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Undecidable Languages

Aim of this section

Show that there are languages (problems) that cannot be decided
no matter how long we are willing to wait for an answer.

A counting argument (sketch):
@ The number of Turing machines is infinite but countable
@ The number of different languages is infinite but uncountable

@ Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.
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The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Theorem.
@ HALT is recursively enumerable (accepted by a TM).
@ HALT is undecidable.

details in e.g. Sipser Chapter 4.2
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Undecidability of HALT

Theorem.

@ HALT is recursively enumerable (accepted by a TM).
@ HALT is undecidable.

Proof structure of 2nd part:
O A decidable language can be decided by a 1-tape machine.

@ universal Turing acceptor —a TM U that can simulate other
TMs given as input (an interpreter for TMs).

© reduce halting (in general) to halting of UTM U.

Q if halting of U is decidable, there exists a TM D that decides
if a given TM M running on itself is non-terminating.

© running D on itself reveals a paradox: running D on itself
terminates (and accepts) iff running D on itself is
non-terminating.

@ no such D can exist, so halting of U (and hence halting in
general) is undecidable.
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some details

I'll skip construction of UTM U

HALT: Decide for any (M, w) where M is a TM and w € {0,1}*:
M halts on w?
Reduce to: Decide for 1-tape TM M and w € {0,1}*
U halts on (M, w)

Note: U simulates the computation of M on w

In particular, U halts on (M, w) iff M halts on w
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some details (design of “contradictory” TM D)

Assume L := {(M,w) | U halts on (M, w)} is decidable

l.e. we can predict with some TM for all M with ¥ = {0,1} and
w € {0,1}* whether or not U halts on (M, w)

i.e. there is a TM H such that
accept if U halts on (M, w
M) = { (Mow)

reject  otherwise

We can use H to build another TM D:< M)
| accept if H rejects (M, (M
D((M)) := reject  otherwise

i.e., D({(M)) = accept iff M({M)) does not halt

But what result does D compute for input (D)?
D((D)) halts and accepts iff D((D)) does not halt
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HALT, wrapping up

So, HALT is rec. enum. but not decidable, where HALT is
{(M,w) : M halts on w}

Recall: A language £ C ¥* is decidable iff £ and ¥*\ L are
recursively enumerable.

Proof: = trivial. <= Let acceptors for £ and £*\ £ run in parallel.

Corollary. HALT is not recursively enumerable.
L(HALT) := {{M, w) : M does not halt on input w }

Proof. A decided for HALT can be modified to get a decider for
HALT.
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Classification of Languages

Definition. A language £ C ¥Y* is co-recursively enumerable, or
co-r.e., if X*\ L is recursively enumerable.

Exzample: L(HALT) is co-r.e (but not r.e.).

Observation.! DECIDABLE = R.E. N CO-R.E.

ldeserves more detailed explanation
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Further Undecidable Problems

We want to show that the following problems are also undecidable.

e-Halting
Input:  Turing acceptor M
Problem: Does M halt on the empty input?

Equivalence
Input:  Turing acceptors M and M’
Problem: s it true that L(M) = L(M')?

Emptiness
Input:  Turing acceptor M
Problem: Is L(M) = (?
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Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

Reductions.

@ Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

@ We want to capture the idea, that A is "no harder” than B.

(as we can use B to solve A.)
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Turing Reductions

Turing Reduction:
Informally, a problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <+ B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output
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Turing Reductions

Turing Reduction:

Informally, a problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <+ B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

~ (Sipser: “mapping reduction”) are
more informative: A <t B relates (un)decidability of problems;
use A <., B (next slide) to find out if a problem (or its
complement) is recursively enumerable.
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Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w € ©*:

xeAd < f(x)eB.
We write A <,,, B.

Observation 1. If A <,, B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A <,, B and B is recursively enumerable, then so

is A.

Equivalently, if A is not decidable (resp. r.e.) then neither is 5; so,
a tool for “negative results”
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Properties of Many-One Reductions

Q@ <,, is reflexive and transitive
(if A <, B and B <., C then A <,, C, by composition of
functions.)
@ If A is decidable and B is any language apart from () and ¥*,
then A <., B.
As B # () and B # ¥* there are w, € B and w, ¢ B.
w, ifwed
w, ifwgA
(Hence, many-one reductions are too weak to distinguish
between decidable problems. later: “smarter” reductions)

For w € ¥, define f(w) := {
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Examples for Many-One Reductions

We will show the following chain of reductions:
HALT <,, e-HALT <,, EQUIVALENCE

e-HALT: Does M halt on the empty input?
EQUIVALENCE: £L(M) = L(M')?

Hence, all these problems are undecidable.
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HALT <,, e-HALT

Lemma. HALT <, e-HALT
Proof. Define function f such that w € HALT <= f(w) € e-HALT

For w := (M, v) compute the following Turing machine M,, :
© Write v onto the input tape.
@ Simulate M.
Clearly, M, accepts the empty word if, and only if, M accepts v.
Let M, be a TM that does not halt on the empty input.
M, ifw={M,v)

M, if wis not of the correct input form 2

Define f(w) := {

%j.e. doesn’t encode a TM with word
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e-HALT <,, EQUIVALENCE

Lemma. e-HALT <,, EQUIVALENCE
Proof. Define f such that w € e-HALT < f(w) € EQUIVALENCE

Let M, be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M* :
© Run M on the empty input
@ If M halts, accept.

M* is equivalent to M, if, and only if, M halts on the empty
input.

Define

f(W) — (<~:V\/l*>7 <Ma>) if w= <M>

, (My)) if w is not of the correct input form
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Theorem. Every non-trivial property of Turing machines is
undecidable.



Rice's Theorem

Theorem. Every non-trivial property of Turing machines is
undecidable.

Formally: Let R be a non-trivial subclass of the class of all
recursively enumerable languages. (R # () and R # all r.e. lang.)

Given: Turing machine M
Problem: Is L(M) e R?

(that is, R-ness = {{M) : L(M) € R} is undecidable.)

Then “R-ness’ is undecidable:
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Rice's Theorem

Theorem. Every non-trivial property of Turing machines is
undecidable.

Formally: Let R be a non-trivial subclass of the class of all
recursively enumerable languages. (R # () and R # all r.e. lang.)

Given: Turing machine M
Problem: Is L(M) e R?

(that is, R-ness = {{M) : L(M) € R} is undecidable.)

Then “R-ness’ is undecidable:

Proof. Define f such that w € e-HALT <= f(w) € R-ness
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Rice's Theorem

Proof. Define f such that w € e-HALT <= f(w) € R-ness
W.l.o.g. assume ) € R. (We could always use R.)
Let M, be a Turing machine that accepts some L € R.
For a TM M compute the following Turing machine M*:
On input s € ©*

@ Simulate M on ¢
@ If M halts, then simulate M, on s

Clearly L(M*) =L € R if M halts on ¢
and L(M*) =0 & R if M does not halt one.

Let My be a TM that does not accept any input (i.e.
L(My) = 0).

Define f(w) := {M* Fw = (M)

My if wis not of the correct input form
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Decidable and Enumerable Languages

all

languages

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

(The work of Turing, Church, Post, ... was before
computers existed.)
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Decidable and Enumerable Languages

all

languages

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

(The work of Turing, Church, Post, ... was before
computers existed.)

Complexity Theory:
Look at the fine structure of decidable languages.
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