Hilary Term 2019

Computational Complexity

Exercise class 3: NP reductions

1. A vertex cover of a graph G is a set $X \subseteq V(G)$ such that for all edges $\{u, v\} \in E(G)$ at least one of u, v is in X. The problem VERTEX COVER is the problem to decide for a given graph G and number $k \ge 1$ if G contains a vertex cover of order $\le k$.

A dominating set of a graph G is a set $X \subseteq V(G)$ such that for all $u \in V(G)$ either $u \in X$ or there is a $v \in X$ and $\{u, v\} \in E(G)$. The problem DOMINATING SET is the problem to determine for a given graph G and $k \in \mathbb{N}$ if G has a dominating set of order at most k.

Assuming that VERTEX COVER is NP-complete, show that DOMINATING SET is also NP-complete.

- 2. (a) Show that if any co-NP-complete problem is in NP, then co-NP = NP.
 - (b) Show that if a language L is NP-complete, then its complement \overline{L} is co-NP-complete.
- 3. The class DP is defined as follows. We say that a language L belongs to DP if there exist languages $L_1 \in \text{NP}$ and $L_2 \in \text{co-NP}$ such that $L = L_1 \cap L_2$.

Let G be an undirected graph and let k be an integer. G contains a clique of order k if there exists some subset $S \subseteq V(G)$ with |S| = k such that there exists an edge $\{x, y\}$ for every pair of distinct vertices $x, y \in S$. The language CLIQUE is then defined as follows:

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ an undirected graph containing a clique of order } \geq k \}$

We define the following languages:

UNIQUESAT = { $\varphi \mid \varphi$ is a propositional formula with exactly one satisfying assignment} SAT = { $\varphi \mid \varphi$ is a satisfiable propositional formula}

SAT-UNSAT = { $\langle \varphi, \psi \rangle \mid \varphi$ and ψ propositional formulas, φ satisfiable, ψ unsatisfiable} EXACTCLIQUE = { $\langle G, k \rangle \mid$ The largest clique in G has order exactly k}

Answer the following questions:

- (a) Show that $NP \cup CO-NP \subseteq DP$.
- (b) Show that UNIQUESAT and EXACTCLIQUE are in DP.
- (c) Show that SAT-UNSAT is DP-complete.
- (d) Show that DP is contained in EXPTIME.
- (e) Assume that we could find a polynomial time computable reduction from SAT-UNSAT to \overline{SAT} . Discuss the complexity-theoretic implications that such finding would have.

4. Given an undirected graph G = (V, E), a spanning tree for G is a subgraph of G that is a tree and includes all vertices of G. We define the minimum-leaf spanning tree problem as follows.

MINLEAFST = { $\langle G, k \rangle \mid G$ an undirected graph containing a spanning tree having at most k leaves}

A simple path in G is a path with no repeated nodes. Consider also the following problems:

 $\begin{aligned} \text{HAMPATH} &= \{ G \mid G \text{ has a simple path involving all nodes in } G \\ \text{LONGESTSIMPLEPATH} &= \{ \langle G, k \rangle \mid G \text{ has a simple path of length } \geq k \} \end{aligned}$

Do the following:

- (a) Assuming that HAMPATH is NP-complete, show that both MINLEAFST and LONGESTSIMPLEPATH are also NP-complete.
- (b) Identify the error in the following: "Let

SHORTESTSIMPLEPATH = { $\langle G, k \rangle \mid G$ has a simple path of length $\leq k$ }

LONGESTSIMPLEPATH is NP-complete and the complement of SHORTESTSIMPLEPATH; hence, SHORTESTSIMPLEPATH is co-NP-complete."