Schedule S1, (Computer Science, CS and Philosophy, Maths and CS) Schedule B, MSc in Computer Science

Hilary Term 2019

Computational Complexity

Exercise class 4: oracles TMs, space-bounded computation

1. Given two Boolean formulae φ and ψ , we say that φ is *equivalent* to ψ if φ and ψ have the same set of variables, and for any truth assignment β to those variables, β makes φ true if and only if it makes ψ true. We say that a Boolean formula φ is *minimal* if there is no shorter formula ψ such that φ is equivalent to ψ .

The language MF is the language of minimal Boolean formulae, i.e.:

 $MF = \{ \langle \varphi \rangle \mid \varphi \text{ is a minimal Boolean formula} \}.$

(a) Show that $MF \in PSPACE$.

(b) Explain the fallacy in the following argument: If $\varphi \notin MF$, then there exists a smaller equivalent formula. An NTM can verify that $\varphi \in \overline{MF}$ by guessing a smaller formula ψ and checking if φ is equivalent to ψ . Therefore, $MF \in \text{co-NP}$.

2. The following definitions will be used in this question:

Definition. An oracle Turing Machine (OTM) is a Turing Machine M that has a special read-write tape (the machine's oracle tape) and three special states: q_{query} , q_{yes} , q_{no} . To execute M, we specify in addition a language $O \subseteq \{0,1\}^*$ that is used as the oracle for M. Whenever during the execution M enters the state q_{query} , the machine moves to the state q_{yes} if $q \in O$ and q_{no} if $q \notin O$, where q denotes the contents of the special oracle tape. Regardless of the choice of O, a membership query to O counts only as a single computation step. For every $O \in \{0,1\}^*$, P^O is the class of problems that can be decided by a polynomial-time deterministic TM with oracle access to O. The corresponding class of problems based on non-deterministic Turing machines is denoted as NP^O .

Definition. For any 3CNF formula φ , let $MAX_{true}(\varphi)$ be the maximum number of variables set to true in a satisfying assignment for φ . We now define the following languages:

$$MAX-TRUE-3SAT = \{ \langle \varphi, n \rangle \mid MAX_{true}(\varphi) \text{ is at least } n \}$$

ODD-MAX-TRUE-3SAT = $\{ \varphi \mid MAX_{true}(\varphi) \text{ is odd} \}$

Definition. A propositional formula is minimal if there is no smaller formula equivalent to it (a formula ϕ is smaller than formula ψ if the binary representation of ϕ is smaller than the binary representation of ψ). Then, we define the following language:

NOMINFORMULA = { $\varphi \mid \varphi$ is not minimal}

- (a) Show that if $O \in \mathbf{P}$, then $\mathbf{P}^O = \mathbf{P}$.
- (b) Show that $NP \cup CO-NP \subseteq P^{SAT}$.

- (c) Let us define $P^{NP} = \bigcup_{O \in NP} P^O$. Show that $P^{NP} = P^{SAT}$.
- (d) Show that MAX-TRUE-3SAT is in NP.
- (e) Show that ODD-MAX-TRUE-3SAT is contained in P^{SAT} .
- (f) Show that NOMINFORMULA is in NP^{SAT}.

(g) Show that NOMINFORMULA is in APTIME by displaying an alternating algorithm that solves the problem.

3. Given a non-deterministic polynomially-time bounded Turing machine M and a word w, denote by Acc(M, w) all the accepting computations of M on w and by Rej(M, w) all the rejecting computations.

Let PP be the complexity class defined as follows: a language L is in PP if there exists a non-deterministic polynomially-time bounded Turing machine M such that $w \in L$ if and only if

$$|Acc(M, w)| \ge |Rej(M, w)|.$$

Show that $PP \subseteq PSPACE$ and $NP \subseteq PP$.

4. Show that the following problem is in LOGSPACE.

Matched Parenthesis	
Input:	A word w over the alphabet $\Sigma := \{\}, (\}$.
Problem:	Is every parenthesis in w properly matched?
	(e.g. " $(()(()))$ " is properly matched whereas " $(())$)(" is not.)