Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2019

Undecidable Languages

Aim of this section

Show that there are languages (problems) that cannot be decided
no matter how long we are willing to wait for an answer.

A counting argument (sketch):
@ The number of Turing machines is infinite but countable
@ The number of different languages is infinite but uncountable

@ Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.

Paul Goldberg Undecidability 2/19

The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Theorem.
@ HALT is recursively enumerable (accepted by a TM).
@ HALT is undecidable.

details in e.g. Sipser Chapter 4.2

Paul Goldberg Undecidability 3/19

Undecidability of HALT

Theorem.

@ HALT is recursively enumerable (accepted by a TM).
@ HALT is undecidable.

Proof structure of 2nd part:
O A decidable language can be decided by a 1-tape machine.

@ universal Turing acceptor —a TM U that can simulate other
TMs given as input (an interpreter for TMs).

© reduce halting (in general) to halting of UTM U.

Q if halting of U is decidable, there exists a TM D that decides
if a given TM M running on itself is non-terminating.

© running D on itself reveals a paradox: running D on itself
terminates (and accepts) iff running D on itself is
non-terminating.

@ no such D can exist, so halting of U (and hence halting in
general) is undecidable.

Paul Goldberg Undecidability 4/19

some details

I'll skip construction of UTM U

HALT: Decide for any (M, w) where M is a TM and w € {0,1}*:
M halts on w?
Reduce to: Decide for 1-tape TM M and w € {0,1}*
U halts on (M, w)

Note: U simulates the computation of M on w

In particular, U halts on (M, w) iff M halts on w

Paul Goldberg Undecidability 5/19

some details (design of “contradictory” TM D)

Assume L := {(M,w) | U halts on (M, w)} is decidable

l.e. we can predict with some TM for all M with ¥ = {0,1} and
w € {0,1}* whether or not U halts on (M, w)

i.e. there is a TM H such that
accept if U halts on (M, w
M) = { (Mow)

reject otherwise

We can use H to build another TM D:< M)
| accept if H rejects (M, (M
D((M)) := reject otherwise

i.e., D({(M)) = accept iff M({M)) does not halt

But what result does D compute for input (D)?
D((D)) halts and accepts iff D((D)) does not halt

Paul Goldberg Undecidability 6/19

HALT, wrapping up

So, HALT is rec. enum. but not decidable, where HALT is
{(M,w) : M halts on w}

Recall: A language £ C ¥* is decidable iff £ and ¥*\ L are
recursively enumerable.

Proof: = trivial. <= Let acceptors for £ and £*\ £ run in parallel.

Corollary. HALT is not recursively enumerable.
L(HALT) := {{M, w) : M does not halt on input w }

Proof. A decided for HALT can be modified to get a decider for
HALT.

Paul Goldberg Undecidability 7/19

Classification of Languages

Definition. A language £ C ¥Y* is co-recursively enumerable, or
co-r.e., if X*\ L is recursively enumerable.

Exzample: L(HALT) is co-r.e (but not r.e.).

Observation.! DECIDABLE = R.E. N CO-R.E.

ldeserves more detailed explanation

Paul Goldberg Undecidability 8/19

Further Undecidable Problems

We want to show that the following problems are also undecidable.

e-Halting
Input: Turing acceptor M
Problem: Does M halt on the empty input?

Equivalence
Input: Turing acceptors M and M’
Problem: s it true that L(M) = L(M')?

Emptiness
Input: Turing acceptor M
Problem: Is L(M) = (?

Paul Goldberg Undecidability 9/19

Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

Reductions.

@ Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

@ We want to capture the idea, that A is "no harder” than B.

(as we can use B to solve A.)

Paul Goldberg Undecidability 10/19

Turing Reductions

Turing Reduction:
Informally, a problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <+ B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Paul Goldberg Undecidability 11/19

Turing Reductions

Turing Reduction:

Informally, a problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <+ B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

~ (Sipser: “mapping reduction”) are
more informative: A <t B relates (un)decidability of problems;
use A <., B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Undecidability 11/19

Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w € ©*:

xeAd < f(x)eB.
We write A <,,, B.

Observation 1. If A <,, B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A <,, B and B is recursively enumerable, then so

is A.

Equivalently, if A is not decidable (resp. r.e.) then neither is 5; so,
a tool for “negative results”

Paul Goldberg Undecidability 12/19

Properties of Many-One Reductions

Q@ <,, is reflexive and transitive
(if A <, B and B <., C then A <,, C, by composition of
functions.)
@ If A is decidable and B is any language apart from () and ¥*,
then A <., B.
As B # () and B # ¥* there are w, € B and w, ¢ B.
w, ifwed
w, ifwgA
(Hence, many-one reductions are too weak to distinguish
between decidable problems. later: “smarter” reductions)

For w € ¥, define f(w) := {

Paul Goldberg Undecidability

13/19

Examples for Many-One Reductions

We will show the following chain of reductions:
HALT <,, e-HALT <,, EQUIVALENCE

e-HALT: Does M halt on the empty input?
EQUIVALENCE: £L(M) = L(M')?

Hence, all these problems are undecidable.

Paul Goldberg Undecidability

14/19

HALT <,, e-HALT

Lemma. HALT <, e-HALT
Proof. Define function f such that w € HALT <= f(w) € e-HALT

For w := (M, v) compute the following Turing machine M,, :
© Write v onto the input tape.
@ Simulate M.
Clearly, M, accepts the empty word if, and only if, M accepts v.
Let M, be a TM that does not halt on the empty input.
M, ifw={M,v)

M, if wis not of the correct input form 2

Define f(w) := {

%j.e. doesn’t encode a TM with word
Paul Goldberg Undecidability 15/19

e-HALT <,, EQUIVALENCE

Lemma. e-HALT <,, EQUIVALENCE
Proof. Define f such that w € e-HALT < f(w) € EQUIVALENCE

Let M, be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M* :
© Run M on the empty input
@ If M halts, accept.

M* is equivalent to M, if, and only if, M halts on the empty
input.

Define

f(W) — (<~:V\/l*>7 <Ma>) if w= <M>

, (My)) if w is not of the correct input form

Paul Goldberg Undecidability 16 /19

Theorem. Every non-trivial property of Turing machines is
undecidable.

Rice's Theorem

Theorem. Every non-trivial property of Turing machines is
undecidable.

Formally: Let R be a non-trivial subclass of the class of all
recursively enumerable languages. (R # () and R # all r.e. lang.)

Given: Turing machine M
Problem: Is L(M) e R?

(that is, R-ness = {{M) : L(M) € R} is undecidable.)

Then “R-ness’ is undecidable:

Paul Goldberg Undecidability 17 /19

Rice's Theorem

Theorem. Every non-trivial property of Turing machines is
undecidable.

Formally: Let R be a non-trivial subclass of the class of all
recursively enumerable languages. (R # () and R # all r.e. lang.)

Given: Turing machine M
Problem: Is L(M) e R?

(that is, R-ness = {{M) : L(M) € R} is undecidable.)

Then “R-ness’ is undecidable:

Proof. Define f such that w € e-HALT <= f(w) € R-ness

Paul Goldberg Undecidability 17 /19

Rice's Theorem

Proof. Define f such that w € e-HALT <= f(w) € R-ness
W.l.o.g. assume) € R. (We could always use R.)
Let M, be a Turing machine that accepts some L € R.
For a TM M compute the following Turing machine M*:
On input s € ©*

@ Simulate M on ¢
@ If M halts, then simulate M, on s

Clearly L(M*) =L € R if M halts on ¢
and L(M*) =0 & R if M does not halt one.

Let My be a TM that does not accept any input (i.e.
L(My) = 0).

Define f(w) := {M* Fw = (M)

My if wis not of the correct input form

Paul Goldberg Undecidability 18/19

Decidable and Enumerable Languages

all

languages

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

(The work of Turing, Church, Post, ... was before
computers existed.)

Paul Goldberg Undecidability

19/19

Decidable and Enumerable Languages

all

languages

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

(The work of Turing, Church, Post, ... was before
computers existed.)

Complexity Theory:
Look at the fine structure of decidable languages.

Paul Goldberg Undecidability 19/19

