorial formula ~d ( ' having the same free variables, and 

hence, by rule IX, ~~ is provably equal to a formula having 

only n - 1 occurrences of A ; the theorem now follows by in-

duction over n. Q.E.D. 

We call a combinatorial formula which is provably equal 

to 6. , a combinatorial equivalent of ~~ · 

Corollary to theorem I 

If ~~~ are a set of formulae which satisfy: 

I- f O•I.. X,( ' 

where X ~ is a constant, or a W, or a K; and 

• 
\- E Ol,,._r, r. .~r & Eor lf. r => • ~ ;,.Jt r lf.r ); 

then, if ~~ is a clo~ed formula, 

\~ Eo..t. ~.t.. • 

For the combinatorial equivalent of a closed formula contains 

only constants, W's and K1 s9 ta8 QOPOllaPy fellows fPoffi ta& 

a~eiorn ef ext ~nsio-g,al itb" T" 
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Section 2. Maps and Permutations. 

In thiis section we introduce a number of definitions 

whibh will be of use later, and prove some simple properties 

of the defined objects. 

~,1,r : Q:r r -7 A ~r ·~ '<f ( CJ.rr~J 
This defines the product (in the sense of transformation 

theory) of F and G; we have 

2. 1) j- . 

so that we can omit the brackets from a multiple product. 

''fl \ ( uni q.~,.1 -~ ,,..f.,.r . xp, xf )( fx = !.Ji. :> ~ = x) 

(Here, as we shall often do, we insert an index to indicate 

the type to which a defined formula refers; this enables us 

to omit the type suffix, which is often extremely cumbersome; 

we may also omit the index when this can be done without am

biguity). 'Uni f .f' (or rather the assertion of that formula) 

means that f is a one-to-one map of type f into type ~. 

ont :~·~r) -~ ~f.lp ·C~ -t.)(E~ef)(fx = ~) & fe r- = c 
'OntJ.~ !' th t f · t f t t means a _ is a one- o-one map o ype ~ on o 

I 

type cA. , and that it maps the nonsense element of one into 

the nonsense element of the other; this latter restriction is 

inessential, but very convenient. 

Per:JLJ..A 
1 

·-) Ontd..l 

' Per~f' means that .f is a permutation of the type ,i._ which 
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leaves the nonsense element invariant . 

2.2) \- Per"' I .A 

Rec ~~lJ.f) ·~ Af~ !i,;_.( 1 ]£f)(fx = g) 

'Ree f' represents the inverse transformation to f; it is 

interesting to note that , due to the nonsense elements, Reef 

is defined and has useful properties even when f is not a 

one-to-one map onto. For example, we have: 

2 .3) 1- Unif ;Af & f .;.fCf = C<A . .J . Rec PiA(Recf't ) = f t3 

Unif.J.r :> ( Reef.;.{' : f 'A.f ) = r fl 

2.5) 

A.3 

4 

5 

6 

7 

8 

9 

10 

11 

ontf o</1 .::> (f o1.r : Recfdf ) = r~ 
We prove the first of these. 

,Vnif~f & f· '-f Cf = C.· 

Rec f! 'k( Recf)2£f = (-1 ~.~ )~1x.!l )(fx = a) = ~rJ 
M 0 J.~ ~ ~ lf.p g ~ . ( 1 il.p )( f1l. = !i) = 1£ 

( 1 g f )(fJL = fxf' ) = 1£r 
M1£ 3 ( fx ) 

I 

1£ (.1 ,6 C f & M2£; g i{ • :) • fxf 

~p. ,6 Cf :;, C"(Mlf.r) = fx f 

MC ,, C...1. 
( '"' 

lf.p = C13-=> L'« Mlf. r) = fxf 
Ree f\ '" ( Reef) = f 

2.3) 

= a . - .;.. 

(f) 

H .1 • 

( D) • 

5,6,(D) ·. 

5,H.1. 

8,H.1. 

7,9,(E). 

(H .1) . 

One of the features of the system of logic we are using 

is that no individual, except CL, can be singled out (or named) 

by a logical formula. This feature is common to some other 



30 

systems of logic, and to many mathematical systems; for example, 

one cannot single out a particular point in Euclidean geometry . 

.It is most simply expressed by saying that the system is 

symmetric in the individuals, just as the points of space 

occur symmetrically in Euclidean geometry. 

Of course one can, by an act of imagination, concentrate 

one's attention on some particular individual, or point of 

space; the form of words used in then something like 'let x 

be an individual', or 'let P and Q be distinct· points of space'. 

But this focussing of the attention is only an accompaniment 

to the mathematics (one marks two dots on a piece of paper, 

and labels them P and Q): and further, it is only temporary; 

for the conclusion of the argument must, on account of the 

symmetry, be of the form 'for any individual ..• ', 'for any 

pair of distinct points ••. '. If such an argument is presented 

formally, it must always· appear as an instance of the use of 

the aeduction theorem: the premises are hypotheses, and the 

(general) conclusion is obtained by eliminating them. The 

temporary names ('x ', 'P', ' Q') that appear in the premises 

are formally represented by variables which are restricted by 

hypothesis; and one emphasises to oneself - or to one's 

audience - the fact that they are so restricted, that they 

cannot, as long as the argument is in progress, be generalised 

on or substituted for, by drawing little pictures of the 

objects and labelling them with the restricted variables 
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which represent them. 1 This giving of temporary names to 

objects is a matter to which we shall later return. 

We wish to be able to express .the symmetry of the system 

within the system itself. To do this it is necessary to define 

the changes that are undergone by objects of higher type, when 

a permutation of the individuals is made. We consider the 

rather more general case of the transformations induced by a 

map of one type into another. 

Let "- and f be two given types (complex or basic); to 

each type y, we define the transform r of ( as follows: 

a) If f is not y, nor a part of f , then y is y ; 

b ) If y is f , then 'f is o{ ; 

c) If r is (bt. ) and .'? is a part of )' , then y is (S~). 

Due to the def~ition of 'part' these rules define uniquely 

the transform of each type. We now define: 

1 Tra y YL~) -'> AID. "ff. f .f. if f i s not y, nor a part of y; 
~ 

Tra. · k lJ..p) . -7 .A!!'.l o\f' .'fil _ 

Tra li - ) .~ ., m.J f 1:. c: a '";" . Tra~ m( f ( Rec bt. ( Tra~m) a)) 
j)£ (o )(.J.. 7 . IL-V\ ,.. oc. - e - - - -

if is a part of ( ~~). 

'Tra' is short for 'transport'. If m~f is a one-to-one map 

of (!> into d... , then TraY.m is a .one-to-one map of r into y; the 

map thus defined is analogous to the transformation P ~ MPM- 1 

undergone by an operator in a spa ce when the coordinates 

(1) I have sometimes listened to lectures at which the only 
things that were written on the blackboard were the symbols 
of restricted variables. 



undergo x -7MX. We have the following theorems: 

2.6) r 
· 2.7) r 

Unim.Ar. 

Unim f ..") 

Uni( Tra r fil f ) 

bt ( i ) f> ( ) Tra m.,,l £ 0~ Tra fil"; .2£ t. = Tram.,-< , £. ..- .2£ t. 
I ( I 

(provided (.h \:: ) is not 1
). 

Both theorems are trivial if ( ( = ( 6 e)) does not have f as a 

part; we suppose that 2 .6) has been proved for types 8 and ( , 

and give a proof of both theorems for type (~t ); it follows 

that they are provable for all types. 

H .1 

.A .2 

3 

4 -

' 5 

P.6 

H.7 

8 

9 

10 

11 

12 

unim. ·r 
M; r -> Traf m. 

UriiM 0 & UniME. 

M?i€ r b'c: ( M{ '3.. e,) = M .&(£ ~t.(Rec;£ M ~( M('3_(:)) ) 
i ( 1' ) l> ( ) M l: s i. M 'ii. 'j;, = M l: n1:. 'il 'G 

"£ bi: 
M '~ £. &i. =- M .§ ~L :::> £ ,,,e:. = .§ .i;t,... 

(. b( 
M'al.!: 5 = M E .&·c 

M&-(U c. ) = M ~ (.§2: ~) 

P.6 

2.65t.. ) & 2 .7s'- ) 

In the same way we prove: 

2.8) r
H .1 

A .2 

3 

4 

Ontm.,{(3 "J Ont ( Traf m,~f ) 

Ontm -lf 

M .. , -::::> Tra( m 
Y'y 

UniM ( 

M $~ - = Mb 
£ () t.. l:i;f 

i~ t,. 
Ree M 

Cm) 
for all r . 
2. 6 ) & 2. 6 ) .. 

Definition .. 

3, 2.4). 

(£., .§) 

H.7,5. 

8, 3. 

(E)~ 

(H. 7 ). 

11, 5, (H.1). 

(m) 

For all y . 
H.1, 2.6), 

Def j_ni t ions. 



H.5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

.!: ht = 

Mb t: r = 
-&-r.. 

( M~ 

Mb .:: r . = I h 
-11t. 

M "(;. r = _ ..,\;. .§: 

f. 
: a .,..,. : M 

- .i,t. 

Rech M&) 

l! : I i;. 

( E.!:b:t. ) (M 0 ~ .!: = !! ~ f: ) 

c b~ = ~~t .c& 
l>~ b ~ M c~~ = A~i .M (C b:.:. (RecM ~) 

M ~ t c ... ; \ M5 C 
Q- = " ~l . it 

Mbt: c 
b~ = 

(~, 1!) 

: Ree-it. Mt. ) 
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& t 
2 . 8 )., 2. 8 ) ' 
2. 5) . 

(H .5 ). 

Definition~ 

It 

10. 

H .1, 2 .6 '> . 
3, 9, 13. 

(H.1). 

When we consider, instead of a map of one type into 

another, a permutation of a type, the ~bove definitions may 

be taken over, V being now just y , and f being replaced by 

,-J.. • We then have further: 

2. 10) ~ Tra' I~ = rY 

2 .11 ) I- Per12 .u._ & Per.9. J.J. . Tra £ cl J.. Tra .9. .(..._ = Tra r ( £4.: SJ.J 
( £_.3.). H .1 L .H .S. 

2 

3 

4 

5 

6 = 
&i:. ,s; 

Tra .E : Tra -!1 

f 

f 

£· i Ree t (T ra (.£ : £.)) 
See 4 of 2 .8). 

Rec(Tra2£ : tra t!l) 2.1 1 ~ ), 
2.11 t. ). 

( . ( . * Ree Tra~~) : Ree Tra~p) 

The theoren justifying this step is easily proved. 



7 2.11 St ) 

2 .12) I- Per:E.,,t.l. J Ree ( Tray' £~.J = Tra (Rec:e..,(~) 

. H .1 

2 

3 

4 

5 

6 

7 

PerE_ <k 

Tra 'r'Q: Tra f (Rec.12) = T-rav (e. RecP.) 

= I r' 

Tra <£(TraY(RecE)~ y-) = 2£ y 

( 7 ~ f)(Tra {~ =- .?Sy) = Tra{(Rec:E).!r 

Rec(Tra {E_) = Tra r (Rec£) 

2.12). 

(H .1) 

H.1, 2.5), 
2.10). 

4, H.1. 

5, (E). 

(H.1). 

If d.. is a complex type, the use that can be made of its per

mutations is rather limited, because 2.8) fails when ( bE) is J... . 

But if •\. is a basic type, this difficulty does not arise, and 

we now restrict our discussions to that case. We define: 

Inv~~~ -~ ;\ f .v <£ i1. )( Perg ::> Tr~pf = f), 

Cot~~<l ~ , 4~ .(E£ i-L-)( Perg & Tra"£! = ~). 

'Inv' is short f or 'invariant'; 'Invf' means that f is 

symmetric in the individuals (excluding C~ ). 'Cot' is short 

for 'conjugate'; it is easy to show, using 2.10) - 2 .12), that 

it is an equivalence relation. 

2.13) l- Inv rr (o .. q 

H .1 PerE..J...J... (£) 

A ,2 p ~ LaJ..) --7 Tra0~ E 

A.3 p-1 
o<;..to ) -) RecP (= Tra ""' (RecE_)} . 2.12). 

4 P(AL£ ., .T) = x .T 
- .,1.,. = P- 1 0L£.~: T) Tra, A.3. 

.. 



5 

6 

7 

8 

9 

2.14)j-

H .1 

A. 2 

A.3 

4 

5 

6 

7 

8 

9 

10 

1 1 

2 .15) \-
H .1 

A.2 

A.3 

4 

5 

6 

7 

fc~= ~.2£""-.T :> P-
1
f 0 "'- = A .2£""-.T 

-1 . 
P f 0 ,J,_ = t\,2£~.T J f o..(. =A,2£;,_.T 

(Afctf...·f = ·x.2£~ .T) = (1,f0~ .P- 1 f = A ~.~ ·T) 
Inv u!P,J.\ (;\f 

0
,;.._.f = A 2£ ~· T) 

Inv IT (c.q 

Inv i '-lot) 

Per12u 

P -) Tra 0 t. n 
Ol(Cll) ..r:. 

p-1 -? RecP, 12-1 _..,....7 Rec12 . 

Trao£-1 (f .:.""' ! 1) = p-1! JR-1!) 

Jf ,n. :> l ( P-1f ..,J = £-1
( Lfc v) 

'\I Jf.>i.-:) N J( p-1!0J 

r..>Jf ~<- :J L ( P-1f '- ) = £-1 (Clf ..,.;.) 

l ( p-1 f ~c) =· 12.-1 ( t. .!,. " ) 

Tra 4.(c)~l .l? _(} f O'-' = J2 ( (, ( p-1 f ~)) 

Inv £,L(Dl-) 

InvK,\(-: 

Per12 c.c. 

P '( _., Tra·f £ 

p f ..ry RecP( 

= f 
-v ~ 

,sJ.. ~A \ -.>( 
p• / KrJ..fd.... = lS.1..·P r·C\.Y.

1
J .P lS) 

= \e~ ~ J .P.~( P~) 
I 

= K ,i{.~ 

2 .16) 
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4. 

2.5), 4. 

5,6,(T),(E). 

7, Tra, (H .1) . 

.•· 

(.Q) 

2 .f/), Tra. 

4, (D). 

4. 

(D),H.1. 

Tra. 

f>, 2. 5) . 

Inv, (E),(H.1). 1 

Tra. 

Tra. 

H.1, 2.5). 

(H.1). 



2.16) \- InvW"-tlff>l.tfr ) 

Proof similar to that of 2. 15). 

We are now in a position to prove: 

Theorem II 

If f!.J... is a closed formula, then r Inv~ .~: 

For we have: 

2.17) Invf "f & Inv~f . J . Inv( f , <r~r ); 

the proof of this is immediate using 2 J/) and the definition 

of Inv. The theorem now follows from 2.13), 2.14), 2.15) , 

2. 16), and the corollary to theorem I. 

We can now express formally the fact that the system 

is symmetric in the individuals. To say that no individual 

except C ~ can be singled out, is to say that it is not 

possible to give, in the system, a complete and definite 

description of any other individual. Since the system con-

tains description operators, this may be more formally ex-

pressed by saying that all closed formulae of type i are 

provably equal to Ci . 

2 • 1 8 ) I- In vz 1. ::> Z 1. = Cc. 

H.1 Z i. ~ Xi, & 2S 1. ~ Ci. & 3.. a, ~ Ci, ( 2S,il,) ~ 

H.2 Il 1.1. = A~ L. . ( 1 !!.J ( & = 2S :> !'. = "3_ .&.& = l J "!!.. = 2£ & 

3 

4 

5 

( & /: z & ~ ~ y_) J Xi = ~ ( £.) 

Perp & ms /:. 2£ Per , ( D) , H. 2. 

N Inv~ . Inv. 

H .1 ·:) .ev Invz 1.. ( H.1, H.2). 



6 

. 7 

1£ " fo C i- _') ( Ey_ t ) ( Y.. /:. .! & y_ /:. C) 

Inv~ l.. :::> ~ i:.. = Ci. 

(I). 

5, 6 . 

Corollary to theorem II. If ~L is a closed formula, then 

t- ~ L = C,_ . 
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Since the translation from (G) into (c) of a closed 

formula is closed, theorem II is also true of system (G). In 

some of the lower types one can give closed formulae which 

represent each of the invariant elements of that type. For 

example, in types o~ and tL the only invariant elements are 

represented by: 

A .!~ ·T, ~ 1£ 1.. .F, ) 1£ 1, ·.! = c, A.! i, •.! fo C; 

and 

~ 1£ ,, .X, A 1£l .c ' 

respectively. But it is easy to see that in the higher types 

the representation of all invariant e·lements by closed formulae 

is not possible. In type o(o ~) there is a formula corres

ponding to each natural number: for example 

~ f o t .( E,2£ L )(Ey_i)(~ l )(fx & "fx & ]S fol & (fz :) ~ = ! v ~ = ~)) 

corresponds to 2. Hence any element in type o(o(o ~ )) that 

corresponds to a set of natural numbers is an invariant 

element; thus the invariant elements of this type are non

denumerable, and therefo~e they cannot all be represented by 

closed formulae. A rather similar argument shows that the 

same is true of type o( v~ ). 
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I do not know at what stage in the development of 

symbolic logic the invariance of the logical operations first 

came to be realised; the idea is certainly implicit in 

Fraenkel's proof of the independence of the selection axiom 

(Fraenkel (1) 1922). A complete statement, and a discussion 

of its implications was given by Tarski and Lindenbaum (in 

(1)) in 1936. Mautner (in (1)) uses the group of permutations 

of the individuals to discuss and classify logical objects, 

in the same way that Klein and Weyl used the full linear group 

and its subgroups to classify geometrical objects; Mautner 

in fact gives his paper the subtitle 'An extension of the 

Erlanger programme', and follows as closely as he can the 

exposition given by Weyl in his 'The classical groups'. ~ut 

I think that the effort involved in making the parallel a 

close one is not sufficiently rewarded by any increase in 

elegance or insight to be worth while; what he expresses in 

terms of logical tensors and representations in Boolean rings 

can, I think, be more lucidly and succinctly expressed in 

terms of the hierarchy of types and the operator 'Tra'. 



Section J. Virtual Types. 

One often wishes to concentrate one ' s attention on 

certain cho s en elements in some type - for example, those 

elements of the type ~l ( L0 which represent the natural 

numbers·- and on the appropriate elements in higher types 
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which represent functions of the chosen elements, taking 

chosen elements as values, and so on. The formulae that are 

required in proving assertions about these elements soon 

become very unwieldy; but if one introduces a new basic type, 

whose elements correspond to the chosen elements, this un-

wieldiness is avoided. The new basic type is called a virtual 

type; when it is introduced, so must all the associated com

plex types, and the appropriate constants - Tf or Q, ~ , C -

and the appropriate axioms - (A) or ( Q), (D), ( E), ( but not 

necessarily ( I ) ). Any expression in this new extended system 

may be translated int o an expression of the old system, which 

will have the same intuitive meaning; in this way it is pos-

sible to show that the new system is consistent if the old one 

is: and further that one can add to the new system additional 

constants and axioms - for example, in introducing a virtual 

type for the natural numbers one might add a constant for the 

successor function, and Peano ' s axioms . - provided one can give 

a translation of the constants into def inite expressions of 

the old systems in such a way that the translations of the 



new axioms are provable propositions of the old system. 

Let ·"'- be the type to which the chosen elements belong ,* 

and let P
0 

represent the set of which they are the only 

members, and let r be the symbol adopted for the virtual 

type. Then evidently the translation of 

will be 

( lf.;{)( p Q Q-.~ ':) ~ ~.;.. ~) , 

where ~~~ is the translation of ~c~ · The range of a variable 

in the translation has thus to be restricted, and the first 

thing to be done is to find out what is the proper restric-

tion for each complex type. Evidently the definition of the 

restrictions and the definition of the translation of a 

formula must be such that the translation of a closed formula 

will satisfy the restrictions. There appear to be two methods 
, 

of ensuring that this will be so; in the first method the 

definition of the restrictions is simple, but the translation 

( 1\3S~ ·Ar )T of .~1f: \ · ~r is not ,\ ~ • . ( ~r )T; this method will be 

used in connection with a similar problem in section 4. In 

\ T · ( T the second method (Al .A ) is A!~ : ~r) , but the restric-

tions are more complicated; it is slightly simpler to apply 

this method to the system (G). Of course, the complications 

that arise are largely due to the necessity of ensuring that 

the translation of the axiom of extensionality in one of the 

added types is a provable proposition of the old system. 

We suppose that it is not o. 
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Let f be a type of the system ( 'f ) (i. e: the system 

in which T is one of the basic types), and let f be the cor

. responding type of the old system (i.e. it is obtained by 

replacing r by d.. throughout ) . Then to each p we define an 
1 

restrict ion P,~ equivalence relation R0 ;;t- , and a 
' 

for the 
... I' 

type f . It is important to note that these depend on 

for several different (3 may give rise to the same f . The 

definitions depend also on P0~ , and we could abstract with 

respect to it - as we did with respect to JJJ "f when defining 

'Tra'; but, because of the consequent unwieldiness of the 

formulae, we do not do so. The definitions of R and P are 

inductive. simultaneously 
(Ii Ropp -) Q - - if c is not 

rr 
part of f' ; 

if ~· is a part of S . 
l 

t R -- A,:§;; . 
0 f' ' /Vr' o I 

if T is not f , nor a part of p; 
' P o,t_ ~ Po. . 

' 

3.1) t-

. G 
·-~ 'f -- .(x -6 )(\T '"{')( P ~ x & P - \1 & 2£ .';! 3.. • ::>. 7 /\_ )'b - a.. 0 i> - "'& a.. 

x __ = x & : 
- p - -

P~~(ysJ (fx) & fx .$5- 'f:i.) 

if ·r is a part of y . 

l"u & (".J ::> r> & --i 

~ r = 3.. r x r = z. r · · · x t = ~ 'f x P. = ~Ji · 
For the proposition is pr ovable if ·r is not a part of f , and 
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its provability for other types follows from the definition 

of' ~ ' by induction over the length of the type symbol. 

A clea rer i dea of the significance of R and P is obtained 

by expressing them for functions of several arguments; in 

fact we have: 

3.2) +- f a- -- ~ g __ --
, Y ·" )>b t'l'' . .-02. 

y -5 € =- (c _ •.• ,dr- ,e -)(P c & ••• & Pd & P e . :J . - r -.., - i - - -

f . - - ed ••• c cl o· ed •.• c) 
-rr.v· ·· ~t- - - J:<Pf· .. ~~- -

3.3) 1-pfY---~E f __ ... - - (.Q. rr, •• .·9:n ~~ ,.Q.-y', ••• d : ,~~)( PY'Q & ••• & 
-ry, ~,oi. , 11 ~ 1:1 

p ~ 9: · & p.E: ~ & p V .Q. I & • • .& p ~ d. I & 

p "-~1 & 

e ~ e' - - -

.Q. ~ .Q.' & ••• &· .9: ~ .9:' & 
rl 

• :::.> • P' ( f _ _ ~ - ed ... c) & 
-f'r~- - ~£ - -

f _ __ed .•. c C:: f ._ _ ~ c e' d' ... c' ) 
- f r·~ ·b~- - - -11r#~ - ~, - - -

That these e.re provable can be shown by induction over the 

number of arguments. If we translate P and R by the words 

'proper' and 'equivalent', then we may say that two functions 

are equivalent if they take equivalent values for proper 

arguments, and that a proper f unction is one that t akes proper 

values for proper arguments, and equivalent values for 

equivalent arguments. 

In defining the translation of a formula of (T ), we have 

to settle on a trans lation for CT, for C~ may not be one of 

the chosen elements (i.e. it is not necessary that \- Pc..;.C,.~). 

For example, in int r oducing the virtual type of natura l 



43 

numbers it is more convenient to use 0 as the nonsense element 

than to introduce an element which does not correspond to a 

natural number. 

Finally if we want to introduce in (T) certain additional 

constants and axioms, then we must be able to give translations 

of these constants in an appropriate way - we give a formal 

statement of the conditions in theorems III and IV below. 

We are now able to give an inductive definition of the 

' translation A- of a formula A : 
~r Ny 

a) The constants N00 , A000 , C0 , Cc,, /..."Loo) 1 i, l, loG) are 

their own translations. 

b) RY?r is the translation of Q0 YV ; 

c) The translation of a variable '*'fl is the variable ,isp; 

a) The translations of c, and any additional constants 

Xq, , ••• ; are approp·riately chosen; we denote them by 
I I 

C.1-., X~, ..• ;one of the implications of ' appropriately 

chosen' is that ~Pie.~ and l- p'txi, ... ; 

e) The translation of t.. -rl "C) is: 

~f.0c.(. .( 1 ~ a._) (( E~,Y t{)(~ & PT.~) :) ~ = t."'f. 

.&. (V ( E~.Y .J ( !z& P 3._)-::> ~ = c'.) 

f) The translation 

h) The translation 

This follows almost immediately from 3.3) and 3.1) . 
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3 .5) r-
This follows almost immediately from the definitions. 

3 • 6) ·r- p f3 y L ~ y} ("' by) w I 
I l f ( f} p )~ ~ h y) 

For W{&f(f>j) l(l ~f) is W[i-fl~-YJl(by), and the result follows 

by 3.1) and 3.2). 

3.7) r p f''ff KfY f 

Lemma A. If ~r> is a closed formula of (--r) , then /- pi1 ~-~. 
l 

(Note that in ( r ) the additional constants Xn, ... , count as 
(, 

constants, not as variables.) 

For, by definition, l- pPrf.-- :J pi' ( f X - ) • - r r - 1&r-r Further if 

Z~ is a constant or a W or a K of ( r ), then 
£ I 

~ P Zi . Hence, by the corollary to theorem I the lemma is 

true. 

By the translation of the assertion of a proposition .fi~, 

~ r I we shall mean the assertion of P b- & ••• & P c .... . ~. A 0 , 
"'f "'r ,.., 

where b, ... ,c 1 , is a complete list of the free variables of ·"'t r- I 

~o· 

Lemma B. The translations of the assertions of the axioms 

of (~ ) are provable. 

For axiom ( Q) we have: 

p .1 . 

2 

3 

J f -- ii.·- ) • - ·'f f 

Q.E.D. 

Next we note that the translation of ( :S(' )( ~ r~ ) is 

F \ - C!._ -~X · - T rvC)t "'i" ' 



and hence is provably equivalent to 

( x /$ )( P f1 x ::> F 
1
- x) . -, ~ #Or 

Therefore, for axiom ( E) we have: 
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P.1 pf'Yf __ & p ~ fcr_ ~y • .). ( x - )( PYx -. f . . x ~ cr _, x) .'.) f __ ~ g __ - t r J:J. f - r - ...,, -, \ r - - .l:I;~ l'- - /I Y - f' r 
But the right hand side is provable by definition of ' ':! ' 

For the axioms (D) for the type T , we have: 

p .1 

P.2 

• '.') • ( E ~.!J ( pT.! & ! o.i. .!) ~ f..,.~( LI !o.,i.) ' 

. :J. ~ ( E~x o1,)( P'.! & ! .,a...!) J L
1!od-. = C~, 

where d , the translation of lr: l o-r) , is defined by the 

formula on page 43. Using this definition the proof of the 

above propositions is almost immediate. 

r 

The translations of the assertions of the axioms (P) and 

(T) are evidently provably equivalent to those axioms them-

selves. It is a condition of the choice of the translations 

of the additional constants, and of the choice of the ad-

ditional axioms, that the translations of the assertions of 

additional axioms should be provable . If axioms of infinity 

are required for the type r: , they are to be included among 

the additional axioms. 

This completes -the demonstration of the lemma. 

Lemma C. If a proposition may be inferred from others by 

the rules of inference, then the translation of its assertion 

may be inferred from the transla tions of their assertions, 

provided that, if ~f is variable occurring bound or free 

in any of the propositions, and if '( is a type symbol such 



that (3" and y are the same, then the variable Yf:.r does not 

occur bound or free in any of the propositions. 

The proviso means that if two variables are distinct in 

the propositions, then the corresponding variables in their 

tran s lations will also b.e distinct. 

If ~0 follows from ~o by an application of rules I, II, III, 

C3 y B' then evidently P q~ & ... &Pc_ J 0 follows from 
,..,,. "'( f" 

pi-'~f & ••• & pY-~f :) k: by an a pplication of the same rule. 

For rule G.IV we want to show 

' ~ ~ e:5 B- i.- p b ti & ••• & p A -
~f I I ~e 

' ' ' ' ::> "£-f l:f c:; .,~, ~ 1 

where );2 f , ••• , 9-y; ~£>' ••• , ~~' 

variables ' of A and Bf; F-~ "'/ (" ,....,, 

are complete lists of the free 

respectively (there may be over-

lapping between the lists) . 

H.1 

H.2 

3 

4 

5 

6 

7 H.2 :> 6 

III. 

Lemma A, H.2, 3.3). 

' ' F __ B(-
,_ { ('-

(H. 2) ~ 

which is the required inference. 

For r ule V we want to show that 

f. ' Pf!>b _ ~ ' ' \- & -..... 1 
Pb~ \)B

0
, & Pd- . 'J . R 0 :J D ... P d - .JD 

/"'/" "' ,..,(' l'-b ;<. ,,..... ,...~ ,... 

where for simplicity we suppose that ~j ' ~b' are the only 
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free variables of _;§"' and 12. c- respectively. 

H .1 (gP ~- J 
t \ 

& (PPlb .. & p g d- . '") . B' I ) 

p ~o ) -Vf 1"6 -vcJ :J PC) 
H.2 p i.l b_ 

r-t . ( b) 

3 phd - I 

:J Ea ,... f> 

4 pt1 c~ 
!' Lemma A 

5 ( EQ. r )(pf b) 
I 

6 
. I 

Pb d~ :> D
0 

"'b ""' 
(H.2), 5. 

which is the required inference. 

For rule G.VI we want to show that: 

(5 y t I l Pfl b_ P b- & ••• & P c _ :) A_ ~ B _ - & ••• & 
l"f t' y N{j N (S' "'f p Y- c -v 

~ 1\x _ .A~ ~ 
~ "'(' f"c)' 

I 

I X- . B/\ ,.,. ,.., "" 
where x , may or may not be among the free variables r- . 

~f , ... ,9'( ' of ~..,. and ~o- · 

H.1 Pit b_ & ••• & P"'<' c _ :> A~ ~ ,..(' ,., r v v 

H.2 P 1"b_ & ••• & pl" c_ 
"'\ "" ( 

3 

4 

5 

6 

7 

which is the r equired inference. 

(b ••• c ) 
,.. "" 

III,may need a• change 
of bound variables. 
C.VI , P.C. 

' -:::; ', change bound 
variables back again. 
(H.2) 

For rule G.VII the lemma i s obvious. This concludes 

the demonstration of Lemma C. 
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free variables of ~"' and 12.c respectively. 

H .1 

H.2 

3 

4 

5 

6 

' r :) B
0

) & ( P b.~ 
(V .Vf 

which is the required inference. 

For rule G.VI we want to show that: 

• ( b) 

Lemma A 

(H.2), 5. 

1.3 y ' ' \ Pfl b __ P b - & ••• & P c _ '.) A _ ~ B _ - _ & ••• & f"f t' Y' N/j N (S' "'(' 

pYC 
~v 

-i ,\x _ .A~ ~ 
~ ,,,, f"c)' 

where x , may or may not be among the free variables ,.. . 

~r ' ... ' 9.r ' of f: and ~a- . 
~ ~ I H .1 P· b_ & ••• & P c_ -:::> A;;:. 

"'ri ,., r "u 

H.2 

3 

4 

5 

6 

7 

l? f' b _ & ••• & pr c _ 
... '\ I" l' 

I ' I 
A - ~ B -Na· ,.. e· 

which is the required inference. 

(b ••• c ) .- ..... 

III,may need a' change 
of bound variables. 
C. VI, P .C. 

' -::;: ', change bound 
variables back again. 
(H. 2} 

For rule G.VII the lemma is obvious. This concludes 

the demonstration of Lemma C. 



We are now in a position to give formal definitions and 

theorems about the introduction of virtual types. 

Definition A 

The type symbols of system ( r ) ar•e the s ame as those of 
I 

(G) together with the basic type symbol r , and the consequent 

complex types. 

The constants of ( r ) are those of ( G), those required by 

introduction of the new types (viz. l r {c'"r) , C ·c, Q oyr ), and lt,lile 

additional constants Xi , •.. , ( for simplicity we suppose tha t 

there is only one of these ) . 

The variables of (T) are those of ( G) together with those 

required by the introduction of the new types. 

The axioms of (r ) are those of ( G) together with those 

required by the introduction of the new types ( viz. ( D) for 

type r , ( Q) and ( E) for all new types), and the additional 

axiom 6o which is to be a closed formula of (T ) . 

The rules of inference of (r ) are the same as those of 

( G). 

Theorem III 

Let d-.. be a type symbol of ( G) . t ' 
Let 'l ~ , XII{ , ~~ ' be 

closed formulae of ( G) - where p is obtained from f by 
y 

replacing -r· by d. throughout f . Let P0 f be defined for 
t 

each type y as on page 41, and let the translation ~y of a 

f ormula ~r of (r ) be defined as on page 43. 

Then if: 



then: . 

( M) 

Proof 

1 ) ( G) is consistent: 

2) I- pr_g ' 
,I,_ & piix~ 

,... 'l 

3) \- A' 
,.., (J 

a) ( ~) is consistent ; 

b) If a proposition is . provable in (r ), then the 

translation of its assertion is provable in (G) ; 

c) If a proposition is provable in (- ), and if it 

is expressed wholly by means of the symbols which are 

common to both (r ) and (G), then it is also provable 

in ( G); 

d) If a formula is closed in (T ), then its transla

tion is closed in (G); 

e) a), b), c), d), remain true, if to (r ) there is 

adjoined the axiom: 

(EfJ.l') [ (,!<k_)(P't' ,! :> (E~! r ) (ft = ~)J& fC T = 

& Tra'lfx'l = !~ J. 

b) follows from lemmas B and C, for the axioms of (T ) 

satisfy the proviso of lemma C, and hence the proof of any 

proposition can be so arranged that the proviso is satisfied 

for all the steps of the proof. a) follows from b). From 

the definition of PY for the types which do not contain r , 

it follows almost immediately that the translation of the 
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assertion of a proposition of (T), which is expressed wholly 

in terms of the symbols of (G), is provably equivalent, in 

( G), to the corresponding proposition of ( G); hence c) is 

true. d) is an immediate consequence of the definition of 

translation. To show that e) is true we have to show that 

the translation of the axiom is provable in ( G): the transla-

tion is of the form 

and it can - tediously - be shown that the expression in the 

square brackets is provable if ' A ~~ ·~' is substituted for 'f ' . 

This completes the proof of the theorem. 

Sometimes one may want to introduce a virtual type for 

which the relevant elements are not represented by closed 

formulae; for example, one might want to form a virtual type 

consisting of a certain finite number of individuals. Instead 

of being represented by a closed formula the defining property 

will be required to satisfy some condition which is represented 

by a closed formulae, and the translations of the constants 

of (T) may also be required to satisfy certain conditions; 

we suppose that all the conditions have been rolled into one 

formula F. 

Theorem IV. 

Let the system ( t ) be defined as on page 48. Let be 

' ' ( a type symbol of (G). Let P0~ , Co1-.. , X~ , be variables of G). 

Let f , a type symbol of ( G) be obtained fro.m f , a type symbol 
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of ( t ) by replacing r by rJ.... throughout f . be 

defined in terms of Pcri1. as on page 41; and let the translation 

' ~i of a formula ~r of ( r ) :be defined as on page 43. Let 

F be a closed formula of (G). 
"'0 ~ ·lla.A 

' 

then: 

Proof 

Then if: 

1) (G) is consistent ; 

2) 

3) 

a) ( T) is consistent; 

b) if Ea is the translation of the assertion of a 

proposition which is provable in (r ), then 

' ' F ) pool C.1. X;[ J Ro . ,...c~.{ l ' 
c) as c) in theorem III; 

d) as e) in theorem III. 

We make the hypothesis: 

H ~\.-~ ,A.( ,;t)P 0~ C ' ' X;; ' t, 

and then, in virtue of condition 3) of the theorem proceed 

exactly as in the proof of theorem III~ and finally eliminate 

H, using condition 2) of the theorem. 

The first application we make of these theorems is to 

form the type v of natural numbers. For P, ,;.. , the defining 

property, we take Num
0
J : the additional constants are O~ 

and S"" , their translations are °'i' and S, 1 : the translation 
I. L 



of Cv we also take to be O (rut would be inconvenient to 

have an element of type v that d id not represent a natural 

number). 

(C ., 

(o )) 

(s) .· 

(H) 

Th~ additional axioms for the type v are: 

O" = CIJ 

s 2£ \I -I= o., 
.!v .j y_v :> S.2f .,.. -/= Sy_v; 

f ov O & (y_ v) (f ,HY.. ? ! .. w (Sy_)) • .J • f o..- 1f v · 

It is fairly easy to prove the translations of the assertions 

of these axioms; for (OJ:! the appropriate theorem is: 

Num , x , :> S ; , x / _L 0 , 1 
o-. - c. i. t. -t.. F " 

which is proved in ·Church (1). 

We define ' Nap ' ('numerical application') as follows: 

Nap~'v .. -? 1\~!\1 .(12£...i.;)(E~f.;<1)(.fOv = 0 . .J.; & 1£ = fm & 

(nv)(f(S .... vn ) = S,,,_r ;.1 (fn))) 

This provides an explicit formula for the function whose 

.existence is guaranteed by the axiom (M), and it allows of 

successive application of a function in any type; for example: 

r Nap t>..' v 2.r' = l f, l,l:~ z·f( fx) . 

We shall always use 'v' to denote the type of natural numbers. 

Another application of the theory of virtual types is 

the formation of quotient sets. Let r~~~represen t an equival

ence relation over type c{; then we can introduce a virtual 

type T by means of the defining property: 

P:Lo~) .--.:) ~\f.,J.... ( E.2fJ (y_d) (!l ::> ~ <><'-~~) v f = c.., ..l 
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( The condition 'v f = C~~' is inserted to ensure that PC 

holds; it is not essential, but simplifies the subsequent 

work.) The elements of r correspond with the equivalence 

classes of £; further, if certain operators - i.e. additional 

constants - are defined for the type ,J..., and if the equivalence 

classes of .~ are also congruence classes (in the sense of 

.abstract algebra) with respect to the operators , then it will 

be possible to introduce corresponding operators for the type 

'f . Since this process is frequently used both in mathematics 

and theoretical physics, we investigate it further. First we 

extend the equivalence relation£ to higher types ( 'Eqt~'). 

Then we define, for any type, the property of being compatible 

with the equivalence relation~ ('Com£'). To any compatible 

operator based on the elements of .{ (i.e. belonging to a type 

of which .( is a part), there corresponds an analogous operator 

based on the equivalence classes (and so belonging to a type 

of which er( is a part). This analogous operator - the quotient 

operator - is obtained from the original operator by means of 

the function Quo£. If (J is any type symbol we define p \ as 

the symbol obtained by substituting J~ for ~ throughout f' , 

and Pi as the symbol obt a ined by substituting r for ~ through

out f . Then given a compatible operator Xp, we can introduce 

a corresponding a dditional constant Ur for the system (t ), 

whose translation will be Quo£X - of type f' . What is meant 

by 'analogous' and 'corresponding' in the above rough summary 
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will be more precisely indicated by the theorems which we 

·r r prove below. In what follows P _ and Ra_ - (where r is a 
oy . Y Y 

type symbol of ( "C ), and f is obtained by substituting o~ 

for 'i:' throughout r ) are defined in terms of p ;l.D.{.1 - and 

hence eventually in terms of £ - as described on page 41. 

We note that L/ p is a type symbol of ( G) - i.e. if it does not 

contain T - then f; is the same as p1 
• 

We define: Eqtl , Com ~, Quo f'" , for all types f of ( G) as 

follows: 

Ent P ) ·-> ,\r , Xn" .x = "'' 
. '":1. .,,ff (01;({ - '.\J.. - , Jl... f - .&l. 

Eqt ';otr.l (de.IA ·-'7 i\£ 0.<.t .£. 

if ./ .... is not f nor a part of p; 

Eqt:rr)rr ilo~/ -~. X..r. .;.iAAfrrErr ·c~ r)(comrrx 'J Eqt l1£(fx)(~)) 
if d.. is a part of f ( . 

It will be noticed 
'\ 

Com 1 £ are defined 

if cJ.... is not a part of f' ; 
.f fY. (,!(' il y ) ( ComY £e & Com 1:1L & Eqt r rxy 

• 'J • Com f £.( fx) & Eqt ~ ( fx) (fi)) 

if is a part of f 1 . 
that, except for type cJ.... ' Eqt1 £. and 

the same way as were Rf' and pf it in . , 
follows that if £. represents an equivalence relation then 

theorems exactly lik e 3.1), 3.2), 3.3), are provable. Hence 

the assertion of Com fl ... y rf f · ··Y means that .f takes equi

valent values for equivalent arguments. 

. , 

if c/..._ is not r' nor a part 
off ; 



Quop;'(,i{llo-lJ.J ·-> A£.0rJJ..!/r~r1. ( 1 ,,y,f1 )(EQ 1,.) (Comrf & Com£_g 

& 2S ~ Quoru· & ,,y_ = Quo_r( fu)) 

if d... is a part of t r . 

54 

In this formula I 1£ -~ Quo.ry, I stands for I R~> r' ~( Quona) I ; if 

we use ordinary equality instead, theorem 3.11) fails. The 

method by which Quo is defined is analogous to that used for 

Tra, but is more complicated because £ is not in general a 

one to one map of /-- into o,,z, . Quo £ does in fact define a 

map of f into f 1 
, which is a homomorphism with respect to 

functional application for all those elements of f which are 

compatible with £; the equivalence relation which holds between 

two such elements if they have the same image under this homo-

morphism is the same as that represented by Eqt _r. 

To make the statement of the theorems below more intel-

ligible, we make the initial hypothesis: 

V£. o.u 

which re~tricts the variable l:a.A.J. , and then introduce the 

abbreviations: 

so that a complete statement of any of the theorems would be 

of the form: 

3.s) r- v(Eqt? rJ 

3 .9) r pf~ Cf1 



For 

3 .10) 

. 3 .11 ) 

3 .12) 

3 .-1 3) 
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pf'•c ~· :J plH1
( A~ , . c ,. 1 ) • 

I 

Mf/\' & My ( ::> Tf f (( TQi'J = T( f ffQ'() provided 
/ 
'1( is not ,~ o 

pr1( Tf~ ) . 

Mfr & Mg r & Tff' ~ Tgt .·:::>.fr.: gp 

Mf.~ & Mgf & f.. !i!i .~ g~t'J • ~. Tf f = Tgf . 

If -;;_ is not a part of rr nor of f , these theorems follow 

immediately from the definitions. We assume that 3 .11), 3.12), 

3 .13 ) , have been proved for types f' and "{ , and that .;( is a 

part of ff , and we then prove 3.10), and 3.11), 3.12), 3.13), 

for type fY . 
..L..1.Q) 

H .1 

2 

H.3 

4 

5 

6 

7 

8 

9 

.:h11) 

H.1 

H.2 

H.3 

Mf f'f & MQ y (f, Q) 

Tf( Ty) = ( 1~1) (Ey y)(My & Ty ~ Ty & Y.. = T(fy)) 

M(fu) & M(fv) & fu ~ fv 

T(fu) = T(fv) 

(Ey r) ( My & TQ ~ Ty & 3.. f/ = T(fv)) 

Tf( Ty) = T( fu) 

3 .10) 

Mf (!( 

(EQ '( )(MQ & ~ '<' ~ Tu) 

Mg( & ~ ~ TQY 

:::> Y.. f't = T(fu) 

( y) 

li . 1 , H • 3, 4, Com . 

3 .13P) . 

(H. 3) . 

2' 7. 

( H. 1). Q.E .D. 

(f) 

( ~) 

( ~) 
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N .-.,. AJ 
4 2S; ;:.::::. T.Yy .J TQ ;;:::. T.1\r 

5 (Eyf)(My & 1£ ·~ Ty & ilp{ = T(fv)) 

6 

-:> i f'1 = T(fu) As for 7 above. 

7 

H.8 

9 

10 

11 

H .12 

13 

14 

H .15 

16 

17 

. 18 

19 

20 

21 

..Ll.,g) 

H .1 

H.2 

3 

4 

5 

Tfx = T(fu) 

P~'( Tfx) 

ily1 ~ ]S; 

ii.. ~ T.!! 

Tfi = T(fu) = Tfx 

H.2 . ':J. 7 & (H.8 :> 10) 

tv H. 2 

Tf~ = Cf' 

pf 1 ( Tfx) 

H.8 

fV(EQy)( M.!! & X = T.!!) 

Tfx = Cp• = Tfy_ 

P~1 ( Tfxyr) & (]fy• ~ 7-·<i ~ Tfx y1 = Tf;yi1) 

H.1 '::J18 

N Mf~v ::> Tf rr = c ~' r ' 
3.11 f () 

Mf f'( & Mg tr & Tf fr f2. T,grf 

M.!!y 

P11 ( Tu) 

Tf(Ty) ~ Tg(TQ) 

T( fu) ~ T(gg) 

Quo. 
~ 

3 .111 ) . 

(y_) 

3 .1) . 

As for 6, 6. 

(H.2, H.3, H.8). 

(]£) 

Quo. 

H .12. 

13. 

(H.12, H.15), 11 • 

( H .1) 

Quo. 

1 9, 20' 3. 9) 

(f,g) 

(Q) 

3.11Y). 

r9-- . 



6 

7 

8 

9 

~) 

H .1 

H.2 

H.3 

4 

5 

6 

7 

H.8 

9 

10. 

11 

H.2:) 6 

f ~ g 

3 .1 2 ~() 

M.f~y & M_gn & .fN ~ Err 
(EQ, )( MQ & ~y• ~ TQ) 

M.!1y & ~ ~ T£y 

f u ; ££ 

Tg = T_g~ 
H.2:) 6 

/V H. 2 

Tfx = C{!>i = TM 
\ 

Tf = Tg 

3.130() 

I f1 3 .12, ) . 

(H.2). 

Eqt. 

(H.1). 

(f, _g) 

(~) 

(Q) 

Egt. 

3 .13P). 

As in proof of 3 .10Pf ) . 

( H.2, H .3). 

(~) 

Quo 
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(H.8), 7, ( E). 

(H. 1). 

We can now construct the virtual type T which represents 

the quotient set of the type d... with respect to a given 

equivalence relation K, and which has additional constants 

corresponding to certain constants which have been specified 

in connection with type <f.-. (For instance, d.... may itself be 

a virtual type, and the specified constants may be just the 

additional constants for that type.) The interpretation of 

any type symbol is obtained by substituting o~ for T ; the 
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"[" 

defining property P0 l~1 has already been specified. Let 

Xs , ••. ,Y~ , be the constants specified in connection with the 

type~ ; (they will be closed formulae of the system as it 

stands before r is introduced, but may of course involve 

additional constants - e.g. Svv - belonging to virtual types 

which have been introduced previously) . Let U~ , ••• , VE , be 
I I 

the corresponding additional constants belonging to the type 

l . We define their translations: 

Then provided 

(c) 

U' 
~ ( 

is 

............. 
I Tt Y V'i- 1 is £, 

I 

Co~ is C.:;J.. 

that: 

the system ('c) will have the properties specified in theorems 

III and IV; for from ( C) we may infer: 
~I I ~I t 

• P u 'o1 & ••• & P Ve• 

by 3.11). If for the equivalence relation£ we choose a 

closed formula then (C) must be a provable proposition, and 

theorem III applies. If not, then we can regard (C) as an 

hypothesis which restricts the variable £, and theorem IV 

applies. 

The constants X~ , ... ,Ye, will satisfy certain proposi

tions or axioms, and it is natural to ask whether these 

axioms can be taken over into ("c ); in geneJ•al the answer 
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must be 'no', but there will be many particular cases in 

which it is 'ye s '. For example, suppose we have as an axiom: 

(A ) ~ J.. .j c & "s.<A. .j c & ~.,z .j c 

. ? . X~~( X::,:J,~J) ·- X ( X~~)~"'-. 

where X is of type~~~' so that, except for C~, the type ol 

is a semigroup with multiplication defined by X. To take (A) 

over into type r means that we replace the suffix ,;t by Z: , and 

X,u r1.. , by U-rrt ; the question is then whether the translation 

of the assertion of ( A~ ) is provable - we assume that a suit-

able equivalence relation has been specified. In fact it is 

provable, for we have: 

( P) j- P--r2£~ & 2£ 0~ .j C~ii • :) • (E~)( My & .!otA.= Ty), 

and the result then follows by repeated applications of 3.10). 

Hence the axiom ( Ar ) may be adopted as an additional axiom 

for the type Y; this is of course a well known result. Now 

it is not difficult to prove a result similar to ( P) for 

higher types, and it follows that any axiom, which, like (A), 

consists of a simple equality and does not contain bound 

variables, can be taken over in the same way. This is the 

situation that occurs in abstract algebra, where considerable 

use is made of the notion of a quotient set. ( Se~, for 

example, lectures given by P.Hall in Cambridge, 1947 - 9). 

It would be interesting to investigate other kinds of axioms 

that can be taken over into the type T but we shall not 

pursue the matter here. It may seem at first sight that the 



employment of a system of symbolic log ic in such investiga

tions is quite unnecessary; but without some form of type 

notation, the definition of concepts like Com and Quo for 

objects of arbitrarily high type would be more unwieldy and 

less clear. 

We shall later have occasion to use the type f of real 

numbers. Of course there are aJarge number of ways in which 

this can be introduced: perhaps the simplest is to start with 

the type ov, which can be interpreted as the set of all 

binary decimals; we then define the equivalence relation 

which holds between two elements if the corresponding decimals 

represent the same real number (in the ordinary sense), and 

which also holds between A.2£v .T and A.2£ y .F • The quotient 

of the type id by this relation we call type f; it may be 

interpreted as the set of real numbers modulo an integer. 

Then we pick out from the type CVf all those elements which 

take the value T for just one set of arguments, thus forming 

the type f . Of course it is possible to introduce additional 

constants in this type corresponding to the usual arithmetic 

and topological concepts, and to provide translations of 

these constants in such a way that the translations of the 

assertions of the ~sual axioms are provable propositions. 

We shall not carry out this programme, but we shall suppose 

it has been done. 

So f a r as I know, the idea of introducing virtual types 

is due to A.M. Turing; (see footnote in Newman and Turing (1)). 
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He has not published his version, and I do not know to what 

extent the version given here is in agreement with his. The 

method really combines two processes, both of which have 

been current for some time. The first is simply the restric

tion of the ranges of variables - and is thus almost as old 

as algebra: it only becomes complicated when applied to all 

the types simultaneously. The second is the translation of 

the formulae of one system into those of another; it has been 

extensively used in the study of axiomatic systems, and 

goes back at least to Bolyai and Lobachevsky. Its applica

tions in symbolic logic are especially due to the Polish 

school; we shall have more to say about it in the next 

section. 



Section 4. Models. 

Let us suppose that we have a set of closed formulae 

Bas~ , ope for each type ~ ' which satisfy the following 

conditions: 
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(B) i) 

ii) 

iii) 

If fo; ,t.. is a closed formu.la, then r Bas0 ,,<. !,i.. ; 

}- Bas o(J.p) f ,11.p & Bas~f l!f . :::>. Bas c~<frl!f ) ; 

f- Bas00 J2 0 & Bas0 i, ]!., • 

Then, very roughly speaking, we are going to show that if all 

variables, both bound and free, are restricted to the ranges 

indicated by Bas, we obtain a true model of the system (G) -

i.e. one in which the axioms are provable and the rules 

valid. The procedure is similar to that used in the last 

section; we provide a translation for every formula of (G) 

in such a way that the translations lie within the model, and 

the translation of provable propositions are again provable. 

As before, it is the axiom of extensionality that gives 

trouble: there we translated ' = ' by ' ~ ', so that distinct 

elements became identified; here it is the translation of ';\' 

which is important; it is such that the translation of any 

function takes the nonsense value for all irrelevant arguments. 

I _believe that both methods are applicable to both cases; the 

one used in this section is, I think , a little easier to 

visualise, and a little more tiresome formally. 

First we define a rather narrower restriction than~ 



that described by Bas. ('Bas' stands for 'basis', 'Mod' for 

'model'). 

Mod cJ --? A ~ T 

Mod .(.... -~> }.. x T 
- &-

Mod 0 lf )') ·-7 ~\ f ( . Bas.f & (~ 1, ) ( Mo~ :l Mod( fx) 

.& • rv Mod.2£ -~ fx = C ) • 
I 

Next we define the translation f::,a.. of any formula ~: 

i) All constants, except Q 0~ where ~ is a complex 

type, and all variables, are their own translations; 

ii) Q~ d-.cl is ~1S i{.l 11.. ·( / E_0 )( Mod.2£ & Mody & E = Q1Ll'.:) 

if ~ is a complex type; 

iii) 

iv) 

I I 

A B · 
''"~f "'' f ' 

is Ax " . ( 1 y .i ) ( Mo dx & 
(" I N IJI. ('"V 

I 

-~ = ~t1,.), where ?., ..( 

is a variable tha t does not occur free in ~~ · 

By the translation of the assertion of a proposition ,!>
0 

, 

we shall mean, as before, the proposition 

Mod§o1-, & ••• & IV! od.Q f . J . ~ ~ 

where .§<.(, ••• ; bf , is a complete list of the . free variables of 

f D • 

Now we prove a series of lemmas. 

Lem!!@....! 

If .Qr , •.• ,Q t , is a complete list of the free variables 
I 

of ~~L , then \- Mod.Q & ••• & ModQ { . 'J • Mo~c{ . 

First we note that if X~ is a constant of (G), then 

Bas X ~ by (B.i); hence we have: 



I I L I I I 
1 ModNc.;i & ModA0 a::, & Mod Lc1(ool 

. ' & Mode(.., & ModC c. & ModQ oc.:.i 
I 

& ModQc•:.L 
I I- BasQ ,,&t , and s.o, evidently, ' . Since Q0 ,u is a closed formula, 

I 

t'-- ModQ ci.{J. 

Now 1- ( E~~i, )(f at.. l~J ::/ (E~1,. )(.f0 L = A~..,.3_ = ~) , 

so r ( E~~J (.f0 .,~ ) ,) Basfau by (B.i), (B.ii), and ( B.iii); 

and since, evidently, 

!- Bas.f 0 l- :> Modf6.., , 

we have 
I 

l- Mod L <- (o c. ) 

Thus the lemma is true if ~ .l consists of a single symbol. 
I I 

& Mod~ \ :;>· Mod (~,.<} Bj is obvious. 
I 

& ••• & Bas~Y -.::> Bash{? since 

A , = (A br ... c r .A ;j b 
1 
... c v ""17'.. ("" ,,.._ r- ~ ,.. , 

. 
' 

and so 

\- Mod'5Jf & ••• & Mod_gf ~ Ba~~' for any formula ~' the only 
free variables of which are 

Further 
~f' .. . ,~r · 

\~ MOd?f a .& • 

hence 
I I 

\- ModA L J Mod(,\ x /\ .A,)_) . . 
f" 1, ~ , ('.J 

The truth of the lemma now follows by induction over the 

length of A , . 
I"' '" 



Lemma B 

' ' 1) }- Mo~ri--. & Mod~ ,-). ' ' ' • -:J . (A , = B,) :=. A , = ~_, ; obvious. 
,,,...., , , r.1U... r-JO... ,.- - '-" 

I I 
2) )- Mo~. i.. & Mo~ .;!., . 0 . ( C\~, .~,i. )' = ( ,\~f . ~,,., )) ' 

( ' ' 
- ( ~f )(Modp -:J ~~ = ~~ ) ; 

for I- X~r · ~cA.) = (~~r · £.J- ) 

= ( ~JS .(r~a.. )( Mod?S & l = ~.~)) = O~r ·C1gA )( Mod~&z 
I 

= J3r,t ) ) 

' ' := (p:
1
it )(Mod_15 ::> ~r1. = ~~'- .&. NMod~ 'J C ,t = C,{) 

' ' ::: ( ~f) ( :~od2S. "") ~.l = ]a) 

and so 2) follows from 1). 

3) r Mod~r & ••• & Modgr • ::>. ( (~b )(~ cl ) ) ' ::. (~s) ( Mod~ ::) A~ ) 

For ( ~s) ( ~o ) is an abbreviation for .\ ~ :) .J:: 0 = ~ ~fi . T , and so 

3) follows from lemma A and 2). 

Lemma C 

The translations of the assertions of the axioms of ( G) 

are provable in (G). 

This is obvious for axioms ( P) and (T). For ( Q), we have 

p .1 MOd.l£i_ & M od,;y:~ & Modfo,,i,, . 

• :) • (~ f.... : 1.. J.. ) I :J ( f (; ~ ,{_ J f .:rA ,;y: :il) 

which is provable by 1) of lemma B and (Q). 

For axioms (D) for the type 0 
' 

the lemma is obvious; 

for the type c, ' we have: 

p .1 Modf...,L • J • ( ( E ~ 1£ v ) ( fo~ ) ) ' ':J f -,,_ ( /;f oL ) 

P .2 Modf .:-t-- . J . l\J ( ( E ~2£ t. )(f ot~ )) 1 'J lf ;, . = 
' - .... c \.. 

H.3 Modf ~t,, (f) 



4 

5 

p .1 

H.1 

H.2 

3 

4 

5 

6 

7 

8 

( ( E~lf) ( fx) )' ~ (E~~J ( Modlf & fx) 

_ ( E '.lfi) ( fx ) 

P.1 & P.2 

For ( E) we have: 
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Lemma B, 3) . 

( H.3), (D). 

Modf,~ & Modg,1_/ . :J. ( ( ]f r )( t. 11r 2f = E -<r ]f ) ) , 

J ( £,yi : ~ ''f ) I 
Modf.1,p & Modg ._{f 

( (lfr )( fx = ID£)) ' 

( lf~ ) ( ModJS ~ ( fx = g]f)') 

Modlff :J rxf = fil£r 
('J Mod];f J rxr= EZ:r= ' r 
f.= g 

(f. = g) I 

p .1 

For the axiom 

(f,g ) 

Lemma B, 3). 

H. 1 , Mod, Lemma B 1) • I 
H.1 , Mod. 

( E) • 

Lemma B 1 ). 

( H.1, H. 2) . 

the lemma is immediate ; the other part of the axiom ( I ) is 

harder to deal with, and we shall first prove some subsidiary 

results .. We note that 

and tha t 

}- Mo%J-..[]f 1.J :J Mo~ 1A_[~ 1.) , 

if JS i occurs free in ~.~(JSt.L and the free variables of !L. 

are distinct from the bound variables of~~[];~]. 

We shall be concerned with the natural numbers in the 



model; we have: 
I 

Num_,i'· is (;\,_j L' . ( 7.£0 ) [ModJ. & E =. (f, l' )Modf & fO' 

& ( ~L,) ( Mod~ & f.k "'.) f(S
1

~)) • .J . .fj)]. 

From this there follows a rule of induction: 

!'ot' 0 ' ' Mod~ l 1 & !'oi' ~ c.1 '.) ! oc.' ( S ' ~1,') J- Num ' j t.' 

& Modj"'1 :::> ]' 'c.' j( . 

( To any F satisfying the premises there corresponds a G 
N N 

which also satisfies them and for which ~ Mod~ ) . 

4.1) l- Modg ':> u, 

4.2) i- Mod_s:lL & Mod.J.1,1 & 1n 1,1 g 1..i.. = jt.' g lt 

• :> • sm .._, g tl- = s , j t.' g Ll 

4 • 3 ) \- Mod_j ~' & Num ' .J. L1 • :> • ( Em ~,)( Null'@ & ( gl() (Modg .') mg = ~1. 'g)) . 

The proofs of the above are all straightforward; we omit them. 

4 .4) I- Numme ') (Ef "t. )(Mo df & (nt..1Hn ~ m :J nfx t = .ng u. ~L.)) 

This is evidently true if f or ill f! we substitute Ol1 ; 

H .1 Modf u, & (n 1..1 H n ~ ill t' :J nfx " = !!ELtlSJ (.f,£: , !!!,_!) 

H.2 hi.L = ~~1,. ( 1yt) [ ( En1.1) (n '- ill & nfx = ~) ::> ~ = fx .&. 

~ = Smgx ::> y_ = g(Smgx) .& . ( z j S~& 

fV ( EnL' ) (n ~ m & nfx = ~):) y_ = ~ J 
If in the expression for h we substitute free varia bles, say 

.Y t, and Y1,1 for ' S,!!!gX ' and 'l?l (Smgx) ' , ·we obtain a formula of 

type i..i , whose only other free variable is f, and whose bound 

variables are distinct from m, g, ~; hence, from the remark 

on the previous page, we have: 
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3 Mod,h 

4· (.n {,' ) (.n · ·~ Sm ? nhx = .n~) 

The theorem now follows by the rule of induction. 

The translation of the assertion of the second part of ( I} is: 

p .1 
I 

Modjt' & Mod}&t' & Num jl' & Num'~t/ & jl1l~L' 

• :.>. S'jL,fi S'tL' 

H.2 L.H.S. of P.1 

H.3 Num!!\' & (gL(, )( Modg ::> !!'.li'g =jg) 

H .4 Nu~,,, & (g L<-) (Modg ":> TI 1,' g = ~) 

H .. 5 Modgt.L & jgt-t. f Yt<-

6 

7 

H.8 Smf t L 1£ L fi Snf Ll ~ L 
/ 

H.9 Mod_h Ll & (12 L') (12 ~ Max ( S!!!, S.n) .~ .£!:!cc.~ 

10 S
1

_j_g = Smh & S
1
kh = Snh 

11 
t I 

S jhx fi S khx 

12 
I I 

S_j_JSt 

( j,.~) 

(m) 

(.n) 

(g) 

( E) 

( I) 

(f,~) 

= pfx) 

H .3, 

H.8. 

( E) . 

(1}) 

H.4, 4. 2) . 

13 p . 1 ( H.9), 4.4); ( H.5, H.8), ( E); 

( IL3, H.4), 4.3); ( H.1). 

This completes the proof of Lemma C~ · 

Lemma D 

· If 90 can be infernei from ~~ by a single application 

of one of the rules of inference, then the translation of the 

assertion of Q can be inferred from the translation of the ,...o 

assertion of ~ 6 
/ 
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For rule I this follows immediately from the definition 

of translation. In order to deal with rules II and III we 

show that rule IX may be applied in the model. Let f:f be a 

part of ~~' and let ~~ be the result of substituting the 

formula 

list of 
I 

IX 

flf for ~f in ~~{; let .£r c;1_~, ••• , ~e_, be a complete 

the variables which occur free in A and bound in ,,, ' . 
' ' ' ' ( ~y .. ·~ ~)( Mod~ & ••• & Mod.~ .:J ~ = ] ,,,) r McA = 2J.. 

I I I 

Of course ~f is a part of ~~} and further, ~~ is ob-
' I I 

tained from ~cl-. by substituting~/!' for~('; and .9r' ... ,x, t-, 
I 

is a complete list of the free variables of ~f which are bound 
I I 

in ~~; we demonstrate IX by induction over the length of 

this list. 

If none of the free variables of ~r occur bound in ~~ , 

then the above inference is simply an application of rule IX, 

and hence is valid; we suppose that its validity has been 

established whenever the length of the list is less than the 

length of the list ~y,£h, ... ,~s· Let ~r be the variable of 

this list for which the binding occur rence in M~ occurs 

furthest to the left, so that ~ .1... contains a part ~ff of 

the form 

O~r· ~t )' 
where fc..r is a part of ~ , and all the variables of the list 

except Sy occur bound in ~r· Let ~fY and ~f be obtained 

from 1f.rr and Er by substituting ~f for ~/ ; then 
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x' is C\9, r· ('~~ ) (Mody & y = R I ) 
(V ,7 

"' 
,., ""' 

I 

( ~ir. h?r ) ( Mo~ & 
I and x y is ;£ = ~() 

I I 
y ' I 

and ~cl is obtained from ~~ by substituting for ~ff We 
~rr 

start from the premise: 

H .1 ( ,gY'S!:~, •.• , ~J ( Mod_g 
I I 

& •.• & Mode ;) .!: (' = !;f) ,.., 
I I 

2 Er= ~f by the induction hypothesis. 
I I I I 

3 (.Qy-) (Mod2 :) ~rr2 = "'tr r ~ . & • tvModc 'J X ff c = Xrr~) ; ·"' ,,..., r-
I I 

I 

4 ~fl : XrY- by ( E) • 
I I 

(E) 5 ~J_ = N \. by and rule IX. 
tv • 

(Note that ~f( may contain free variables, other than those 

of hf' which are bound in ~cl; but these variables will also 

appear free in ~ft and hence also free in 4; so that rule IX 

may correctly be applied~) It follows now that inference IX' 

is valid. 

Now consider rules II and III; let a part ~ ,-i, of the 

formula ~°' be: 

( ( ~~F ·~J,.) t¥ ), 
and let ~~ be obt ained by substituting N~ for x throughout 

£" I /v l 

~,;lj we . suppose that the bound variables of ~.;{ are distinct 

both from the free variables of ~f' and from ~f · Let ~o be 

obtained from f 0 by substituting~~ for~~· Let~~ ' ... ,tr, 

be a complete list of the free variables of ~0 , and let 

~r' ... ,d6, be a complete list of those variables which occur 

free in ~{ and bound in ~a • We want to show that 

Mod.§c- & ••• & Mod~t. . "J. _s'c, 
can be inferred from 
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' Mod_eo- & ••• & Modti: • -:J. £>0 , 

and vice-versa. ' x.L is 
('-' 

( o1Sr ~ ( 1 ~ .}() ( Mod~ & ~ = ~~)Et) , 
and J}~ is the result of substituting .u: for }S? 

I 
throughout 4,.t . 

H .1 

H . 2 

3 

4 

5 

6 

7 

Mod~cr & ••• & 

Mod_gy & ••• & 

I 

Mocl!J f" 
' I 

Modt z 
r" 

Mod£'1l, 

( ~, •.• ,_!) 

( s,, ... '~) 

Lemma A 

~ rl = B~ 
"' Rule II, ( D). 

( f(p •.• , ~&) ( Mod~ & .•• & Mod~ J }f,
1

~= ~~) ( H.2). 
p ' I I 
,... c = ~ o IX • 

I I 
Mod~6 & ••• & Modtt • :J . _E 0 :::. ~a (H.1). 

The required inferences are now obviously valid. 

Let Qy, •• • , ~b; ~0 , •. • , .tr; be lists of the free var i a bles 

of ~f and ~f, and ·~:,,i·f, respectively. 

want to show that: 

Then for rule G. IV we 

Mod.gr & ••• & Mod$!5J :::> ~f = ~f ~ Mod~r & ••• & Mod~a-
t I 

& ••• & Mod~l :::i 'lrfJf 
But this follows immediately from G.IV. 

' I 

= °£.Jif ~f . 

For rule V the argument i s the same as was used in 

proving Lemma C in the section on virtual types. 

For rule VI, we wish to show that from 
I I 

Mode & ••• & Modd c.. -:J A 1 = J?. rt "'f ""U ~ cJ\.. ,..., 

we can infer 

Mod.9y & ••• & Mod5!-o :) ~1Sf . ( 1 ~a..) ( Mod~ & i = ~.'~) 

= A }Sf. ( ? ! ,J.) ( Mod~ & l = ' ~ .~). 



72 

f ( 
I I 

I ~:?. is not one of g.,,, ..• ~b, the free variables of ~~ and :!?«.) 

the . inference can be obtained by using the deduction theorem. 

If ~e. is one of that list, then the inference follows from 
I 

(D) and (E). 

This completes the demonstration of lemma D. 

Theorem V (The model theorem). 

Let there be g iven a set of closed formulae Bas ~ which 

satisfy the conditions (B), and let the formulae Mod0~ , and 
I the translation ~"<... of any formula ~ , be defined as alDove; 

then if ~0 is a provable proposition of (G), the translation 

of the assertion of ,~o is also a provable proposition of ( G). 

This theorem follows immediately from lemmas C and D. 

Before we d iscuss its implica tions, we show by an example 

that non-trivial sets of formulae satisfying ( B) do exist. 

We define: 

Fin o(oJ) - ) A!.o.;..· ( Egy)(Eh:>. v )( ~d-) (fx J ( E ~ fily )(!!! ~ n & hm = ~)) 

Con
0

,k. ~1 ~ .£, l .(Ef0 l ) [Finf & (.1 1,L) ( Per,! & (~ i..) (fx '.) tx = ~) 
. ;J . Tra,1~ = .£)] 

' Fin ' stands for 'finite', 'Con' for 'constructive'; a 

function is 'constructive ' if there exists a finite set of 

individuals such that all the permutations of the individuals 

which leave that set invariant, also - when transported to 

the appropriate type - leave the function invariant. In the 

types ~L and ~L , the 'constructive' functions are just 
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those which may be explicitly described, using the names of 

a finite number of individuals; that is, to be more precise, 

those functions which are represented by formulae whose only 

free variables are of type i. In the higher types there are 

'constructive' functions wh ich cannot be explicitly described 

in this way; that this is so follows from the existence of 

invariant f unctions which cannot be represented by closed 

form ulae. 

Now it is easy to show that Cone..\. satisfies the conditions 

( B) . 

4.5) ~ Inv~ ,J.. ~ Con-2?.. obvious., 

But if ~~ ' is a closed formula, ~ Inv!~ by theorem II; thus 

(B.i) is satisfied. 

4. 6) \- F inf0fA & Fin,g0 <A 'J F in(,\ ~ ,i._ . f01-.~ v g 6 ,;, ~) 

The proof of this is straightforward. 

4. 7) r- Con.fdi \ & Con~ . :) . Con(f~ ,2 ) 

H .1 

. H.2 

L .H . S . 

FinQ 0 !. & ( ! u )( Per,1 & (~L )( Q 0 t. x :J tx = x) 

• "J. Tra tf = f) 

H.3 Finy :. L & ( .1 (.J ( Per,1 & ( ~L)(y~~ ~ ~ tx = ~) 

H.4 

5 

H.6 

7 

. ~ . Tr at z = z) - -

FinY{ 

Per.11,1, & ( ~1, )(wx :J 1tl~ = x) 

Tratf =· f & Tratz = ~ 

( f.,,2) 

( y) 

(Y{) 

4 .6). 

( .1) 

H.2, H.3, H.4, 
H.6 . 
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8 Tra!(fz) · = Tratf ( Tratz) 2. 8) . 

9 H.6 '::> Tra!( fz) = f z ( H.6). 

10 Con(fz) ( H. 2, H .3, H .4) . 

1 1 4.7) ( H.1). 

Thus Con satisfies ( B.ii); and evidently it satisfies ( B. iii). 

Thus our assertion is justified. We investigate some properties 

of the model of which Con is the basis. 

4.8) I- Conf OL • .::>. Finf<>~ v Fin(~l£,.n'fv l 2£) 

The proof is straightforward. 

4.9) t- Fin02£"' .T) 'J ( E.m, .~1 ,n.,,( J) ( Num.m & Numn & .ill/= .!1 & SJ] = S.n) 

The proof of this is a trifle tedious: if N is the finite 

cardinal of the type ~ ' then appropriate values to t ake for 

m and n in the above are O and N ~ + 1 • 

4 .1 0) \- Finf 0 L 'J ( E2£L,s..L)( N _f 0 L. l£ & rvf<)l,.3.. & l£ I= 3.. 

& ~ /= C & y /= C). 

4 . 11 ) ~ "" Fin (Al£ L • T ) =:: ( I ) . 

The proof of this is, of course, conducted without using ( I) 

as an axiom; the implication from right to left is an im

mediate · consequence of 4.9); the reverse implication is 

easily proved, by introducing an h~L similar to that used in 

4.4). This theorem gives an intuitive interpret a tion of 

Church's axiom of infinity. 

H .1 

H.2 

L.H.S. ( _j_) 

(g) 



H.3 rvgx<. & ,vgy L & _!LI= C & Jl.i I= C & .!t I= li (~,x_) 

H • 4 . ~L.! = l_ & _1 U. l_ = .! & ( ~ L ) ( ~ /= 2f & ~ /= l.. 

• :) • _! Ll.. ~ = Z) ( _!) 

H.5 

6 

(h) 

H .1 • 
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7 

8 

,,jl!=!Vlf!=.l 

Trath = h Tra, H.4, H. 5 . 

9 

10 

_j£ I= Tra_!(_jh) = Tratjh 

1 I= Tratj 

Fin~oi, :) ( E_! L-J ( Per_! & ( 2Sl) (,g0,! 'J tx = ! ) 

& Tra!_j_ I= _j) 

11 /'\ICon_j_ 

12 4 .1 2) 

6, H.4, 2.8), 7. 

( H.2, H.3, H.4, 
H.5), 4,10). 

( H .1) . 

Conj L ·) -C.. 01.. & Mod 0 (pr,,) = Cono(o1.. ) 

Obvious. Now the translation of the selection axiom for the 

type 1,, is : 

( s)' ( E11.to1.)) (Modj & (.f J( Mod_f & ~ ! 'J _f ( jf)) 

But, from 4.12) and 4.13), (s ) is provably farse. 

Theorem VI 

If (G) i s consistent, then the following propositions 

are not consequences of the axioms: 

i) . ( S ) f or the type ; 

ii). (E.f 0
1
) ( rV Fin.f & "'Fin ( A~ vNfx )); 

iii' . ( E.f l, L) ( E~ l-) (Un if & ( l. l )( ! /= !Ji.) ) • 
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i) ·follows from the provable falsity of (S)' and theorem V.ii) 

and iii) may be shown ~n an entirely analogous fashion. 

Similar theorems have been proved by Fraenkel concerning 

various forms of the selection axiom (Fraenkel (1 ) and ( 2), 

see also Mostowski and Lindenbaum ( 2)); theorems showing the 

progressive independence of six axioms of infinity have been 

proved by Mostowski and Lindenbaum (Mostowski (1 ), Mostowski 

and Lindenbaum (1)); and using similar methods Mostowski (in 

( 2) ) has shown the independence of the selection axiom from 

an axiom of simple ordering. Except for Mostowski (1) and 

Mostowski and Lindenbaum (1 ), these investigations refer t o 

systems of the set theory kind. 

All the studies of the selection axiom depend on showing 

that those elements of the system whose existence is guaranteed 

by the axioms have a property similar to that defined by 

'Con'; in fact 'Con' is a special case of Mostowski's 'G-M 

ausgezeichnet ' ; ( a definition of this term is obtained by 

substit uting an arbitrary subgroup G, and an arbitrary ring 

of sets M, for the com£lete permutation group, and the ring 

of finite sets, in the definition of 'Con'). Fraenkel ' s 

proofs lie almost entirely outside the system he is consider

ing, and use the ordinary methods of mathematical argument. 

Mostow ski ( in ( 2)) proceeds by constructing a model of one 

system of set theory inside another system of set theory; 

that is he uses an outer model, in the same sort of way that 
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we have used an inner model. It appears that the facilities 

of definition ( ' t.. ' and ' 1\ ' ) afforded by the system ( G), 

the combinatorial ch aracter of its formulae, and the fact that 

it is a type theory, combine together to ma ke our proof of 

· theorem VI a good deal more compact than any in the investiga

tions considered1 . 

In the statement of theorem VI we used the phrase 'are 

not consequenc es of the axioms' instead 'are not provable', 

because we wished to suggest that the lack of provability 

involved is of a rather different sort than that established 

in Godel's theorem. For example, I think it clear that one 

could not hope to prove (S) merely by adjoining an axiom of 

the form: 

where Proof.,"" !!fil represents the statement that !!! is the 

Godel number of a proof of the proposition Na whose Godel 
,;-.; 

number is ,n.1 ; while it is known that the adjoining of such an 

axiom does render Godel's proposition provable (see Turing 

( 2)) . 

It may be possible to distinguish between 'consequence 

of the axioms' and 'provable' by setting up a certain class 

of models for (G), and then defining 'consequence of the 

axioms' as 'valid in all models of the g iven class' : but the 

(1) I may add that I discovered the above proof in ignorance 
of the references cited. 
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results of Henkin (in (1)) make it clear that this would not 

be quite so straightforward as it might, at first sight, 

appear. He defines a standard model as a universe which 

cont?ins two representatives for the type o , an infinity of 

individuals for type ~' and all the functions of higher types; 

together with the natural interpretation of the constants of 

the system (G) in this universe, and a typically correct, 

though otherwise arbitrary, interpretation of the variables 

of ( G). Thus the only difference between two standard models 

is in the interpretation of the variables. Of course the 

rules governing the int erpretation of the constants are such 

that the interpretation of a provable proposition in any 

standard model is the element of the universe corresponding 

to truth; provable propositions are valid in all standard 

models. 

A general model is like a standard model except that 

only some of the functions of higher types are present in 

the universe of the model, with the proviso that sufficiently 

many functions of each type are included to ensure that every 

provable proposition is valid in the model. Now Henkin shows 

that a proposition is provable only if it is valid in every 

general model. It f ollows that there exist general models 

in which Godel's proposition is interpreted as truth, and 

ones in which it is interpreted as falsehood. Thus the class 

of general models is too large for our purpose, while the 
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class of standard models is too small. 

The use of models to define terms like 'consequence' and 

'true' is due, I believe, to Tarski ( see (2)), and has since 

become a major preoccupation of the semanticists. But I think 

it is a mistake to suppose that the method will provide new 

and satisfactory formal definitions of semantical concepts: 

if, for example, one defines a 'true' proposition as one whose 

interpretation is valid in all standard models, one has merely, 

as it were, 'passed the buck' from the original system to some 

other system in wh ich the universe of the model must be des

cribed; and one can only be quite clear about what is and what 

is not the case, if tha universe of the model is finite - but 

for a system which admits only finite models 'true' can be 

identified with 'provable ' . On the other hand models are 

certainly very useful on the intuitive level: by choosing an 

appropriate model one can see ' why ' such and such a proposi 

tion is not provable; ( indeed, if the model is an inner one, 

one can show that it is not provable). One can do this 

because most mathematicians f~el more at home in classical 

set theory than in some particular logical system. (Another 

way of putting it: most mathematicians believe that some 

adequate system of set theory is consistent.) Thus should I 

try to communicate to the reader the distinction I feel there 

to be between the non-provability of Godel's proposition, 

and the non-provability of (S), by reference to a class of 
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models, the communication will be successful if the reader ' s 

notion of set theory is like mine; but if his notion is very 

different, if, say , he is an intuitionist in thought as well 

as word, then communication will fail; and I doubt that an 

increase of formality on my part - by, for example, a re

statement of my definitions in the notation of Godel ' s set 

theory - will avail to restore it. I do not wish to assert 

that there are no formal uses to which models may be put: they 

may certainly be used to establish questions concerning rela-

tive consistency and independence; but I do wish to emphasise 

tha t some of their uses are essentially informal, and stand 

in no need therefore of excessive formal elaboration. 

We return now to a consideration of theorem V. We ask 
c{ 

whether there is a set of functions Int~~ of the system which 

represent the (metalogical) .process of translation; that is, 

which satisfy 

for any closed formula h~· It is not hard to see that there 

can be no such f unctions, because the process of translation 

is not purely extensional. Let us s uppose that we have to do 

with a strictly inner model, so that 

(X) ( E1f .J ("' Mod1f) 

may , for some particular type~' be consistently adjoined to 

the axioms of (G). We define: 

A OJ- -) ~1f J,..· f\J MOd1f 

B0 a-,. ~ ~1£,,z.F 



Me>(oJ.) ·-7 Af0 o1.. .f = A ; 

N0 (0J.) ·-> ;\f0 J,.. .f = A & f ~ B • 

Then we have: 

l- (X) ') M = N 
I 

=( A ! .1-. . ( 7.EJ ( Mod! & .E = F))= 1- A I 

B 
I 

Af J. · ( "1,EcJ) (Modf ~ 12 s f= A
1

) r- M = 

' A .f
0

;i1.. . h _£0 ) (Mod_! & .E ~ (.f ' 1- N =- =A 

= A f ~J... ·( 1 ,E " )( Mod.f & .E ·-= F) 

I- M 
I 

~ N' 

* 
& f ~ B')) 

But, since (X) is consistent with the axioms, this shows 

that we could not have 

M
1 

= Into(o.<)M & N1 = Int a;_aJ... ) N. 
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I do not know if one could redef ine the process of translation 

in such a way that it became purely extensional, and at the 

same time preserved the validity of theorem V. 

Suppose that Q 0~ is a formula for which 

( Y) 
,). ' 

then 

by theorem V; but can we say anything about the proposition 

( Z) 

If 

(M') 

we shall say that the model in question is a final model. It 

·~ Provided that the model on question is a final one; see 
below. 
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is easy to verify that t he model based on ' Con' is a final 

model. For such models the translation of the assertion of 

( M) ( lSJ ( ModlS) , 

is provable; and h ence (M) is consistent with the axioms of 

(G). It follows that if (Y) is provable then (Z) may con-

sistently be adjoined to the axioms. I do not know if non

final models exist, or for what sorts of models ( Z) ( or 

rather, (z) with 'Mod' replaced by 'Bas') may be actually 

provable whenever ( Y) is provable. 

The next point that we consider is the application of 

the model theorem to a system which includes some virtual 

types; we illustrate the procedure to be adopted by discussing 

the case of the virtual type v . To the conditions ( B) we 

add: 

( iv) r 
( v) \- Baso ('l v) 81/v' 

I I 

and we define the translations Ov and Sv to be Ov and Svv. 

It is then easy to see that the translations of the asser-

tions of the axioms for type v are provable, and hence that 

theorem V (mutatis mutandis) is again true. Of course f or 

some virtual t ypes more severe restrictions on Bas may be 

necessary if the translations of the assertions of the ad-

di tional axioms are to be provable, but provided these 

re s trictions are made, the appropriate form of theorem V 

will continue to be true. 
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Finally we ask if the complexity of the definitions and 

the proofs leading up to theorem V was really necessary. The 

simple way of defining a model is to use system (C) and define 

the translation of TTo(pJ-) to be: 

AfC)J-. . (,2Sqj ( Basx 'J fx), 

and let everything else be its own translation ; but if one 

does this one has no guarantee that the axiom of extensional

i ty will hold in the model, although given some particular 

formulae for Bas one may well find that it does in fact 

hold, or can be made to hold by a slight modification of the 

formulae f or Bas What, in effect, our method does, is to 

show that such a modification can always be made, provided 

that the original formulae satisfy the conditions ( B): it is 

of course possible that this general demonstration can also 

be carried out more simply. 



Section 5. Closed formulae. 

Our first object in this section will be to show that 

it is possible to define within the system the property of 

being representable by a closed formula, the bound variables 

of which are not of arbitrarily high type. We define the 

length, l ( ~), of a type ,t, to be the total number of o's and 

~ ' s occurring in the type symbol ' ,{ ' . We define the type 

symbols ' ln ' by: 

L, is l 

in is l lri-1 

We show that it is possible to map all elements of types of 

length less than or equal to n into the type l n+t , the map 

being one-one. We first single out elements T~, Ft , Xi, which 

are all d istinct from each other, and from C~ . We define: 

{ 
Afot .( 1]f,) ( Jf ::i 1f j, ! .& • NJ_f ;) Tl ) ; t <.[oL) 

_..., = 1f = 

tl 
{,, L (oC.:) ~ Af 0 (, . ( 11f) ( Jf :J 1f = ~! .& • f'l'Jf ':) . !K = Fe,); 

Xi -) ;\f l 
I\ - n-1 . x" . 

Pain -> A£(, h u ( '71f {.. )(.!d = g & 1f = Tt • v. u = t l\ Ll'\ - t Ll\-t 1\-\ - lrt-l -Ll\ - 1 

& 1£ = Ft) 

I t{ 
~ and ~ are descriptions operators with Tt and Fi as their 

respective nonsense elements; we use ( "1
1 

l:: l H!:a ), ( 111f i )( ~o) 

in the obvious way. The properties of Pai are given by: 

h 
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J & J h "" P . n+1 h --
F _gt,l\ ~ (.I'\ F - L-n • . ""' • ai ~t'.>' - l,.~ Ln, 

Now we define the required maps inductively: 

'/ -) 1\.!c..9.c,· ( 1'JSl) (.g =Ti, & JS= !); 

-) A.£,~c.·(1!i)(~ = ci & x = Map0.E) 

Now suppose that 

Then 

a) "' is ln. . 
' 

or b) is Cl Ln-\ 

or c) is (' y ; and l(f ) ~ n-1, and l(y) .:5; n-2; 

or d) J... is l 

or e) vl is o . 

We define Mapn! according to which of these cases holds ; 

throu ghout what follows it is assumed that i ,f ' J' satisfy the 

condi tions given above. 

a) 

b) 

c) 

Mapnt. l - > Afl Ql • (Ill~ 1 ) ( E~ t ) ( u = Mapn- 1 ~ &· ! = fg); 
",., n Y\ Y\ ,, I'\ - 1 -

Map~ (·.,t ) -? Af ,., QL (1 ~. )( EgL )(Q = Mapn-1~ 
'-nH "" n- 1 v"l\.-l 1\ " l'\-1 

& ~ = Map0 (~)); 

- ::> A!fr .9.1.n . (? i ~ t-) ( Eg t t'-1 )( E~)(~ = Pa i n( Mapn-2!) _g 

& ~ = Mapn-1 ( f k )g); 

d) Map~M1 t, -'? A.!t,QL\'I. .(1]f l) (g = (\hirH .T<) & ~ = .!) ; 

e) Map~~\+,o ·-) A.E ~ t..'" .(1 ·~)(_~ = (.\ _gLri-\ .er...) & x = Map0
£). 



Theorem VII 

Let l (ot.) ,S n, and l (S ) ~ n; then from 

Mapnf.t = Mapnhz, 

we may infer that £, is d... , and 

f , = h e . _,7'.. -o 
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We give an outline of the proof; we shall state a number 

of formal lemmas, the proofs of which proceed by induction 

over n, and are straightforward enough to be omitted. The 

theorem is trivial for n = 1 . 

5 .2) 

( n = 2,3, . .. ) 

5.3) t--

(n= 1,2 . . . ) 

!

-pr 

we can infer tha t J. is L,'-' 

(, V\. 

, or o ,or L. 

( n = 2,3, •.. ) 

(n = 2,3, ... ) 

5.2), 5.3), 5.4), show that for n ~ 2 we cannot have 

Mapnf •'- = Mapng & 

unless c( and ~ come under the same case; to show that ,,>__ and S 

must be the same type we have now only to deal with case c); 

we note that this case only arise s if n ~ 3. 

5 . 5) (n=1,2, ••. -) 

This is immediate for all except case b), and also for n = 1. 

For ca se b) it follows by induction over n. 



5 .6) If yl i s not ( , then 

Short proof: 

H .1 

H.2 

3 

4 

5 

6 

MapD-1(f ,., k()gl ;£ T , 
( / - - Y\-1 .., 

P · D( n-2 ) g C..n = ai Map .[ g 

Mapnfu fi T"' 

g fi Pain(Mapn- 21 1)m 
Y - Ln- 1 

Mapnh , 1u = T, - f' r- ... 
5 .6) 

(f, ~,g) 

( u) 

Map. 
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Pai, induction 
hypothesis 

Map. 

( H.2, H.1 ), 5.5). 

5. 7) If f 1
· is not f' ' then t- Mapn!_ f ffi Mapnh 'r 

This concludes the demonstration that the maps of elements of 

distinct types are distinct. 

5 . 8) t- Mapn!_ "'- = Mapn~, :> f ~ = fi.-1,. 

The proo f of this has to be taken case by case ; it is 

straightforward. 

This concludes the demonstration of theorem VII. 

App~ L L _, Ar.L .2 '- l'\t-1. (11 t, .. .._,) 
'-'n 1-1 V\ 1-1 n t- l YI"' ,. .-

\) _ (Ef J.s ) (EEs-H.2 = Mapnf & r = Mapn.2£ 
L t{d.li);f "' 

& t = MapD(fxj 

where the ~ means the logical d isjunction ·of all the 

propositions of the g iven f orm. 

5 .9) If l(~ 15 ) ~ n, and n ) 2, then 

t- Appn( Mapnfd,~) ( Mapn.2£ S) = Mapn( f c{i; E$) • 
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Thus we can map all those formulae of the s~stem which have 

no parts of type of length greater than n, into the type 

and the map preserves the logical relations between formulae. 

(We .have not actually dealt with formulae containing free 

variables, nor with abstraction, but evidently it would be 

possible to do so.) 

We note that 

Map nc i, = ;\ y i" . C i ; 

it is however convenient to have a nonsense element in 

which is not the image of any element under Map; accordingly 

we define: 

'[ ( ) ·7 Af I £,nH Oln+1 -1)'-;HI 

(n =1 ,2, ••• ). 

We also introduce 'L as an abbreviation for ln+l. 

d.. -Sub'° 1L -~ A.LL.(E.&;J(f = Mapng) , n = 1, 2, •.• 

Typ"(oq,1 -~ \ .!: 0~ I~ 2-.. (.i: = ,,Z-Sub ~ 
... ~(J.) ~1'\ • 

Tot fl.. ~ \ f i . ( E£.
0

vi_) ( Typ£_ & rf) . 

The above definitions define the image sets of the various 

types of length not greater. than n, the set of all such image 

sets, and the union of all such image sets, respectively. 

Consider now a closed formula the bound variables of 

• which are all of type less than n. (We say 'of type less 

than n', instead of 'of type of length less than n', for 

brevity). The formula has a combinatorial equivalent; but 
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unfortunately the more bound variables there are in the 

formula, the h~gher the type of the W's and K's in that equival

ent. If there were an upper bound N to the length of the type 

of the W's and K's involved, one could map all types not 

greater ·than N into a higher type, and therein describe the 

combinatorial process, and so obtain a formula representing 

the class of all closed formulae of the sort considered. But 

since there is not such an upper bound, we proceed rather 

differently, following the method proposed by Tarski in Tarski 

( 2) • 

type: 

We define the argument parts, and the value part, of any 

a) A type whose type symbol consists of a single symbol 

is its own value part, and has no argument part; 

b) The value part of o\ r~ is the value part of ::J.. ; the 

argument parts of ~ 

parts of ~ . 

are and the argument 

Thus an element of any complex type may be considered as a 

function of several arguments ranging over the various ar gu-

ment parts, and taking its values in the appropriate value 

part, which is always o or L. • This way of looking at the 

structure of a complex type is of course reflected in the 

conventions concerning the omission of brackets in a type 

symbol. For later use we define: 

d.. -Narv t6 1v ' if I 

' '- is 0 or i., 

i;{ f - Narv ~ ~-Narv + 1 v • 
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J... - Nar is the number of value and argument parts of the type I... . 

Consider now a function of type K ~ 
1 

• • , .{rn where ~ 

is o or i.,. ; instead of thinking of it as a function of 

several arguments, we may think of it as a function of a 

sequenc e, the elements of the sequence lying in the types 

.~, , ••• , ,{m. and the function taking its values in K • This is 

important because if the lengths of the types cl
1

, ••• , o(,,
11 

are 

less than n, then we can represent any such sequence in the 

type (~v). Thus any function, none of whose argument parts 

are of length greater than n, can be distinctly represented 

in the type l?. ( q_ V); and it turns out that such functions 

suff ice for the making of a definition of the class of closed 

formulae with bound variables of length not greater than n. 

In what follows we use a number of conventions: 

d.. ,f ,y are of length less than n; and n ~ 2; 

y, is o or t,, ; 

v is the type of positive integers; in connection 

with it we use the usual arithmetical symbols; 

x is an abbreviation for x~ ; 

Y is an abbreviation for Xi~; 

a- is an abbreviation for . ~ \? ; 

[f] denotes the function of sequences corresponding 

to the element .f. K f' , . y ; for a sequence (_g, ••• , ]S) 

[f] (,e, ... ,,!) is fx ..• z, 

if 1S is in type y, .. . , ,e is in type~' otherwise it is 

nonsense; ( this usage is only required informally). 
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We now introduce a number of definitions. 

Se~ means that for the first so many integers - possibly 

none - § takes values in 1z representing elements of type not 

greater than n, and thereafter takes a nonsense value. 

Aloei~vcr -) A~!!!v.!!'l · (E£,11L) ( Typ~ & £ ( sm) & ru) 

. v • sm = X & y = X . 

Alosm gives the typical range of the mth member of §. 

Cuttru· ·v -'> ~\ !!!v§.,~.12q·C?y~) ( § ( .12 + m) ~ x & y = ~) 

Cut!!!§ is the sequence which is like § but with the last m 

terms deleted. 

Cub rcr v _., ~ !!! 7 §.a- P.v • §. ( P. + m) 

Cubms is like § but with the first m terms deleted. 

Fir cr-o-v ~ A~ v £0- £y~ (1"Q?) (£ ~ m & u = ~) 

Fir!!l§. has the same first m elements as .§.. 

K-Clai:)o-- ~ A § 0 .. §. = ~ !!!·v .x 

,·p-c1a 0 a- -'.?J )\E.a--· (E1,1'") (mY'Hr.z-c1a1 

.& • m < d.-.-Nar ::> Alofil!l. = Alotm 

.& • m = ot-Nar 'J Alosm = (3-Sub 

• & • ill " - N ar ? .§!!! = X ) . 

If ,.J is K : _ .J,, then -1' -Clas means that s is a senuence :/'\.. I ~ F' <A. - - ':L 

whose mth element lies in the image ( in i ) of the type ,-(fh. . 

We now turn to functions of sequences, taking their 

values in i~ ; ~~of course contains image sets ( under Map1) 

of the types o and 1 .... 
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Af t~d- .(E.§. u-)(E.£!ot.iC1a-) fse@ & Typ~ & £i(fs) 

& ( ft -J. Y • ~ • Alo.§. = Al o,! & £l( ft) )J 
Prof ( 'f is proper') means that there is a type 1<. and a 

sequence of types ,...( \ ' ... NV such that f s lies in the image 

(in ~) of K, if the elements of .§. lie in the images (in 'l ) 

of the types ~~ \ ' ••• ' .~ ))\1 respectively, and fs is nonsense 

otherwise. 

K -Fus t~a-~ - > A Qi E.o- . (') 1S ~)( E_gi<)(_e = A!!!~ .. X & ,g = Mapn.9: 

& 1f = Map 1 _g) • 

AQ'2.. .§c-. (f 1f L;J {v<p-Su bg_ & . tAf -Cla.§. 

& 1S = o(-Fus[Appg_( .§.(~, ,~ -Nar)) J (Cut1 v ~J . 
Fus t~c-n -) ~ Q 'l .§'". Cf 1f l-2..) [ .L (ol,.-Subg & 1S =~-Fus.hill) 

·'" Lt~J..)~ · -
If g is the image in 'L of an element gr).., then Fusg_ is . [~] . 

( ' rus ' stands for 'Function of Sequences '). If .s: is in or 

i, then Fus.hill is the image of ~ in t 4 if.§. is the empty 

sequence, and is nonsense otherwise. 

Las 'l.0 __ , A.§.tr .(1_g
2

)(Em v)(.§!!! -J. X .§. (Sm) = X & .!J. = .§.!!!). 

Las_e is the last element of the sequence _e. 

Mixl,zO"l( (L.a.O'") - ) ~fL~o- l! .i E.o-·(11St1 )(E,! tT") ( Seg.1 & .§ = Cut1 v .i 

& Las1 = Q & 1f =ft). 

Sap t4a-(~o- tt:ta- ·-)Af ~ £ 1.~c ('1 .fL.:tc- ) ( Eg_ ll,)(.S: = Fusy & !! = Mixfu). 

Dam rzo-l~<> --) Af l,,,o.E. a- . (1g_J(E1 cr) ( Emv)( Prof & ft -J. Y 

& .§. = Cubmt & ft= Fusg_(Firmt)). 
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For brevity we now s top distinguishing (in these informal 

remarks) between an element and its image under Map, and we 

ignore the typical chaos that results. Mix [f a,, ]~ is 
' 

[f 0~~.J ( where b can be great e r than n). 
I 

Sap [f <o J [ ~ J is 

[f tf g ~ J. Dam[ffi< •. ttr- . . s ](]S f ' •• • ,l_ . ) is 1L.,, . ( !... v ~ ••• x . "' • 'J' . ' u .l!.. o -

(' Sap' stands f or 'functional APplication in terms of 

Sequ ences; ' Mi x ' for 'the mixed case'; 'Dam' expresses the 

author's, and probably the reader's feelings). 

Dou ":i,o-(tl.a')l<..l" v ~ Aill v f c.,.6"8.,l..ir .§. '"" .( 12S ,i )(E1,.. )( Seq1 & x = ft 

& t(Sm) = Damg( Cubms) - - - --

Do um [ f - c] [ g c. ~ ] is 
- - ,{,1 •• • pr'li-- ·c;... Yo·-- c. 

[ XlS ~ • •• y ;, . f K&.~ . -r r , -. ~ 1£ c. •• • l a ( ~ r b- - . t; 1£ t. • . • l & ) J . 

where d.. , •• • ,p,y, ?:>. , ••• , t , are all of l ength not greater than n, 

and the list ~ , ..• ,p, is of length m; if m is greater than 

the total number of argument parts of .!. , then Dou.m[f J[gJ is 

just [f]. ('Dou' stands for 'Double U', f or Dou represents a 

glorified version of W). 

A f c.40~ .§. .(f 2S t.l-)(E1 -)[se<illi & .§. = Cub1 vr 1 

& 2S = Map 
1 

{ (Ko-)( Secg: & .§. = Cub1 vK & fr fo ~ 
. '.'.) . fr = Map 1T)1 ] .l • 

All i.l.o-(c.).: ) ·-/ 

Al 1 f \J , , _. _ f is AlS y- . •l :i .. (~i) (fx .. • JLEJ) 
I 

Pie 0 {Ll..o- v -::> ~ ill v f 1,.z. .(E£v) ( Prof & (,g ... )(Se<l§ & fs fo Y 

• ::> • Fus(.§.(!!! + £.)XFir.I?..@.) = fs)). 

. . ·~ . . 
\ . .. .. 

. - ·:::. :~,~ 
··:~;I' 
··~~ 

. .. ·:,; 
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f satisfies Pi.cm..[f], if f is of the form 

A 2S r .. · l 3 • • ·~·A.· l f\ , 

where l is the mth from the right in the list 1£ y, ••• , y_t , .. ·~ -\· 

Se i~o-,"'- -9 ,A~'°' .Fus( Mapn~) 

Sei~ is [.~]. 

n-Clo~'., _., \.i;,,.(h (,,~,{l Je. { !!{SeiBl' )j & (m;l (!!( Picm)) 

[ ~ 
& ·z (£ rHf tl. )(g lAc-) (hf & !!£ . :) . £!(Allf) & .g(Doupfg) 

(n ~ 3) 

where n stands for the conjunction of the given proposi-

t ions, and· Bf' 6 '( means is one of the constants: 

This is the definition that we set out. to find, By a proper 

closed formula of system (C) we mean a closed formula in which. 

TToLo ) only occurs in parts of the form ( TT L0, ~1\'Yi,.1... · "ft ) ) • 

Theorem VIII 

If A~ is a proper closed formula of type not greater 
·"' 

than n, and all the bound variables of A~ are of type not ,..,,, 

greater than n, and n ~ 3 then 

r n-Clo~.J... . 

We shalll not give a complete proof of this theorem, but shall 

content ourselves with demonstrating the following lemma: 

If /:;J..- is as above, then [,h.i.] is obtained from a finite 

number of the functions of sequences 
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by a finite number of applications of the operations which are 

represented by Dou, All, and Sap. 

Firstly we note that every (well formed) formula of (C) 

has a normal form - i.e. for any formula ~~ there exists a 

formal ~h such that ~ ~~ = ~& , and no application of rule II 

to ~~ is possible. Because of the axiom of extensionality it 

is sufficient to prove the theorem and the lemma for any 

formula which is in normal form. 

We suppose now that the lemma has been demonstrated for 

any formula which is shorter than _h~; it is obvious if ~~ 

consists of a single symbol. 

Case 1 . ~ is of the form B6t ~£.· Then 1h~ must be 

No'o L O(oo) J l~tor..) I ITOlo~) ' or of the form ( A uo.:. ~Cl); for it 

cannot be of the form ( ~~ t ·M & ), nor can its first proper 

symbol be a free variable. If !?&£ is Tf..i(o~) then ~[ is of the 

form { ~x . Q
0

), where 1( n) ~ n, and so a single application 
rJ I ,.,. I 

of All to [§~] gives [~.J. In the other cases· a single ap-

plication of Sap to a constant and a closed part of~~ gives 

[A~]. 
('-' 

Case 2. A is of the form 

~ ~, ..• ly . ;Q., ' 

where ~b consists of a · single symbol. 

If R& is a variable then [ :&t-.] is one of the original list. 

If Q'b is a constant Bb (c {. ), then [~ .J is obtained by an 
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application of Sap to [~ b;i'".X 1 ••• y .b ] and [B
0
r ] 

~~ -j .,y -

Case 3. ~~ is of t he form 

AJS. 1~ • • ·~ ·II SE :§ i 

If B.o~ JJ; E- is of the form ~ol)( ~,g;S .,f0 ), then [ . .b-c.< ] is obtained, 

by an application of All, from the function of sequences 

[ x ~ f ... 3f -:{: 5 .. ~CJ ] ' 

which corresponds to a closed formula of length less than the 

length of -b-.( ; hence the result. If J2.&f is not f l~ie .~ 1 , then 

;gb~ ~ ~ is of one of the forms 

BS:>£. ;@ e. ' 

(Aooo go )]Jo 

( .~ 6E.f· •• o- MO' · · • ~f ) ~f, where ~ 6£(' . . rC- is one of 
I 

~.~ , ... ~y . But in each of these cases the type of ! cannot be 

greater than n; so that [,.b-,,<.] can be obtained by an application 

of Doum (with appropriate m) to: 

and 

[~ ! f ... "¥ty • Q Ii~ ], 

[~ ~f · · · ~r · ~£ J • 

But these functions of sequences correspond to closed formulae 

of length less than~~ ; hence the result. This concludes the 

demonstration of the lemma, for due to the requirement that ~.;,(_ 

be in normal form, no cases other than those considered can 

arise. 

To pass from this lemma to a proof of theorem VIII, we 

should have to prove a large number of formal lemmas which 

would show that the formulae we have introduced do in fact 
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have the properties we have claimed for them, we shall not 
l 

do this. 

We now disc uss some of the i mplications of theorem VIII. 

Firstly we remark that there is no ess ential difficulty in 

extending it to the case where there are other non-complex 

types besides o and~ ; in particular , if these types are o 

and v , or <.'I , r, , and V, and there is an axiom which allows 

the mapping of the integers one-to-one into the individuals, 

then we can make the extension without altering the types of 

the variables that occur in. the formula 'n- Clo' - except that, 

in the first case, ~ will be everywhere replaced by ~ • 

Secondly we note that it is possible to enumerate all 

the functions of sequences which correspond to n-closed 

formulae, and that it is possible to define such an enumera

tion within the system, and so produce a series of formulae 

'n-Enu~y' which enumerate all the 'n-clo' elements of type t:J.... . 

We shall say that an element of type ~ which can be 

described by a closed formula with no bound variables of type 

greater than n, and cannot be described by a closed formula 

with variables of type less than n, is of order n. The term 

was first used in this sense by Tarski (in ( 2)); but our mean

ing of the term is slightly different from his, since his 

system does not contain A or l , and only contains the types 

..; , ov, o (o v ), . . • This means that the actual order of a given 

quantity (say, for exampl e , a class of integers ) will depend 



98 

on which definition is adopted, but whether or not the 

quantity has a finite order will be independent of the exact 

definition. We here remark again on the economy which is 

achieved by using Church ' s system: in ( 2) Tarski gives in 

English ( or rather, in German) but not formally, a definition 

of 'of order 1 1
; this does not take up very much less space 

than our formal definition ( including all the concomitants) 

of 'n-Clo'. The term 'order' suggests, and is meant to sug

gest, the orders of the ramified theory of types, for our 

' order' also serves to prevent situations, which are anal ogous 

to those that oc cur in the 'linguistic' paradoxes, from 

arising; indeed - assuming that system ( C) is consistent -

positive information may be obtained from the attempt to set 

up such a situation. For example, it is perfectly possible to 

set up in ( c) a theory of all ordinals less than some given 

w~ ; this is best done by introducing a special virtual type 

with certain additional constants. Then a suitable definition 

of ' n-Clo ' for the extended system can be made, and one has 

only to consider the · expression 'the least ordinal which is 

not n - Clo' - an analogue of Grelling's paradox - to see that 

n-Clo in the extended system is certainly of order greater 

than n . By showing that it is possible to set up an explicit 

well ordering of some of the elements of types l) ( o v), o (o ( o </)) 

, ... , Tarski ( in (4)) has shown that the formula of 'of order 

n' for these types cannot itself be of order less than 
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(n + 1); I think it evident that his argument could be taken 

over into our system, so we have: 
o l<>v) 

~ Nn-Clo( n-Clo ) ; 

on the other hand, for the system based only on the types w 

and v, by simply substituting ~ for L, and using theorem VIII, 

we have: 

\- (n + 5)'-Clo(n-Clo'">{) (l(~ ) ~ n, n ~ 3). 

The 5 in this proposition could certainly be replaced by a 

smaller integer; in Tarski's system the value in the equival

ent proposition is 1. The question whether or not the 

proposition 

( X) c 'I 
'V n-Clo( n-Clo ) 

is provable remains open; it would be very surprising if the 

negation of (X) were provable. But by using a version of 

Cantor's theorem we evidently have: 

~ rv n-Clo( n-Enu0
" ) • 

We consider now an extension of the system (C); we 

introduce a set of new symbols 'Clo ~ ', and a new set of 
o.A.. 

axioms : 

(N) 
o( ..;... 

n-Clo ~ oi... ':) Clo ~.J.. ; (n 3) 

and a new rule: 

Rule N. From Clo~ ~~to infer n-Clo~ ~~for some integer n. 

Thus Clo~ represents the set of all closed formulae of 

type d.... It is possible to make a model of the simple theory 
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of types within Godel ' s system of set theory ( see Rosser and 

Wang (1 )), and hence it is evident that, assuming the con

sistency of set theory; one could prove the consistency of 

the above additions. From the theorems mentioned above we 

can deducer 

r A>Clo ( Clo 0 (.o~) ) 

t- er,, v ) '[ (!'. ~ ) ( ClO!'. J ( E.!!! y) ( fm = !'.) ) J NClo 1:} 
The latter theorem is an ' explanation' of Richard's paradox. 

And, as for (X), we do not know whether the proposition 

rv Clo( Clo "' ) 

is provable or not. 

If we confine ourselves to a system in which the only 

basic types are o and V, then Clo evidently satisfies the 

conditions ( B) of section 4; this suggests that it should be 

possible to construct a model based on Clo. But lemma A, 

and hence theorem V depends essentially on the formulae Bas 

being closed, and therefore satisfying 

\- Bas..;~ Bas'~ . 

Thus the method used f or theorem V is not available; but 

nevertheless it seems to me plausible that there could be 

constructed a model based on Clo. ( The chief ground for 

this belief is my inability to see how one could possibly 

prove the existence of an unclosed element in any type with-

out using either an enumeration of the closed elements or 

the selection axiom.) If such a model could be constructed 
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it would be evidently a minimum model, for the existence 

of any element represented by a closed formula is assured. 

Secondly the existence of such an inner model would ensure 

that by taking just the elements representable by closed 

formulae in every type one could construct (outer) general 

models in Henkin's sense; and 'valid in every such model' 

might be the definition of 'is a consequence of the axioms' 

for which we were loo king in the last section. 

Finally I wish to stress that the properties Clo and 

n-Clo are not merely of logical interest, but have real mathe

matical significance. For definiteness, let us cpnsider the · 

type ov - that is the real numbers between 0 and 1 considered 

as binary decimals with the possibility of dual representation. 

In a sense every mathematically definable real number between 

0 and 1 is representable by a closed formula, and Tarski (in 

(2) and (4)) uses the word definable in this sense. But by 

enumerating all the closed formulae of type ov (or their 

combinatorial equivalents), and applying Cantor's diagonal 

process one does define - metamathematically - a number which 

is not representable by any closed formula. Other possible 

methods of defining such a number are: the number which 

corresponds to such and such an ordinal in a well-ordering 

of the real numbers; the number whose binary digits are 

determined by an infinite succession of tosses of a specified 

coin. But the first of these is not a proper definition 
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unless . a well-ordering is explicitly given; and if it is given 

within the system it will be represented by a closed formula, 

while if it is given outside the system, the definition is 

again metamathematical . And the second proposed definition 

is really absurd; for it refers to a physical process which 

is physically impossible. Thus if we rule out metamathematical 

definitions, we can conclude that all definable real numbers 

are representable by closed formulae. Now whenever a real 

number is mentioned in a mathematical argument it mµst be 

referred to either by means of a description, or by means of 

a variable which has been restricted by hypothesis ('let x 

be a number such that ... ,.); and similarly for objects o"f 

higher type. If we ~re right in supposing that a model may 

be based on Clo, it follows that any mathematical ar gument , 

which does not use metamathematical considerations, can be 

interpreted as referring entireli to elements representable 

by closed formulae. (An exception might have to be made for 

arguments which used the selection axiom, for it seems to me 

likely that the axiom would not hold for type 0v in a model I 

based on Clo , ). I 

It is not usual for mathematics, or mathematical physics 

to concern themselves with objects of very high type , so that 

the order of defined quantities is in practice very low. For 

example, I reckon that the order of any computable binary 

decimal is less than eight. Certainly the mental effort re

quired in handling a concept increases rapidly with the length 
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of its type, and progress d epends on inventing techniques and 

analogies which will lessen that e f fort. Fo r instance, the 

analogy ( and the accompanying techniques) between the applica

tion of a linear functional to a function and the scalar 

product in a finite-dimensional vector space has made pos

sible an elaborate theory of functionals; a theory which 

would seem incredibly abstract and hard to grasp to anyone 

unfamiliar with the analogy. One of the reasons why modern 

quantum field theory is so dif ficult is that it deals with 

objects of rather high type - functionals of functions 

defined on arbitrary spacelike s urfaces and so on; but it 

does not provide a convincing analogy with objects of lower 

type, nor does it use an adequate notation. Inde-ed, if we 

order the types in such a way that a lesser type can always 

be mapped one-to-one into a greater type , then we might well 

take the greatest type in common use as an index of mathe

matical progress~ 
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CHAPTER II. 

Section 1. The deduction theorem. 

The function of symbolic logic and of foundational 

studies is not, in my opinion, to dictate to a subject how 

it should conduct its arguments, but to elucidate. the way 

in which it does conduct them: the right words of appreciation 

for a successful attempt are 'I see', not 'I hear and obey'. 

To achieve this aim the logician must fix his subject at a 

particular stage of its development, and then must codify, and 

classify, and make more precise, the methods of argument which 

it uses, and the nature and interrelations of its concepts. 

And when he has done this, he should leave the subject free 

to go its own way. He should be like a surgeon who performs 

an operation to examine the condition of his patient, and to 

display it to his students; and who, when the operation is 

finished, says to the patient 'run along now, we'll take 

another look at you later'. He should not be like an anatom

ist who first kills his subject, or a Frankenstein who makes 

monsters. By this last remark I do not mean to say that a 

logician should never indulge his fancy; to do so is a 

privilege which belongs to all mathematicians. But I do 

mean that his first duty is to make a logical picture of the 
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subject he is studying as he finds it. I do not think it is 

possible to give strict criteria for deciding what is a 

satisfactory logical picture; in particular it is not neces

sary that the picture should be, as it were, a photographic 

likeness. ( Poincare believed that it should be; hence his 

disputes with the logicians). But if the picture is violently 

non-representational it cannot, evidently, fulfil its purpose -

to elucidate and explain. And I believe that the majority of 

modern logicians are guilty of just this fault - the picture 

they present is too hopelessly unlike life to be of any use. 

For they assert that all propositions are either analytic, or 

contradictory, or synthetic; while I claim that many of the 

propositions of mathematics, and almost all of the propositions 

of theoretical physics are none of these things. 

Of course, it all depends what you mean by 'proposition'. 

Let us consider some of the possible interpretations of 

a) 

b) 

c) 

!. > 3 

'!. > 3' means the same as ',\~ v ·!. / 3'; 

'!. :> 3' means the same as '(!,v)( lS ) 3)'; 

!. > 3 is not a proposition, but a propositional 

function (in the old sense of the term), or a 

matrix; it becomes a proposition when the symbol 

for an integer is substituted for ]S; 

d) !.)" 3 is a proposition whose truth value depends 

on e· 
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Interpretation a) can be ruled out straight away, for it 

leads to hopeless confusion: according to it, the presence of 

the free variable ~ indicates that the expression is a 

function of an. integral argument. Consider the proposition 

(X) 

by a) 

will mean the same as (X). But it contains the free variable 

~' and so is also a function of an integral argument; which 

is absurd. We may note that the interpretation a) is based 

on the seventeenth century convention of writing ' f ( ~) ' to 

mean ' the function f ' , and the consequent (or precedent ?) 

failure to distinguish between a function and its values. 

Fallacies based on confusions similar to the one we have 

expounded do still occur in papers on theoretical physics1 ; 

of course they can only arise when functions of functions are 

being considered. 

In system ( C) a proposition which has been proved ( or an 

axiom ) bears the interpretation b). But a proposition which 

has not been proved does not: for although 

( 1) See for example Eddington (1), pp.26-27; H~ is regarded 
both as a function of the occupation function j, and. of 
the state parameters X£, which are the arguments of j, 
and a detailed analysis of the argument shows that this 
does really represent a confusion of the kind considered. 
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is a valid inference (rule C.VI), it will never in fact be 

used, because it does not lead towards the proof of any 

proposition; an uncertain proposition, in the sense of inter

pretation d), occurs only in contexts which involve - sooner 

or later - an application of the deduction theorem. This 

is one reason why the deduction theorem is important; it 

allows contexts in which expressions can bear the interpre

tation d). And it may be noted in passing that the objec-

tions usually raised against material implication fail when 

applied to a system which allows the interpretation d); for 

if !c and ~0 are two uncertain propositions, and if 

\-- ~() ~ ~.:> 

then ~~ reall~ is a consequence of ~o - that is, everyone 

would agree that ~c is a consequence of Ao . 
Of course it is possible to set up a satisfactory system 

based on the interpretation b); the first objection to such a 

system is that it is unbearably cumbersome to use. For con

sider a step in a proof in system (C) - a proposition ke, say; 

the corresponding step in the system· considered will consist 

of an implication sign, on the right of which will stand ~c, 

and on the left of which will stand the conjunction of all 

the uneliminated hypotheses which have been used in the 

derivation of ~o · A glance at some of the proofs in sections 

3, 4, and 5, will show why such a system simply is not 

practical. A second objection against systems of the kind 
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considered is that they depart from normal mathematical 

usage; for ·~ > 3' on the page of a mathematical work would 

never bear the interpretation b). A third objection is that 

it does not allow free variables to be used as names; this 

will be discussed sho r tly. 

We now discuss interpretation c); be it noted that we 

can force system ( C) to bear this interpretation simply by 

asserting that formulae containing free varia bles are never 

,propositions,· and that free variables do not represent ele

ments of the appropriate type, but are just symbols which -

if not restricted by hypothesis - may be replaced by the name 

of an element of the appropriate type, or may be general ised 

on. We are going to show that this interpretation is not 

suit a bl e for the elucidation of the concepts and the methods 

of ar gument of modern mathematics. 

Before doing this we make more precise the notion of a 

~. By a name we mean an unabbreviated closed formula of 

system ( C) ( possibly extended by the introduction of a number 

of virtual types). Two closed formulae are ( provably ) names 

of the same object if they are ( provably) equal. A short 

~ is an abbreviation for a closed formula ( e.g . ' Tra ' 

is a short name). A nickname is a variable restricted by 

hypothesis; (if the reader considers this too light a word 

for a learned work he may use the term ' improper~ · 

instead). Now certainly names ( excluding nicknames) in our 
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sense are names in the accepted sense - accepted, that is, 

by . those who would not reject system ( C); for example, the 

int egers all have names - viz. the formulae Af <.t- 1£ 1, .f( •.• ( fx) ... ) 
I 

of type L, or the formulae S( ..• (SOv) ... ) of type v . Many 

people however - for instance the authors of Principia Mathe

matica - would claim that our definition was too narrow. They 

would urge that the individuals, and some of the elements of 

type o ~ ( corresponding to atomic propositions), for example, do 

have names. I agree that one may wish to introduce a type 

of individuals with names - to represent, say, a series of 

events. But such names will not be purely logical, and are 

therefore best represented by introducing a series of addition-

al constants, At , B"' D i. , ••• ; personally I believe that only 

a finite number of such additional constants are necessary -

that an infinity of names always involves a rule of generation 

from a finite number of symbols, as in the case of the names 

of the integers. However that may be, there certainly are 

occasions when one wants to deal with a type of individuals 

which do not have names - the points of space, or the elements 

of an abstract set, in the sen9e in which that term is used 

in abstract algebra or general topology ( for examples see 

Boubarki ( 1)). And in classical mathematics too, there are 

elements - the non-definable real numbers, for instance -

which do not have names. These elements constitute, as it 

were, a sort of underworld; for while the ' respectable' 
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elements have proper names, the inhabitants of the underworld 

can only be known by nicknames; and although, admittedly, one 

cannot identify someone by a mere nickname, one can at least 

make some sort of reference to them. But under interpretation 

c) neither free nor restricted variables are names at ·all, 

but only symbolic devices; and hence the elements of the 

underworld become unmentionable - except in the mass. 

Let us consider some examples. First, supposing to (0) 

there be adjoined the axiom and rule (N) which govern the 

use of Clo, and also the axiom: 

(U) 

and consider the expression 

(R) 

Under interpretation c) this is a matrix which becomes a 

false proposition if we sµbstitute, say, 

~ !!!v·T 

for£; but there is no substitution which makes it a true 

proposition. On the other hand, because of (U), the general

isation of its negation, 

(£ 0 v) ( Clo£J 

is provably false; a curious state of affairs~ But (R) is 

certainly an expression which might occur in a mathematical 

work - as 'let£ be an undefinable binary decimal'. Before 

settling finally against interpretation c), however, let us 

consider some of the ways in which the situation might be 



1 1 1 

met by the proponents of c). 

1). They might reject the axiom (U); this position is 

not unreasonable, especially when it is remembered that it 

may be possible to base a model on Clo. We will call it 

a 'definitist' approach; it amounts to denying the existence 

of the underworld1. 

2) . The proponents of c) might claim that all elements 

really had names, (those of the underworld being known, I 

suppose, to the prince of darkness); but that the names of 

elements not representable by closed formulae were secret, 

and beyond the ken of our limited reason. I believe this 

opinion would have been advanced - or at least defended -

by Ramsey when he was writing (1). But it seems to me that 

one who holds this view is as much a fraud as the man mention-

ed by Wittgenstein, who promised to instal a telephone in 

every house in Cambridge, and who, when shown a house without 

one, said 'Ah well, you see, I ' ve given them an invisible 

telephone' . 

Consider now another example; let the type ~ represent 

( 1) More refined positions are also possible~ The con
structivist will only admit the existence of those highly 
respectable members of society - computable elements -
whose names guarantee that a search in the library of 
the college of heralds will eventually yield further 
information about them; while the social world of the 
finitist is limited to members of the royal family -
the integers, which, as Kroenecker remarked, are there 
of divine right - and their closest relations. 



an abstract set - that is let C" be . t he only named 

individual. We defirie; 

Cas Ol<.t-L ·~ .t\Qvvv . ( x 1, ,..Y 1,, ,~ 1,.. )(~ I= C & 3.. I= C & ~I= C . 

~ I= c & ~(~) = :e (~)~ 

& £Y = IJYX). 
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Thus CasQ means tmat £ is an associative commutative product 

defined on the set consisting of all the individuals except 

C. It is easy to prove 

I-

and hence 

\- ""Cas.f ~1..t. 

for any closed formula EL~ ~ . On the other hand, I cannot 

believe that anyone would assert the proposition 

in t h is case the underworld is, as it were, too respectable 

to be denied, and so the defence 1 ) of interpretation c), is 

no longer possible. Defence 2) this time is more reasonable, 

for one can produce examples of named commutative and associa-

tive products ( on the integers or the real numbers ) . But I 
I 

think it misrepresents the case: for, according to it, when 

the hypothesis 

CasQ """ 

is made; when, that is, the algebraist says 'let £be a com-

mutative and associative product be given on an abstract set', 
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what is really meant is 'consider, say, the ordinary multi

plication of integers'. But I think that the algebraist means 

what he says; he is not concerned with how the product is 

given, nor with the nature of the elements of the set, nor 

with its cardinal number: and it is the task of the logician 

to express this meaning in logical terms, not to tell him 

he means something quite different. 

We may sum up in this way: we imagined elements which 

were either too random or too abstract to be representable by 

closed formulae. The proponents of interpretation · c) denied 

our right to imagine elements of the first kind, and assured 

us· that when we mentioned an element of the second kind we 

were really only mentioning some particular - though unspecified

concrete instance. Proponents of interpretation b) wo uld say 

that elements of the kinds considered can only be referred to 

en masse, so that when we think we are mentioning a single 

such element we are merely writing or uttering the symbol of 

a bound variable. We said at the start that it all depends on 

what is meant by a proposition; those who wish to assert that 

many of the proposition-like expressions of mathematics and 

physics are in fact matrices, and that symbols which appear 

to refer to mathematical and physical quantities are in fact 

only bound variables, are free to do so. I hope that by the 

end of this dissertation I shall have said enough to show that 

such people should be thought mildly eccentric. 

There is a way of referring to members of the underworld 
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which has not yet been mentioned, and that is by introducing 

a constant selection operator in every type, which, as it 

were, hauls out a hostage; but this method involves the very 

strong assumption that axiom ( S) holds in every type, and 

also destroys the symmetry of an abstract set (see theorem 

VI). 

The interpretation d) is capable of a semantic formula

tion as follows: a class of models (e.g. the class of standard 

models) is chosen. A formula h which is interpreted as truth 

in some of the models and falsehood in others is an uncertain 

proposition ; either it or its negation may be taken as hypo-

thesis. The range of a free variable~~ of ~0 , when that 

variable is. restr~cted by the hypothesis f: , is the set of all 

the interpretations of ~i in all those models of the given 

class for which the interpretation of J;~ is truth. A proposi

tion ~ is true Q!1 !he assumption Ao if the interpretation 

of ~c is truth for every model of the given class for which 

the interpretation of .J:;o is truth. As before, we regard 

this formulation as providing a reasonably precise but 
• 

intuitive meaning to the various terms, not as providing 

formal definitions. 

Finally we recall once more the english renderin g of A 

considered as a hypothesis: ' let us imagine that ~o is true 

for some elements, and let such an element be denoted by ( the 

nickname) ~~'. And herein lies the philosophic importance of 
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the deduction theorem and the interpretation d): they show 

the logical status of those acts of imagination which are so 

essential a part of mathematics. 
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Section 2. Mathematical Structure. 

The elements of type (, other than Cc, form an abstract 

or structureless seti no particular element can be singled 

out, the only binary relation that is singled out is the 

identical relation Q. , and so on. For definiteness we will 
Olf, 

assume the axiom ( I), so that the set considered is not a 

finite one. If now we are given an element X~ in some type 

{ , we say that X~ determines a structure on the set;. X.1'. may 

single out some particular individual, or a set of individuals; 

or it may be a successor-like function s~L , so that every 

individual may be expressed in terms of it, through an expres-

sion 

J'l.]:a.p.nv St-'- ( I ~ 1,..)( l t. )( S 1.~ l I= ~) ; 
or X~ may be an invariant element, so that it does not in 

fact determine any structure at all. For the sake of uniform-

ity we say in this last case that X determines the logical or 

the symmetric structure on the set. 

When shall we say that two elements X~ and Y3 determine 
t 

the same structure? We give two answers to this question; 

the first is provided by the formula: 

Sam:u\. -> 1\ 1_6 ~ . • (,£ ._," ) ( Per_E . ":J . 
{ 

Tra~ = ~ .:. Trapy = l) . 

X{ and Yj define the same structure in this sense ( the 
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extensional sense, as we shall call it) if the subgroups of 

the permutation group on the abstract set which leave Xd and 

Y · invariant are the same subgroup. Sam 'f Yf defines the set 

of all elements in type :..ii. which define the same structure as 

Y~ . With this definition we can act ually define the structure 

determined by XJ. as the subgroup of permutations which leave 

it invariant: 

( 'Exu' stands for ' EXtensional strUct~re' ) . . 

2, 1 ) r Sam-2£.1. 1-p ::::::. Exu];,~ = Exul ~ . I 

Next we define: 

Wea ~p r -41 ,\xf ~ "·CE t.L )( Per.E & Trapy = ll... 
• :::> • Tra~ = 1£) . 

Mon di.. -7 A-2£·.1-..· ( E. ii.. ) ( Tr apx = ! .J .E = I") • 

The structure determined by X~ is weaker than the structure 

determined by Y p if the subgroup of X~( i.e. ExuX o:.) includes 

the subgroup of Yp. The weakest possible structure is the 

logical one. MonX.\ means that X~ determines the strongest 

possible structure; that is, no permutation other than the 

identical one leaves X ~ invariant; we say then that ~is 

monomorphic. 

2.2) )- Samll... ,.~ ! . ..<_ := (E!_ 'f )(Inv!_ & x = fy) 

H.1 saml r !ol (_!,!) 
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H.2 f .;.f = ,\ Yp . ( 'Q~) (EE. c.J ( Perl?. & TraE..! = x 
& Tra~ = ,2£) ( f) 

3 Invf & .2£ = fJi. 

4 H.1:) L.H.S. of 2 . ~ ) (H.1, H.2). 

5 2 .a) 

The omitted steps in the above proof are straightforward; we 

note that the map! defined by H.3 is a one-to-one map of the 

set of all the conjugates of l onto the set of all the con

jugates of .2£ (see section 2 of Chapter I). If .2£ and~ are 

invariant, they are themselves their only conjugates. 

Given an element Xp, there will be a range of elements 

which can be defined explicitly in terms of it, by expressions 

'!f.)f Xr , where ~ f is a closed formula; by theorem II all these 

elements will determine the same extensional structure as 

Xp. But the converse is not true, and this leads us to make 

an int ens ion al definition of 'determining the same structure' 

as follows: 

Mudo ~f .4 Alf ~ . (Ef qr ,g . r )( Clof & Clog & ! = fy & l = gx). 

Mud~ ('~ and x are mutually interdefinable') means that~ 

may be represented by a formula whose only free variable is x, 
and vice-versa. It is perhaps worthwhile to give an example 

showing the difference between Sam and Mud. Let there be given 

a set of individuals Hn having the cardinal n, and an individual 

Xn, f or each positive integer n; and let the sets H0 all be 

distinct, and let no x 0 belong to an H'°"' and let every 
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individual be an Xn or belong to an H~. 

We define functions (of type Lt) f and g as follows: 

a) if y belongs to Hl'\, then fy = x", and gy = Xn ' , 

where n7n' is a permutation of the positive 

integers; 

b) fx~ = x~ = gxn. 

Then it is fairly obvious that f and g determine the same 

structure in the extensional sense, but they will only be ex

pressible explicitly in terms of each other if the permutation 

n -> n' is explicitly given ; if we assume that there exist 

random permutations, not representable by closed formulae, 

then there will exist functions f and g which are not mutually 

interdefinable. 

Of more f undamental importance than the concept of the 

sameness of two structures, is the concept of isomorphism. 

Let t and K be two basic types, and if · is a type symbol 

not involving ~, let ~ be the type symbol obtained from ..(.. 

by substituting K for L. throughout .. ~ . Then an element of 

type O.., and one of type d.. , are said to be isomorphic if they 

satisfy Isol~ ~,,z , where: 

Iso
0 

" --;> A .Y~·~IJ\. ( Efu,_) (Ontf & Traf.Y = .!£ ). 

If in this definition we substit ute v, for 1.,, that is if we 

consider two elements determining structures on the same 

abstract set, then we simply ~et the definition of 'Cot'. The 

above definition is that usually given for the isomorphism of 
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two structures (see, for example, Bourbaki ( 2), and also the 

discussion below). But it is obviously better to regard it as 

only defining isomorphism between two elements. For example, 

let the function f be defined as above , and let g be defined 

by: 

a) if y belongs to Hn, then gy = x0 ; 

b) 
I 

gxA = x~' , where n ~ n is an explicitly given 

permutation of the positive integers. 

Then f and g determine the same structure iri both the ex-

tensional and the intensional sense, but they are not iso

morphic. We therefore introduce new definitions for the 

ismmorphism of structures. 

Let .~ , p , be type symbols in which, respectively, v< l , 

do not occur. 

Sis 0 ,..r _.;.;>A l f !oA·(E! tK)(Ont! & Mud(Trafy)!); 

Eso J.~ -7 ~l(' !ut.,.· (E! t.K)(Ontf & Sam(Trafy)!). 

('Sis' stands for ' Structural ISomorphism', and 'Eso' for 

' Extensional definition of structural iSOmorphism'). I 

believe that in normal mathematical usage refers to Sis 

rather than to Eso ; for example, one might talk of the 

isomorphism of two topological structures, one of which was 

defined on a set in terms of neighbourhoods, the other being 

defined on a different set in terms of closure. 

I do not know if a definition· similar to our 'Sam' has 

been given before or not. I think the ori ginal definition 
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(due to Russell ?) corresponded to our 'Iso', only n-ary 

relations being considered as arguments. The most modern 

definition is that given by Bourbaki (in (2)); starting from 

a number of basic abstract sets, he defines the ladder of 

sets based on them as all those sets which are obtained from 

them by successive applications of the operations of forming 

the set of all subsets of a given set, and of forming the 

direct product of any two given sets. A structure is deter

mined by any element of any of the sets of the ladder. Two 

elements determine the same structure, if there is an explicit

ly g iven one-to-one map of a part of the set to which one of 

the elements belongs onto a part of the set to which the 

other belongs, the said map carrying one element into the 

other. If, as I think is intended, we interpret 'explicitly 

given' as 'repres-entable by a closed formula', then this 

definition is almost the same as our 'Mud', being possibly a 

little stronger. Of course both ' Sam' and 'Mud' may be 

generalised to the .case where there is more than one basic 

type, and to any element of a set of the ladder there cor

responds an element of some type and vice versa. Bourbaki's 

definition of isomorphic structures corresponds exactly to 

our Iso and therefore two structures which are the same in 

his sense, are not necessarily isomorphic in his sense. I 

consider that all the definitions we have given have their 

uses, and that there is no point in trying to decide which 

are the 'correct' ones. 
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We have only discussed the structure defined by a single 

element, because any finite number of different elements can 

all be rolled into a singl e one in a higher type; f or instance 

by forming: 

,\ l r . ·~.;t·~ = x ,{ & ••• & l = Yr . 
Thus far we have as s umed tha t the element X which 

determined a s tructure was simply 'given'. We now consider 

how it may have been given. Were it explicitly g iven, that 

is representable by a closed formula, the structure it de

termined would be merely the logical structure. So we 

suppose tha t it was required to satisfy an axiom ~c -i...X..t , 

where A ~ is a closed formula. (For at the beginning of ,... 

any discussion there must be a definite statement of the 

subject of discussion, so that if ~o~ were not a closed 

formula, then there would have· to be a formula ~ t,a.t) , which 

indica ted the range of ~,,J... ; if {? <P.l) were not closed, there 

would be a formula which limited its r ange, and so on; the 

f inal formula in this series would be closed - though 

possibly by the trivial form ~ £ ~ .Q = d - and we should 

treat this final f ormula as the axiom, and the other formul a 

of the series as elements which were g iven by it.) 

The consistency of the ax iom might have been established 

by the metho d of virtual types; but this is not essential. 

There is no rea son why one should not discuss the consequences 

of an axiom which is not known to be consistent: all one 
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requires is the assurance that it is not known to be incon

sistent. The discussion of an axiomatic system can thus be 

regarded as an application of the deduction theorem, there 

being two initia l hypotheses: 

(H .C.) ( EJS,~) ( ~ 0 JS); 

( H . P) 6 0 ;. X ( X) • 

The first of these - the hypothesis of consistency - is 

usually made tacitly rather than explicitly. The second -

which we shall call the principal hypothesis - is often put 

in the form of a definition; e.g. ' We define a base of 

neighbourhoods to be a set of subsets of the given abstract 

set which satisfy the following conditions ... '. The 'nick

names' which are introduced by ( H.P), and which we have 

denoted by ~' are thus often made to sound rather imposing; 

but the fact remains that they are just names for variables 

which are restricted by ( H.P) - although when the axiomatic 

system is applied to a concrete instance (the rea l numbers, 

say), there may be elements with proper names which satisfy 

the axioms. 

The reason for giving the restricted variables of ( H.P) 

distincti~e names is that they are regarded as the significant 

quantities of the particular axiomatic system under discus

sion, and ( H.P) is not eliminated until the discussion is 

over ( and then the elimination is usually tacit). There may 

well be other existentially quantified variables of ~0~X , 
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which could also be restricted by (R. P), but which are not 

because they are not considered sufficiently important. 

For example, one axiom governing a base of neighbourhoods 

B v (o ... ) is: 

(,!!(ri. ,_y 0 '- )( E,Yt 01) ( BQ & Bv . .J . B,! & ,! C (~ () -::!) ) ; 

where we have used the ordinary set theoretical notation. Using 

the selection axiom the above can be proved equivalent to: 

( Ef )(u v . )(Bu & Bv . .J. B(fuv) & fuv - o._ (o'-)(0 1,.. ) -o t. '- O'- - -
(g 

and so ! might also appear as a restricted variable of the 

principal hypothesis, but in fact it would not be thought 

significant enough for this to happen 1 . 

_y))' 

From an axiom ~0,,.._X<A_ one can deduce a certain amount about 

the elements which satisfy it. Since A ·J... is a closed formula, 
/"' 

all the conjugates of an element which satisfies it must also 

satisfy it. If any two elements which satisfy the axiom are 

conjugates, the axiom is said to be categorical. One might say 

that an axiom was isomorphogenetic if all elements satisfying 

it determined isomor phic structures (t aking either the ex

tensional or the intensional definition ) . Further definitions 

concerning axiomatic systems will be found in Tarski (3); a 

perusal of that paper will make it clear how much better the 

notation of system (C) is suited to the discussion of these 

problems than that used by Tarski. 

(1) For argument's sake I have assumed in this d iscussion 
that the intersection of two neighbourhoods of the base 
does not necessarily itself belong to the base. 
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Finally we note that if it is possible to base a model 

on Clo, then it is also possible to base a model on all those 

elements representable by formulae whose only free variables 

are X~ and variables of type i. It would follow then that 

one could actually produce an enumerable model for every 

axiomatic system; of course the existence of such models is 

guaranteed by the Lowenheim-Skolem theorem. 

I 
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Section 3. Theories. 

The purpose of a t heory is to bring some sort of order 

into a mass of given facts, and to make predictions concerning 

future facts. It must be a dmitted that part of the dif ficulty 

of this process is deciding what is and what is not a fact; 

but we are going to suppose that this matter has been dealt 

with, and that the facts with which our theory has to dea l 

have been collected and presented in some kind of standard 

form, and that there is a presumption that future facts will 

also be able to be put in this standard form. This presump

tion is essential to the theoretician because on e of his chief 

activities is the consideration of imaginary facts ; if for 

example one were to sprout an entirely new kind of sense 

organ every day one would hardly be able to theorise about 

one's experiences. Our assumption is not so restrictive as 

might at first be thought; for a sufficiently long and com

plete motion picture could provide all the factual material 

required for a wide range of theoretical subjects, and a 

standard description of such a f ilm, frame by frame could 

easily be arranged. The facts in this case could, for 

instance, be described by a function of type ovv ; the first 

argum ent referring to the frame numbe r , the -second to the 

number of a small cell within that frame, and the value being 

T or F accord ing as the cell was white or black. We shall 
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suppose then that any conceivable set of facts of the sort 

with which the theory is to deal is describable by a single 

element in some type 6 • We wish to allow a conc eivable set 

of facts to contain an infinite amount of information, while 

an actually observed set will, of course, contain only a 

finite amount of information. We introduce symbols 

P.,<i>, Q
0

t> , ••• , to refer to observed sets of facts; since 

they represent only finite amounts of information, they will 

presumably be representable by closed formulae. For example 

a P06 might be: 

}.Q._,,,v • .9,34 & £135 & £141 • 

By a theory which deals with facts described by a 

function of type b, we mean simply a closed formula of 

type 0 61; we suppose that any requisite virtual types ( and 

in particular v and ) have been included in the logical 

system. Thus we confine our consideration to theories which 

are capable of definite logical formulation - so that, for 

example, the Freudian theory of the censor would fall outside 

the scope of our remarks. 

We give an example of a theory. The facts are described 

by an element g of type pv, which may be interpreted as 

observations on a number of occasions of a real valued 

quantity, the value on the nth occasion being dn. The theory 

is given by: 

( 1) I owe this definition to A.M. Turing. 
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A Qr" . ( Em.'(, flt'i I ,!'. f 1) ( Motmw g. & 

Q = \ :uv .J?ism.( q1 T ( Rea:u)) ( ~2 Y' ( Rea:u) ) ) 

Here Mot t, . ..... ,,vJ(,'vJv Dis f tf')<f'v ·t . , Reaf" ' are abbrevia-

tions for three closed formulae which we shall not give 

explicitly; we shall make their meanings c1ear directly. The 

first thing that a theoretician does· when he has made a 

theory is to assume that the facts satisfy it ; i.e . he makes 

the hypothesis: 

(H.A) (g) . 

This step may be compared with the hypothesis of consistency 

( H.C), made when studying an axiomatic system; and, as there, 

the next step is to turn into restricted variables those 

existentially quantified variables which are considered of 

importance. We again call this step the principal hypothesis: 

(H.P) Motmv!'. p" 9.fvf" 

& .9: = i\ n..,.Dism" C9. fv;v 1v- ( Rea:u)) ( 51f"'{" 2v( Hean)) 

( ~' !!, g,) . 

As in the case of axiomatic systems this is the statement 

that would stand at the beginning of a paper or text book; 

we give a translation of it, thus providing the interpreta-

tion of the symbols which appear in it. 

' Let there be two particles; let the mass of the ith 

Particle be w i · let the kth coordinate of the ith particle - p.t -V' 

at the time t be given by .9.pvf"' 1.v 1(' lf" . Let the motion of 
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the particles take place in a space of m dimensions, according 

to .the law of motion described by 

Mo tm .. /!!.. f" qt'f'" 
Let the distance between two points of the space, whose kth 

coordinates are respectively Krv~v and g;~t~ _be given by 

Dis.m r_,.,,. g i>v' • 

Then we suppose that all the above mentioned quantities are 

such that the real number g f( Qv which is o~served on the nth 

occasion is equal to the distance between the two particles 

at the time t = n.' (Reap~ nv means just the integer n con

sidered as a real number.) 

As for axiomatic systems, the question of just which 

variables are to be restricted by the principal hypothesis, 

and thus brought into prominence, is a question which cannot 

be answered dogmatically. A rough answer is that all depend-

ent variables and constants which are of physical significance 

should be so restricted. 

In order to be able to discuss the general case, we 

represent the principal hypothesis of an arbitrary theory by: 

( H.P) (§, ... ,.Q). 

We call the variables that are restricted by ( H.~) hypo

theticals; neither ( H.P) nor the hypotheticals are uniquely 

determined by the theory. ' ~ .;...~. ·j s' stands for a closed 

formula, and we shall use the same symbol to denote the 

appropriate formula for the. example and for the general case. 
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We now investigate the nature of the hypotheticals by a 

study of transformations which leave H invariant. This 

analysis is more complex than any we have hitherto a ttempted, 

because we have to d istinguish not only between different 

mathematical types, but also between the different occurrences 

of the same mathematical type in the types of the hypothetic

als. To this end we define the subtypes of a given type 

as follows: 

a) the value part and the argument parts of L~ 

are all distinct subtypes of ~ ; 

b) a type ~ is a subtype of d.. , if the val1Je part 

of f is the same as the value part of ~ , and all the 

argument parts of f are argument parts of ; two such 

subtypes are distinct unless their corresponding 

argument parts are in each case the same argument 

part of ff\ ; 

c) a subtype of an argument part of ~ is a subtype 

of ~ ; two such subtypes are distinct unless they are 

the same subtype of the same argument part of ot . 

By ' the subtypes of the hypotheticals' or just 'the sub

types' - we mean all the su~types o~ all the hypotheticals. 

I think it obvious how the transformation induced in type ·J4.. 

by a g iven transformation1 in a subtype of ~ , is to be defined. 

( 1) The word transformation is used r ather than' permutation, 
because if the particular subtype is not an argument part, 
nor a subtype of an ar gument part, the transformation of 
rl.. can be defined for any map of the subtype into itself. 



131 

Suppose now we make some transformations of the various sub-

types which induce the transformations 

a ~ a, ... , .Q - > b , 

and suppose that 

(,gl>)( !:! ~ -- ·r 0 db ... i :=:: ~!c,?l .. . 6 db ... ,g), 

then we shall say that the given set of transformations forms 

a permissible set. Now I claim that a complete knowledge of 

the physical significance of the hypotheticals may be obtained 

from a consideration of all the sets of permissible trans-

formations. 

Let me illustrate this thesis by reference to the example. 

When I say that such and such a transformation is permissible, 

I mean that its permissibility could be proved using the full 

formula f or The. The following transformations are permissible. 

1) Any transformation 

"!!..!'..,, -> '!!..f" 

where ~ takes the same values as '!!... for the arguments 1~ and 

2~. This shows that there are just two objects having sig-

nificance in the argument subtype of "Yi. • 

2) Similar transformation in the (14) subtype of .9.· ('we 

number parts of a type from left to right in the type symbol, 

so that 1 always refers to the ~alue part .) 

3) The permutation 

applied simultaneously to the argument part of'!!... and to the 
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(4) subtype (i.e. the last argument part) of~: This shows 

that these two subtypes refer to the same physical type; and 

as there are no further permissible transformations which 

yield information about this type we can say that it contains 

just two interchangeable objects. These two objects can be 

conveniently pictured as particles, which have properties 

specified by ~ and g. 

4) Transformations corresponding to translations and 

rotations in an m-dimensional Euclidean space, acting in the 

(12) subtype of g ( assuming that Dis and Mot are suitably 

defined). This shows that the second argument part of g is 

not like a particle type, and that ~fv~v 1v!o ma y be inter

preted as a coordinate in an m-dimensional space. 

5) Transformations corresponding to the Gallilean trans

formations of space-time acting in the (123) subtype of g. 

(Again a suitable definition of Mot is assumed.) In conjunc

tion with 4) this shows that the subtype (3) of ~may be 

interpreted as a time coordinate. 

Other transformations may well be possible, according to 

the exact definition of Mot; but I hope the above brief 

analysis will serve to show the way in which my thesis could 

be substantiated. We may say that the principal hypothesis 

confers a structure on the subtypes of the hypotheticals in 

rather the same sort of way that the axioms confer a structure 

on the abstract set of an axiomatic system. It may be noted 

that we have re~uired invariance for all possible facts; and 
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so the symmetries revealed in the permissible transformations 

ar~ theoretical symmetries. If instead we considered only one 

g iven set of facts then the corre sponding transformations 

would also reveal the factual symmetries. 

To show that our way of looking at physica l theories is a 

really useful way we shall discuss briefly its application to 

one or two problems. 

1) Measurement. 

The observations on which a measurement is based we 

represent by a P00 ; what is being measured is usually a hypo

thetical of a theory, or more likely, a function of the hypo

theticals ( for example, the ratio of two masses). The 

theoretical proposition which expresses the fact that the 

particular observations made mean that the function has a 

particular value ·z say, is thus: 

( ~~' •.• ,b f ,d&)(P06 S! & _!jdb ... ~ . j. g..Q ••• ~::. z1 ) , 

where QY~·· · P is the aforesaid function. It is obvious that 

measurements of this sort - and most measurements are of this 

sort - depend essentially on the assumption that the facts 

do satisfy a particular theory. 

2) Counter-to-fact conditionals. 

There has been a good deal of discussion as to the 

logical status of such statements as 'If I were to put this 

lump of sugar into my tea, it would dissolve'. I consider 

that when such a statement is made, there is always a theory 
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tacitly implied, and the statement is just a deduction from 

the theory, of the form~ 

( ,g'O)(~o .9: & The.Q, . :J . Qo6 g). 

If the listener accepts the theory, he will agree with the 

statement; if he recognises the theory, but does not accept 

it, he will regard the speaker as superstitious; and if he 

can recognise no theory behind the statement ('If I open my 

mouth wide enough the kettle will boil') he will think the 

speaker dotty . 

3) Operationalism 

It appears to me that what the operationalists (s ee 

especially Bridgeman (1)) think they a re saying is either: 

a) In a good theory the hypotheticals are uniquely 

determined by the facts 

or b) A good theory should be able to be put in a form 

in which the hypotheticals are uni quely determined 

by the facts. 

But the first of these is contradicted by the fact that all 

the great theories of physics employ guantiti'es - like 

coordinates - which are not uniquely determined by the facts; 

and the second of these can be shown trivia lly to be true of 

any theory. For let us modify the genera l theory we have 

been considering so that its principal hypothesis becomes: 

(H. P ') fo r1,_,.f = .~o ·"f g & ( Eg<:A ,···.2r )(f d. - ·· f' Q~··f1) (f). 

Now the hypothetical . ! here is uniquely determined by the 
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facts; but on the other hand, by considering the transforma

tions of its arguments which leave .f invariant one can recover 

all the structural detail, so that (H. P ') as it stands seems 

an adequate principal hypothesis. 

The most famous example of operational criticism is 

Einstein 's dethroning of absolute simultaneity; but the point 

here is that the theory of an immobile ether had already been 

exploded by the Michelson-Morley experiment. Had that ex

periment given the expected positive result, absolute simul

taneity would have been operationally definable. Thus one of 

the things the operationalists are actually saying is: ' Don't 

use the concepts (i.e. the structure of the hypotheticals) 

of a theory after that theory has proved unacceptable'; and 

of course they are right. Another thing they are actually 

saying is: 'Use a theory with as few hypotheticals as pos

sible'. (See in particular Dingle (1)). And here they are 

certainly wrong, for if this were taken seriously it would 

lead to the accumulation of a mass of empirical laws, instead 

of to those powerful and beautiful theories which are the 

chief glory of theoretical physics. 

4) Constructionalism 

Ever since Mach people have tried to construct the 

fundamental concepts of space and time out of the manifold of 

possible sensations. (See Mach (1), Russell (1), Nicod (1), 

Carn~p (1)). In terms of a theory, for which the facts are 
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sensations, and of which the hypotheticals are the positions 

of bodies in space-time, the main principle of these con-

structions is the formation of the function: 

~.9: .(E.Q~ ... )(,!j db ... ~~); 

this set of possible facts (or possible sets of facts) re-
t 

presents the particular value !! a.. of the hypothetical £!: «.: 

But it is now clear that this representation only makes sense 

if the theory is believed to be true; and if one accepts the 

theory one might as well define the hypotheticals according 

to their place in the theory, rather than as a set of facts. 

To give the numbers of the pages on which a particular char-

acter in a novel appears does not make him more or less real. 

I cannot pretend that the arguments I have given in 

these brief notes are in any way final, nor that I have been 

able to do more than skim the surface of some of the problems 

discussed; but I hope I have said enough to show that our 

analy~is of theories is not only suitable for the discussion 

of the form and working of actual physical theories, but also 

helps one to see clearly into the more philosophical problems 

of physics. 

I believe that the first person to ~ive publicity to the 

fact that the concepts of physics were really hypotheticals 

introduced by a theory was Poincare; he emphasised his point 

by calling theories conventions, and showed by eocamples that 

equivalent theories might introduce quite d ifferent concepts. 
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The first ·statement of a theory in a logical form similar to 

ours is given by Ramsey in (2), which paper was the starting 

point of our work. A recent account of a philosophy of physics 

which is similar to ours, though not logically formulated, 

is by Margenau in (1); his constructs correspond to objects 

in the subtypes of our hypotheticals. 

There are many subjects and questions we have not dis

cussed, such as: the relations that may exist between differ

ent. theories; the requirements that are universally demanded 

by a physical theory; which of these requirements can be 

satisfied by an appropriate reformul~tion of any theory; 

whet.liner the ideas of simplicity and elegance can be given a 

logical formulation; the formulation of the idea of a funda

mental theory, Questions similar to some of these have been 

discussed in the past in connection with the ultimate physical 

reality, rather than in connection with theories. They are, 

in effect metaphysical questions. And I think a benefit of 

the analysis proposed in this section is that questions which 

have been dismissed by the- positivists as meaningless, can 

be reformulated in logical terms, and discussed in a logical 

setting. 



Appendix I. Equivalence of (Q) and(~). 

We denote by (C') the system described in Church (1) 

as defined by rules I - VI, and axioms 1) - 10), 12). 
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System (C) omits axiom 6), restricts axiom 9) to types o and 

&, and adds the constants c, and C ~ and axioms (D2). Church 

regards axiom 12) (our axiom (T)) as a 'strong' addition to 

the system, but Turing has shown that if the system is con

sistent without it, it is consistent with it (see footnote 

in Newman and Turing ( 1)) . 

First we show that elements C can be defined in (C') 

which satisfy (D2). I 
We denote by L..~(o the descriptions 

operators of system (C'). Then we introduce: 
I 

c., ·-7 ( 1{ .E ,) (,E J. .E) 

c ~ _, ( '11 
]f I. )(]£ J. ~ ) 

l/K (o I<. ) ~ \f0.f',' ( 1' 1£ t) ( J.f ::> ]f = c! .f . & • -vJ.f ':J ]S = C ~ ) 
I 

where K. is o or [, , and (11£,) is associated with i..~ .. { i ~ l. 

Then it is easy to prove the following (in (C')) 

J.fOK :) .f Olr\( t. '~ (0 ~ ) .f ~ )' 
and ( where r ... is or t. ); 

i.e. we have shown that ~" and c' satisfy (D). 

Further, it is easy to show (in (C)) that the constants '~~~ 

and Cat , defined on page S , satisfy the pro posit ions ( D) for 

each complex type ~ ' and thus that the ax ioms 9 ) of (c') can 

be satisfied in (C). 
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We now show that axiom 6) of (C'), namely 

(~~)( 12.c v ! _,p{ ~) ::> Q " v (~ .;., ) ( t' oo\.~) ' 

can be proved from the other axioms of (c '). 

We introduce the abbreviations: 

F~ _..,NT'. 

Now we prove a number of lemmas: 

(A) 

(B) 

For 

(C) 

For 

(D) 

For 

T' 

T' = Eo .v. F' = £0 

~o =. £ • V • N .9,. <J ::;;:. E. 

(B) 

f T' - ov & f ovF ' . J f~o .Eo 
T' = E. o ~ . .f •o T' :) f .00 £ 0 
F ' = llc :) . .f c>CF' :) f oo .E o 

(B) :) (c) 

(c) 

F' v _f ., _x = f x 
.,. -c>-;(. -

(]f~ ) ( 0~"- .F' v f c,,z2 ).! = f d.A.Jf) 

,\ l.t ( F I v ! . ,J( ~) = ! 

n t.~fA l_ J... .F' v f .:JJ.. 3_) .::> ff (N.)f • .J.. 

P .C., VI. 

P .C. 

12) and IV. 

Definition of 

' =' and 5 °0 
) • 

p .c. 

For both sides 
are provable, 
using (A) and 
VI. 

P . C. and 1 2) . 

I II and VI. 

10 °GI'.. ). 

Definition of 
'=', 5 "(0<J\.) ) 
and IV. 

p .c. 



If we now substitute 

for f 00 in ( C), use II, and detach (D) and (E) by V, we 
cX. 

conclude with 6 ) . This completes the proof of the equival-

ence of ( C) and (C'). 



Appendix III . Elementary f o rmal theorems . 

1. p = T :=. p 
- o - -

2 . p : F:S·"' P ~· - _...., 

3. v Q(),~·t· 

4 . t .\~ = ~ ~f & ~ /" = i~ . ~ . r. ~, ~r = g1! 13 · 
5 · r..v~ = ~ ·~r = ( ~JJ ) ( .f .l ~ = £2. r ~) · 
6 · £ ·::J (2£ .~) ( foJ.,~) • :: • ( ~oJ ( ,e -~ f 11J..~) • 

7 · £ 'J ( E~ .) (f cdJS ) .:= • ( E~~ ( I?. 0 ·:> f ,,~ ) · 

8. (2£ • .) (f -.;d,.2£ ) :> I?. " · ::S . ( E~ . J ( faiA,.~ :J £ c. )· 

9 . ( E2£ o(,)( f ~ ) "J £ .:::=. . ( ]£~ ( .fti~ :/ £ ,) · 

10. ( ~ . )(fod..~ ::> g.,J.~ ) . ") . ( ~j ( f0 ..1.~) -:J (~ )( g0,;..~) • 

11. ( E~ J. ) ( f oot~) ;:) ( E~q.) (_g";_.]£ ) • ':) . ( E~..J (f ~~ ::> g_ .il~) . 

1 2. J '' f 0 .t., :l> f .;,, ( t..""f 0 .a) · 

1 3. tvJ 'A. f o.J.. :> L\.. f0.~ = C,~ . 
1 4 . f l c A. ') L''f ,I-._ = c ·I... . 

15 . £ 0 :> ( 1~ .,tH .2 0 & 1£ = Q~ = Y.J(._· 

16. tv12 0 :J ( 1 ~d..)( £
0 

& ~ = Q-A.) = C.J.., • 

14 1 

17 . 12 1'> & "'.9.0 • J . ( 2£.:{)( 121) ~ ~ = Q d\. .& . .9. ., ':J ~ = X. ,J.) = !lJ..· 

18 . J oil f 0 ,1._ ::> (1 ~/" ) ( E~ ' ) (.f0 ,j,l. & 1£ = gp~!) = ~f~ ( l D<..f orl-.) • 

19. ~ ;..( i°"f 0 4'.) • =. ( E~J (f 0~~ & ( ~~ (f ,;.. ¥._ '.'.) ~ = x ) 

& g"""~) v ~c~. 
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