
Schedule S1, (Computer Science, CS and Philosophy, Maths and CS)
Schedule B, MSc in Computer Science

Hilary Term 2019

Computational Complexity

Exercise class 1: background material, TMs, (un)decidability

1. Arrange the following functions in increasing order of order-of-growth. (Do any of them have
the same order of growth?)

(a.) n10 (b.) (n2)logn (c.) (1.1)n (d.) (log n)logn

(e.) nlogn (f.) 100n2

2. A Turing machine with two-side unbounded tapes is a Turing acceptor where the tapes are
unbounded to both sides. Show that such machines can be simulated by our standard model
of Turing machines.

Note: You do not have to give the formal definition of the Turing machine. A precise
description of what the machine does and how it simulates the original machine is sufficient.

3. Prove that if L1 and L2 are decidable languages over the alphabet Σ, then so are

(a) L1 ∪ L2

(b) L1 ∩ L2

(c) L̄1 := {w ∈ Σ∗ : w 6∈ L1}
(d) L1;L2 := {wv ∈ Σ∗ : w ∈ L1, v ∈ L2}
(e) L∗

1 := {w ∈ Σ∗ : w = w1w2w3 . . . wk, wi ∈ L1 for all 1 ≤ i ≤ k}

(This result can be summarised by the statement that the class of decidable languages is
closed under union, intersection, complement, concatenation, and star)

4. Show that the existence of an algorithm to decide HALT would imply the existence of an
algorithm for deciding any recursively enumerable language.
(This result may be summarised by the statement that HALT is complete for the class of
recursively enumerable languages.)

5. Show that Emptiness is undecidable.
Emptiness is the problem to decide for a given Turing machine if it rejects all inputs.

6. A polynomially bounded Turing machine is one which, on input w, with |w| = n, uses
no more than f(n) cells on its tape, for f a polynomial function. Is halting decidable for
polynomially bounded Turing machines? If no, explain why not, if yes, explain how to decide
if a polynomially bounded Turing machine M halts on input w.

7. Suppose the decision version of the Clique problem

CLIQUE
Input: Graph G, k ∈ N

Problem: Does G have a clique of size ≥ k?

1

can be solved in time T (n) for some function T : N→ N with T (n) ≥ n.

Prove that the optimisation version

OPT-CLIQUE
Input: Graph G

Problem: Compute a clique in G of maximum order

can be solved in time O(nc · T (n)), for some c ∈ N.

2

