Schedule S1, (Computer Science, CS and Philosophy, Maths and CS) Schedule B, MSc in Computer Science

Hilary Term 2019

Computational Complexity

Exercise class 6: circuit complexity, BPP, RP

- 1. Show that if $NC^i = NC^{i+1}$ for some $i \ge 1$, then $NC^i = NC$.
- 2. A 3-HORN-formula is a propositional logic formula of the form $\phi := \bigwedge_{i=1}^{n} C_i$, where $C_i := \bigvee_{j=1}^{n_i}$ is a clause with at most 3 literals (i.e. $n_i \leq 3$) of which at most one is positive.

The problem 3-HORN-SAT is defined as the problem, given a 3-HORN formula ϕ , to decide if ϕ is satisfiable.

Show that 3-HORN-SAT is PTIME-complete (under LOGSPACE reductions). To prove hardness, use the fact that MONOTONE-CVP is PTIME-complete.

- 3. Show that BPP and RP are closed under polynomial-time reductions in the sense that if $P \leq_p Q$ and $Q \in BPP$ (or RP) then $P \in BPP$ (or RP).
- 4. The aim of this question is to show that if NP \subseteq BPP then NP=RP. We pursue this question in several steps.
 - (a) Show that if there is a (deterministic) polynomial-time algorithm for deciding whether a SAT-instance is satisfiable then there is also a (deterministic) polynomial-time algorithm for computing a satisfying assignment.
 - (b) Show that the same is true for BPP algorithms. That is, if there is a bounded error polynomial time algorithm for deciding whether an instance to SAT is satisfiable then there is also such an algorithm which constructs a satisfying assignment with bounded error probability.

Hint. Use probability amplification.

- (c) Show that if $NP \subseteq BPP$ then $NP \subseteq RP$.
- (d) Show that $RP \subseteq NP$.
- 5. An undirected graph G is *bipartite* if the vertices of G can be split into two disjoint sets $R \subseteq V(G)$ and $S \subseteq V(G)$ such that $R \cup S = V(G)$, $R \cap S = \emptyset$, and for every edge $\{x, y\} \in E(G)$, either $x \in R$ and $y \in S$, or $x \in S$ and $y \in R$. Let:

 $BIPARTITE = \{ G \mid G \text{ is a bipartite graph} \}.$

Show that $BIPARTITE \in NLOGSPACE$.