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Measuring Complexity

Complexity Theory: Look at the fine structure of decidable
languages.

Goal: Classify languages according to the amount of resources
needed to solve them.

Resources: In this lecture we will primarily consider

time – the running time of algorithms (steps on a
Turingmachine)

space – the amount of additional memory needed

(cells on the Turing tapes)
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Measuring Complexity

Definition.
Let M be a Turing acceptor and let S ,T : N→ N be functions.

1 M is T -time bounded if it halts on every input w ∈ Σ∗ after
≤ T (|w |) steps.

2 M is S-space bounded if it halts on every input w ∈ Σ∗ using
≤ S(|w |) cells on its tapes.

(Here we assume that the Turing machines have a separate
input tape that we do not count in measuring space
complexity.)
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Deterministic Complexity Classes

Definition.
Let T ,S : N→ N be monotone growing functions. Define

1 DTIME(T ) as the class of languages L for which there is a
T -time bounded k-tape Turing acceptor deciding L, for some
k ≥ 1.

2 DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:

Time classes:
PTIME :=

⋃
d∈N DTIME(nd) polynomial time

EXPTIME :=
⋃

d∈N DTIME(2nd ) exponential time

2-EXPTIME :=
⋃

d∈N DTIME(22n
d

) double exp time

Space classes:
LOGSPACE :=

⋃
d∈N DSPACE(d log n)

PSPACE :=
⋃

d∈N DSPACE(nd)

EXPSPACE :=
⋃

d∈N DSPACE(2nd )
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But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T ), DPSPACE(S);
No for the others

Indeed, usually don’t need to be refer explicitly to “Turing
machine”.
But watch out for nondeterminism (details later)
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Time Complexity Classes

Important Time Complexity Classes:

PTIME :=
⋃

d∈N DTIME(nd) polynomial time

EXPTIME :=
⋃

d∈N DTIME(2n
d
) exponential time

Not quite so important:

2-EXPTIME :=
⋃

d∈N DTIME(22
nd

) double exp time

Note: Complexity classes are classes of languages.

Time Complexity:

PTIME ⊆ EXPTIME ⊆ 2-EXPTIME ⊆ · · · ⊆ i-EXPTIME ⊆ . . .

Alternative Definition: Sometimes PTIME is defined as

PTIME :=
⋃
d∈N

DTIME(O(nd))
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Linear Speed-Up

Theorem. (Linear Speed-Up Theorem)

Let k > 1 and c > 0 T : N→ N L ⊆ Σ∗ be a
language.

If L can be decided by a T (n) time-bounded k-tape TM

M := (Q,Σ, Γ, q0, δ,F )

then L can be decided by a ( 1c · T (n) + n + 2) time-bounded
k-tape TM

M∗ := (Q ′,Σ, Γ′, q′0, δ
′,F ′).
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Linear Speed-Up

Proof idea. Let Γ′ := Σ∪ Γm where m := d6ce. We construct M∗:
Step 1: Compress M’s input.

Copy (in n + 2 steps) the input onto tape 2, compressing m
symbols into one (i.e., each symbol correspondes to an m-tuple
from Γm)

Step 2: Simulate M’s computation, m steps at once.

1 Read (in 4 steps) symbols to the left, right and the current
position
and “store” in Γ′ (using |Q × {1, . . . ,m}k × Γ3mk | extra
states).

2 Simulate (in 2 steps) the next m steps of M (as M can only
modify the current position and one of its neighbours)

3 M∗ accepts (rejects) if M accepts (rejects)

(see Papadimitriou Thm 2.2, page 32)
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A Hierarchy of Complexity Classes?

Questions:

Can we always solve more problems if we have more resources?

If not, how much more resources do we need to be able to
solve strictly more problems?

How do the complexity classes relate to each other?

 see later in the course.

How do we classify “efficient” in terms of complexity classes?

 see next section

Are there any tools by which we can show that a problem is in
any of these classes but not in another?

Are there any other interesting models of computation?

Non-deterministic computation  next part of course
Randomised algorithms  last part of course (time permitting)
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PTIME, usually called P
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Polynomial Time

“Intuitive” definition of “efficient”:

Any linear time computation is “efficient”

Any program that

performs “efficient” operations (e.g. linear number of
iterations) and
only uses “efficient” subprograms

is “efficient”.

This turns out to be equivalent to PTIME.

PTIME :=
⋃
d∈N

DTIME(nd)

PTIME serves as a mathematical model of “efficient” computation.
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Robustness of the Definition

If PTIME is to be the mathematical model of efficient
computation, it should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: PTIME is the same for all these models (unlike
linear time)
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Robustness of the Definition

Strong Church-Turing Hypothesis:

Any function which can be computed by any well-defined
procedure can be computed by a Turing machine with only
polynomial overhead.

(may be challenged by Quantum Computers)
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Different Encodings

Lemma.

1 For any n ∈ N, the length of the encoding of n in base b1 and
base b2 are related by a constant factor, for all b1, b2 ≥ 2.

2 For any graph G , the length of its encoding as an

adjacency matrix
list of edges
adjacency list
...

are all related by a polynomial factor.

Consequence: PTIME is the same for all these encoding (unlike
linear time)
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PTIME = tractable?

The class PTIME is a reasonable mathematical model of the class
of problems which are tractable or solvable in practice.

However: This correspondence is not exact:

When the degree of polynomials is very high, the time grows
so quickly that in practice the problem is not solvable.

The constants may also be very large

However:
For many concrete PTIME-problems arising in practice, algorithms
with moderate exponents and constants have been found.
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Growth Rate of Functions (Garey/Johnson ’79)
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Proving a problem is in PTIME

You have done this before

The most direct way to show that a problem is in PTIME is to
exhibit a polynomial time algorithm that solves it.

Even a naive polynomial-time algorithm often provides a good
insight into how the problem can be solved efficiently.

Because of robustness, we do not generally need to specify all
the details of the machine model or the encoding.

 pseudo-code is sufficient.

“in PTIME” less specific than, e.g. “in DTIME(n2)”; some
technical details are avoided
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Example: Satisfiability

Some of the most important problems concern logical formulae

Recall propositional logic

Formulae of propositional logic are built up inductively

Variables: Xi i ∈ N
Boolean connectives:
If ϕ,ψ are propositional formulae then so are

(ψ ∨ ϕ)
(ψ ∧ ϕ)
¬ϕ

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)
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Conjunctive Normal Form

A propositional logic formula ϕ is in conjunctive normal form
(CNF) if

ϕ := C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci := (Li1 ∨ · · · ∨ Lik)

A literal is a variable Xi or a negation ¬Xi thereof.

k-CNF: If ϕ has at most k literals per clause.

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)
(3-CNF)

Notation:
ϕ :=

{
{X1,X2,¬X5}, {¬X2,¬X4,¬X5}, {X2,X3,X4}

}
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Satisfiability

Definition. A formula ϕ is satisfiable if there is a satisfying
assignment for ϕ.

In the case of formulae in CNF:
An assignment β assigning values 0 or 1 to the variables of ϕ so
that every clause contains at least

one variable to which β assigns 1 or

one negated variable to which β assigns 0.

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

Satisfying assignment:
X1 7→ 1 X2 7→ 0 X3 7→ 1 X4 7→ 0 X5 7→ 1
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The Satisfiability Problem

In association with propositional formulae, the following two
problems are the most important:

SAT
Input: Propositional formula ϕ in CNF

Problem: Is ϕ satisfiable?

k-SAT
Input: Propositional formula ϕ in k-CNF

Problem: Is ϕ satisfiable?
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2-SAT

Lemma. 2-SAT is in PTIME.

Proof. The following algorithm solves the problem in poly time.

Main: Input Γ in CNF

bcp(Γ)

if conflict return UNSAT

while Γ 6= ∅ do
choose var. X from Γ
set Γ′ := Γ
assign(Γ,X , 1)
bcp(Γ)
if conflict

Γ := Γ′

assign(Γ,X , 0)
bcp(Γ)

if conflict
return UNSAT

bcp(Γ) (boolean constraint propagation)

while Γ contains unit-clause C do
if C = {X} assign(Γ,X , 1)
if C = {¬X} assign(Γ,X , 0)

od
if Γ contains empty clause return conflict

assign(Γ,X , c)

if c = 1 do
remove from Γ all clauses C with X ∈ C
remove ¬X from all remaining clauses

if c = 0 do
remove from Γ all clauses C with ¬X ∈ C
remove X from all remaining clauses
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Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in PTIME.

Definition. A language L1 ⊆ Σ∗ is polynomially reducible to
L2 ⊆ Σ∗, denoted L1 ≤p L2, if there is a polynomial-time
computable function f such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f (w) ∈ L2.

Lemma.

If L1 ≤p L2 and L2 ∈ PTIME then L1 ∈ PTIME.

Proof. The sum and composition of polynomials is a polynomial.
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Reductions in PTIME

All non-trivial members of PTIME can be reduced to each other

Lemma. If B is any language in PTIME, B 6= ∅, B 6= Σ∗, then
A ≤p B for any A ∈ PTIME.

Proof. Choose w ∈ B and w ′ 6∈ B
Define the function f by setting

f (x) := w x ∈ A
f (x) := w ′ x 6∈ A

Since A ∈ PTIME, f is computable in polynomial time, and is a
reduction from A to B.
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Example: Colourability

Vertex Colouring:

A vertex colouring of G with k colours is a function

c : V (G ) −→ {1, . . . , k}

such that adjacent nodes have different colours

i.e. {u, v} ∈ E (G ) implies c(u) 6= c(v)

k-COLOURABILITY
Input: Graph G , k ∈ N

Problem: Does G have a vertex colouring
with k colours?

For k = 2 this is the same as Bipartite.
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A reduction to 2-Sat

Lemma. 2-Colourability ≤p 2-Sat

Proof. We define a reduction as follows: Given graph G

For each vertex v ∈ V (G ) of the graph introduce variable Xv

For each {u, v} ∈ E (G ) add clauses (Xu ∨ Xv ) and
(¬Xu ∨ ¬Xv )

This is obviously computable in polynomial time.

We check that it is a reduction:

If G is 2-colourable, use colouring to assign truth values.

(One colour is true, the other false)

If the formula is satisfiable, the truth assignment defines valid
2-colouring.

For every edge {u, v} ∈ E (G ), one variable Xu,Xv must be
set to true, the other to false.

Corollary. 2-Colourability ∈ PTIME
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A reduction to 3-Sat

Lemma. k-Colourability ≤p 3-Sat

Proof. I will do this on board (going via k-SAT).

Reducible to 2-SAT ??
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