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Computation

Alan Turing considered qn. of “What is computation?” in 1936.

He argued, that any computation can be done using the following
steps (writing on a sheet of paper):

Concentrate on one part of the
problem (one symbol on the paper)

Depending on what you read there

Change into a new state
(memorise a finite

amount of information)
Modify this part of the
problem
Move to another part of the
input

Repeat until finished
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Deterministic Turing Machines

Definition: (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F ) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {�} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states

Tapes:
Infinite tapes, bounded to the left.

Each cell contains one symbol from Γ (� : special “blank”
symbol)
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Deterministic Turing Machines

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 4 / 22



Deterministic Turing Machines

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 4 / 22



Deterministic Turing Machines

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 4 / 22



Deterministic Turing Machines

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 4 / 22



Deterministic Turing Machines

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 4 / 22



Turing Machine operations

1 At each step of operation the machine is in one state q ∈ Q
2 Initially:

Machine is in state q0 ∈ Q
the input is contained on tape 1
all other tape symbols are �

3 The machine is reading one symbol on each tape: s1 . . . sk
4 To execute one step, the machine looks up

δ(q, s1, . . . , sk) :=
(
q′, (s ′1, . . . , s

′
k), (m1, . . . ,mk)

)
5 The machine:

changes to state q′

replaces each si by s ′i
moves the heads on the individual tapes according to mi

(1 = move right, −1 = move left, 0 = stay)
Execution stops when a final state is reached.
In this case, the content of the last tape k contains the output.
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Example

What does the following 2-tape Turing machine do?

M :=
(
{q0, q1, qf }, {a, b}, {a, b,�}, δ, q0, {qf }

)
where

δ :=
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Abbreviation

( a
−
)
: − stands for any symbol in Γ.
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Configurations

Configuration: A (k-tape) Turing machine M := (Q,Σ, Γ, δ, q0,F )
in operation is completely described by

the current state

the contents of all its tapes (finite prefix that has been visited)

the position of all its heads(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
where q ∈ Q, wi ∈ Γ∗, pi ∈ N

Notation. Γ∗: set of words over the alphabet Γ

Γ∗ := {w := a1 . . . an : ai ∈ Γ for all 1 ≤ i ≤ n}
We write ε for the empty word.
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Configurations

Configuration: A (k-tape) Turing machine M := (Q,Σ, Γ, δ, q0,F )
in operation is completely described by

the current state

the contents of all its tapes (finite prefix that has been visited)

the position of all its heads(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
where q ∈ Q, wi ∈ Γ∗, pi ∈ N

Start configuration on input w : Triple(
q0, (w , ε, . . . , ε), (0, . . . , 0)

)
q0 initial state, tape 1 contains the input, all other tapes are empty,

all heads on position 0 (ε : empty word)

Stop configuration:
Configuration

(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
such that q ∈ F .
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Computation

Notation:

C `M C ′ if M can change from configuration C
to C ′ in one step.

C `∗M C ′ if M can change from configuration C
to C ′ in arbitrarily many steps.

The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 `M C1 `M C2 . . . of configurations or

a finite sequence C0 `M C1 `M C2 · · · `M Cn of
configurations.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .
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Computing a Function and Running Time

Definition:
Let Σ be a finite alphabet.

f : Σ∗ → Σ∗

g : N→ N
M be a Turing machine

M computes f in time g(n) if for every w ∈ Σ∗ M halts on input
w after at most g(|w |) steps with f (w) on its output (last) tape.

(i.e. TM(w) ≤ g(|w |) )
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Example

Example: The following 2-tape Turing machine

M :=
(
{q0, q1, qf }, {a, b}, {a, b,�}, δ, q0, {qf }

)
where

δ :=
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computes the reverse-function reverse(a1 . . . an) := an . . . a1

in
time g(n) = 2n + 2 = O(n).
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Next: Decision Problems and Turing Acceptors

Travelling Salesman Problem (TSP): Given pairwise distances
between cities, you might ask for

the shortest tour

the length of the shortest tour

Decision version: given the pairwise distances and a number k , is
there a tour of length at most k?

General claim: ability to solve the decision version is “good
enough” (why?).

similarly for other problems, e.g. CLIQUE, DOMINATING SET, ...
Decision problems −→ yes-instances, no-instances.
Next: TMs for decision problems.
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Turing Acceptors

Turing machines M :=
(
Q,Σ, Γ, δ, q0,F

)
with set F ⊆ Q is the

“final” (or “accepting”) states:

q ∈ F : accept

Input w ∈ Σ∗ is accepted by an acceptor M if M halts after
finitely many steps in a state q ∈ F .

We say: M accepts input w . Otherwise M rejects the input.

variants: just one accepting state qa; set of rejecting states Fr

Recall: Inputs come from Σ∗, words over Σ.

Hence: Acceptors accept languages L ⊆ Σ∗
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Recall: Languages

Definition/notation

The language L(M) ⊆ Σ∗ accepted by a Turing acceptor
M :=

(
Q,Σ, Γ, δ, q0,F

)
is defined as

{w ∈ Σ∗ : M accepts w}.

(Note that we do not require M to halt on rejected inputs.)

A language L ⊆ Σ∗ is recursively enumerable, or acceptable, if
there is an acceptor M such that L = L(M).

A language L ⊆ Σ∗ is decidable if there is an acceptor M such
that for all w ∈ Σ∗:

w ∈ L =⇒ M halts on input w in an accepting state
w 6∈ L =⇒ M halts on input w in a rejecting state
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Examples

Examples for languages:

Regular languages

Any regular language has Turing acceptors that can decide its
“word problem”

The language containing all valid C programs.

A Turing acceptor deciding this language is just a syntax
checker for C.

The language containing all C programs that never run
into an infinite loop.

A Turing acceptor for this language would be very interesting
for software verification.
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Decidable and Enumerable Languages

Proposition.

1 If a language L is decidable then it is recursively enumerable

2 If L and Σ∗ \L are recursively enumerable then L is decidable.

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable
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Decidable and Undecidable Languages

Decidable languages.

Regular languages

The language containing all valid C programs

Undecidable languages.

We will see later that the language

The language containing all C programs that never run into
an infinite loop.

is not decidable.
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Problems as languages

Executive summary of next few slides

Decision problems can be thought of as language recognition
problems, even if, say, the problem involves graphs and we are not
explicit about the language.
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Encoding of Problems

Languages and Problems:
In many cases, the problems we are interested in are not about
words

Instead we are interested in more general structures:

graphs

mathematical structures, e.g. matrices, groups, ...

digital circuits

...

However: Memory of a computer is a linear sequence of bits,

i.e. a sequence/word over {0, 1}.
And so are the input- and work-tapes of Turing machines.

Hence, we need to encode graphs, ... as strings over a finite
alphabet.
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Encoding of Problems

Encoding schemes:

To input problems to a computer, each instance must be
encoded as a string of symbols over some alphabet.

To do this we need an encoding scheme.

Requirement:
Encoding of a problem should not change its essential nature

In particular, it should not essentially change the complexity of a
problem

The encoding must be concise:

Represent numerical information efficiently (not in base 1!)

No unnecessary information (e.g. the solution!), or padding
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Languages and Problems

Let 〈...〉 be an encoding scheme on graphs and numbers.
Example:

Recall CLIQUE:

Given G , k, does G have a clique of order ≥ k?

Associate CLIQUE with the class

clique :=
{

(G , k) : G is a graph containing a clique of order ≥ k
}
.

and hence with the language

L
(
Clique

)
:= {〈G , k〉 : (G , k) ∈ clique}.

Solving CLIQUE is equivalent to deciding L
(
Clique

)
.

Notation. Let P be a problem.

We write L(P) for the language containing string-encodings of
yes-instances of P.
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A Note on Alphabets

Translation between alphabets.
Let Σ := {a1, . . . an} be an alphabet; L ⊆ Σ∗ a language over Σ.

We can translate L into L′ ⊆ {0, 1}∗ of the same “complexity”.

I.e., encode ai ∈ Σ as a dlog |Σ|e-bit binary representation of i
and define L′ := {σ(w1) . . . σ(wn) : w1 . . .wn ∈ L}

Convention.

assume unless told otherwise that Σ := {0, 1} and
Γ := Σ ∪ {�}.
However, for convenience, we will use different alphabets in
concrete examples and constructions.
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