Schedule S1, (Computer Science, CS and Philosophy, Maths and CS) Schedule B, MSc in Computer Science

Hilary Term 2019

Computational Complexity

Exercise class 2: P, NP, polynomial-time reductions

1. Given undirected graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ a homomorphism from G_{1} to G_{2} is a total function $h: V_{1} \mapsto V_{2}$ satisfying the following property: for every edge $\{u, v\} \in E_{1}$ we have that $\{h(u), h(v)\} \in E_{2}$. The language Homomorphism is defined as follows:

$$
\text { HomOMORPHISM }=\left\{\left\langle G_{1}, G_{2}\right\rangle \mid \text { there is a homomorphism from } G_{1} \text { to } G_{2}\right\}
$$

A vertex colouring of a graph G with k colours is a function

$$
c: V(G) \longrightarrow\{1, \ldots, k\}
$$

such that adjacent nodes in G have different colours, i.e., $\{u, v\} \in E(G)$ implies $c(u) \neq c(v)$. k-Colouring is the problem of determining if a given graph G has a vertex colouring with k colours. The language k-Colouring is defined as follows:

$$
k \text {-Colouring }=\{G \mid G \text { has a vertex colouring with } k \text { colours }\} .
$$

Let G be an undirected graph and let k be an integer. G contains a clique of order k if there exists some subset $S \subseteq V(G)$ with $|S|=k$ such that there exists an edge $\{x, y\}$ for every pair of distinct vertices $x, y \in S$. The language Clique is then defined as follows:

$$
\text { Clique }=\{\langle G, k\rangle \mid G \text { is an undirected graph containing a clique of order } \geq k\}
$$

Do the following:
(a) Show that k-Colouring is polynomially reducible to Homomorphism.
(b) Assuming that Clique is NP-complete, show that Homomorphism is NP-hard.
(c) Assume that we could find a polynomial time computable reduction from $\overline{3 \text {-CoLOURABILITY }}$ to Homomorphism. Knowing that 3-Colourability is NP-complete, discuss the complexity-theoretic implications that such a surprising finding would have.
2. Show that if Ptime $=\mathrm{NP}$ then
(a) NP is closed under complementation (i.e. if $\mathcal{L} \in \mathrm{NP}$ then so is $\left\{w \in \Sigma^{*}: w \notin \mathcal{L}\right\}$)
(b) Every language in NP except \emptyset and Σ^{*} is NP-complete.
3. Show that the following problem is NP-complete.

```
NonTotalSat
    Input: Formula }\phi\mathrm{ in CNF such that that the assignment
        that maps all variables in \varphi to true satisfies }
Problem: Does }\phi\mathrm{ have a satisfying assignment mapping some
        variable to false?
```

4. Show that the following problem is NP-complete:

Double Satisfiability

Input: Formula ϕ in CNF
Problem: Does ϕ have at least 2 different satisfying assignments?
5. Show that the following problem is NP-complete:

Bounded Halting

Input: A non-deterministic Turing machine M, a string w, and a string $\underbrace{1 \ldots 1}_{t \text { times }}$ of t symbols 1 .
Problem: Does M accept w in at most t steps?

