Schedule S1, (Computer Science, CS and Philosophy, Maths and CS) Schedule B, MSc in Computer Science

Hilary Term 2019

Computational Complexity

Exercise class 6: circuit complexity, BPP, RP

1. Show that if $\mathrm{NC}^{i}=\mathrm{NC}^{i+1}$ for some $i \geq 1$, then $\mathrm{NC}^{i}=\mathrm{NC}$.
2. A 3-Horn-formula is a propositional logic formula of the form $\phi:=\bigwedge_{i=1}^{n} C_{i}$, where $C_{i}:=\bigvee_{j=1}^{n_{i}}$ is a clause with at most 3 literals (i.e. $n_{i} \leq 3$) of which at most one is positive.

The problem 3-Horn-SAt is defined as the problem, given a 3-Horn formula ϕ, to decide if ϕ is satisfiable.
Show that 3-Horn-Sat is Ptime-complete (under LogSpace reductions). To prove hardness, use the fact that Monotone-CVP is Ptime-complete.
3. Show that BPP and RP are closed under polynomial-time reductions in the sense that if $P \leq_{p} Q$ and $Q \in \mathrm{BPP}$ (or RP) then $P \in \mathrm{BPP}$ (or RP).
4. The aim of this question is to show that if $N P \subseteq B P P$ then $N P=R P$. We pursue this question in several steps.
(a) Show that if there is a (deterministic) polynomial-time algorithm for deciding whether a SAT-instance is satisfiable then there is also a (deterministic) polynomial-time algorithm for computing a satisfying assignment.
(b) Show that the same is true for BPP algorithms. That is, if there is a bounded error polynomial time algorithm for deciding whether an instance to SAT is satisfiable then there is also such an algorithm which constructs a satisfying assignment with bounded error probability.
Hint. Use probability amplification.
(c) Show that if NP $\subseteq \mathrm{BPP}$ then $\mathrm{NP} \subseteq R P$.
(d) Show that $\mathrm{RP} \subseteq \mathrm{NP}$.
5. An undirected graph G is bipartite if the vertices of G can be split into two disjoint sets $R \subseteq V(G)$ and $S \subseteq V(G)$ such that $R \cup S=V(G), R \cap S=\emptyset$, and for every edge $\{x, y\} \in E(G)$, either $x \in R$ and $y \in S$, or $x \in S$ and $y \in R$. Let:

$$
\text { Bipartite }=\{G \mid G \text { is a bipartite graph }\} .
$$

Show that Bipartite \in NLogspace.

