Computational Complexity; slides 4, HT 2019 Deterministic complexity classes

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Complexity Theory: Look at the fine structure of decidable languages.

Goal: Classify languages according to the amount of resources needed to solve them.

Resources: In this lecture we will primarily consider

- **time** the running time of algorithms (steps on a Turingmachine)
- **space** the amount of additional memory needed (cells on the Turing tapes)

Definition.

Let \mathcal{M} be a Turing acceptor and let $S, T : \mathbb{N} \to \mathbb{N}$ be functions.

- \mathcal{M} is *T*-time bounded if it halts on every input $w \in \Sigma^*$ after $\leq T(|w|)$ steps.

(Here we assume that the Turing machines have a separate input tape that we do not count in measuring space complexity.)

Deterministic Complexity Classes

Definition.

Let $T, S : \mathbb{N} \to \mathbb{N}$ be monotone growing functions. Define

- DTIME(T) as the class of languages L for which there is a T-time bounded k-tape Turing acceptor deciding L, for some k ≥ 1.
- OSPACE(S) as the class of languages L for which there is a S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Deterministic Complexity Classes

Definition.

Let $T, S : \mathbb{N} \to \mathbb{N}$ be monotone growing functions. Define

- DTIME(T) as the class of languages L for which there is a T-time bounded k-tape Turing acceptor deciding L, for some k ≥ 1.
- OSPACE(S) as the class of languages L for which there is a S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:

- Time classes:
 - PTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$
 - EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$
 - 2-EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$

polynomial time exponential time double exp time

- Space classes:
 - LOGSPACE := $\bigcup_{d \in \mathbb{N}} \mathsf{DSPACE}(d \log n)$
 - PSPACE := $\bigcup_{d \in \mathbb{N}} DSPACE(n^d)$
 - EXPSPACE := $\bigcup_{d \in \mathbb{N}} \mathsf{DSPACE}(2^{n^d})$

But wait...

Do these classes depend on exact def of "Turing machine"?

Do these classes depend on exact def of "Turing machine"?

```
Yes, for DTIME(T), DPSPACE(S);
No for the others
```

Indeed, usually don't need to be refer explicitly to "Turing machine". But watch out for nondeterminism (details later)

Time Complexity Classes

Important Time Complexity Classes:

- PTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$
- EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$

Not quite so important:

polynomial time exponential time

• 2-EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$ double exp time

Note: Complexity classes are classes of languages.

Time Complexity:

 $\mathsf{PTIME} \subseteq \mathsf{EXPTIME} \subseteq 2\text{-}\mathsf{EXPTIME} \subseteq \cdots \subseteq i\text{-}\mathsf{EXPTIME} \subseteq \ldots$

Time Complexity Classes

Important Time Complexity Classes:

- PTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$
- EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$

polynomial time exponential time

Not quite so important:

• 2-EXPTIME := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$ double exp time

Note: Complexity classes are classes of languages.

Time Complexity:

 $\mathsf{PTIME} \subseteq \mathsf{EXPTIME} \subseteq 2\text{-}\mathsf{EXPTIME} \subseteq \cdots \subseteq i\text{-}\mathsf{EXPTIME} \subseteq \ldots$

Alternative Definition: Sometimes PTIME is defined as

$$\mathsf{PTIME} := \bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(\mathcal{O}(n^d))$$

$\begin{array}{ll} \textit{Theorem.} & (\text{Linear Speed-Up Theorem}) \\ & \text{Let } k > 1 \text{ and } c > 0 & \mathcal{T} : \mathbb{N} \to \mathbb{N} & \mathcal{L} \subseteq \Sigma^* \text{ be a} \\ & \text{language.} \end{array}$

If \mathcal{L} can be decided by a T(n) time-bounded k-tape TM $\mathcal{M} := (Q, \Sigma, \Gamma, q_0, \delta, F)$ then \mathcal{L} can be decided by a $(\frac{1}{c} \cdot T(n) + n + 2)$ time-bounded

k-tape TM

 $\mathcal{M}^* := (Q', \Sigma, \Gamma', q'_0, \delta', F').$

Linear Speed-Up

Proof idea. Let $\Gamma' := \Sigma \cup \Gamma^m$ where $m := \lceil 6c \rceil$. We construct \mathcal{M}^* :

Step 1: Compress \mathcal{M} 's input.

Copy (in n + 2 steps) the input onto tape 2, compressing m symbols into one (i.e., each symbol correspondes to an m-tuple from Γ^m)

Step 2: Simulate \mathcal{M} 's computation, m steps at once.

- Read (in 4 steps) symbols to the left, right and the current position and "store" in Γ' (using |Q × {1,...,m}^k × Γ^{3mk}| extra states).
- Simulate (in 2 steps) the next *m* steps of *M* (as *M* can only modify the current position and one of its neighbours)

(see Papadimitriou Thm 2.2, page 32)

A Hierarchy of Complexity Classes?

Questions:

- Can we always solve more problems if we have more resources?
- If not, how much more resources do we need to be able to solve strictly more problems?
- How do the complexity classes relate to each other?

 \rightsquigarrow see later in the course.

How do we classify "efficient" in terms of complexity classes?
 → see next section

A Hierarchy of Complexity Classes?

Questions:

- Can we always solve more problems if we have more resources?
- If not, how much more resources do we need to be able to solve strictly more problems?
- How do the complexity classes relate to each other?

 \rightsquigarrow see later in the course.

- How do we classify "efficient" in terms of complexity classes?
 → see next section
- Are there any tools by which we can show that a problem is in any of these classes but not in another?

A Hierarchy of Complexity Classes?

Questions:

- Can we always solve more problems if we have more resources?
- If not, how much more resources do we need to be able to solve strictly more problems?
- How do the complexity classes relate to each other?

 \rightsquigarrow see later in the course.

- How do we classify "efficient" in terms of complexity classes?
 → see next section
- Are there any tools by which we can show that a problem is in any of these classes but not in another?
- Are there any other interesting models of computation?
 - \bullet Non-deterministic computation \rightsquigarrow next part of course
 - Randomised algorithms \rightsquigarrow last part of course (time permitting)

PTIME, usually called P

Polynomial Time

"Intuitive" definition of "efficient":

- Any linear time computation is "efficient"
- Any program that
 - performs "efficient" operations (e.g. linear number of iterations) and
 - only uses "efficient" subprograms
 - is "efficient".

Polynomial Time

"Intuitive" definition of "efficient":

- Any linear time computation is "efficient"
- Any program that
 - performs "efficient" operations (e.g. linear number of iterations) and
 - only uses "efficient" subprograms
 - is "efficient".

This turns out to be equivalent to PTIME.

$$\mathsf{PTIME} := \bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$$

PTIME serves as a mathematical model of "efficient" computation.

Robustness of the Definition

If PTIME is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Robustness of the Definition

If PTIME is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Different Models of Computation:

- We can simulate t steps of a k-tape Turing machine with an equivalent 1-tape TM in t² steps.
- We can simulate t steps of a two-way infinite k-tape Turing machine with an equivalent standard k-tape TM in O(t) steps.
- We can simulate t steps of a RAM-machine with a 3-tape TM in $\mathcal{O}(t^3)$ steps. Vice-versa in $\mathcal{O}(t)$ steps.

Robustness of the Definition

If PTIME is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Different Models of Computation:

- We can simulate t steps of a k-tape Turing machine with an equivalent 1-tape TM in t² steps.
- We can simulate t steps of a two-way infinite k-tape Turing machine with an equivalent standard k-tape TM in O(t) steps.
- We can simulate t steps of a RAM-machine with a 3-tape TM in O(t³) steps. Vice-versa in O(t) steps.

Consequence: PTIME is the same for all these models (unlike linear time)

Strong Church-Turing Hypothesis:

Any function which can be computed by any well-defined procedure can be computed by a Turing machine with only polynomial overhead.

(may be challenged by Quantum Computers)

Lemma.

- For any $n \in \mathbb{N}$, the length of the encoding of n in base b_1 and base b_2 are related by a constant factor, for all $b_1, b_2 \ge 2$.
- **②** For any graph G, the length of its encoding as an
 - adjacency matrix
 - list of edges
 - adjacency list
 - ...

are all related by a polynomial factor.

Lemma.

• For any $n \in \mathbb{N}$, the length of the encoding of n in base b_1 and base b_2 are related by a constant factor, for all $b_1, b_2 \ge 2$.

- **②** For any graph G, the length of its encoding as an
 - adjacency matrix
 - list of edges
 - adjacency list
 - ...

are all related by a polynomial factor.

Consequence: PTIME is the same for all these encoding (unlike linear time)

The class PTIME is a reasonable mathematical model of the class of problems which are tractable or solvable in practice.

However: This correspondence is not exact:

- When the degree of polynomials is very high, the time grows so quickly that in practice the problem is not solvable.
- The constants may also be very large

However:

For many concrete PTIME-problems arising in practice, algorithms with moderate exponents and constants have been found.

Growth Rate of Functions (Garey/Johnson '79)

Size n						
Time complexity function	10	20	30	40	50	60
n	.00001	.00002	.00003	.00004	.00005	.00006
	second	second	second	second	second	second
n ²	.0001	.0004	.0009	.0016	.0025	.0036
	second	second	second	second	second	second
n ³	.001	.008	.027	.064	.125	.216
	second	second	second	second	second	second
n ⁵	.1	3.2	24.3	1.7	5.2	13.0
	second	seconds	seconds	minutes	minutes	minutes
2″	.001	1.0	17.9	12.7	35.7	366
	second	second	minutes	days	years	centuries
3″	.059	58	6.5	3855	2×10 ⁸	1.3×10 ¹³
	second	minutes	years	centuries	centuries	centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity

You have done this before

- The most direct way to show that a problem is in PTIME is to exhibit a polynomial time algorithm that solves it.
- Even a naive polynomial-time algorithm often provides a good insight into how the problem can be solved efficiently.
- Because of robustness, we do not generally need to specify all the details of the machine model or the encoding.

 \rightsquigarrow pseudo-code is sufficient.

"in PTIME" less specific than, e.g. "in DTIME(n^2)"; some technical details are avoided

Some of the most important problems concern logical formulae

Recall propositional logic

Formulae of propositional logic are built up inductively

- Variables: X_i $i \in \mathbb{N}$
- Boolean connectives: If φ,ψ are propositional formulae then so are
 - $(\psi \lor \varphi)$
 - $(\psi \land \varphi)$
 - ¬\$

Example:

$$(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$$

Conjunctive Normal Form

A propositional logic formula φ is in conjunctive normal form (CNF) if

$$\varphi := C_1 \wedge \cdots \wedge C_m$$

where each C_i is a clause, that is, a disjunction of literals

$$C_i := (L_{i1} \vee \cdots \vee L_{ik})$$

A literal is a variable X_i or a negation $\neg X_i$ thereof.

k-*CNF*: If φ has at most *k* literals per clause.

Example: $(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$ (3-CNF)

Conjunctive Normal Form

A propositional logic formula φ is in conjunctive normal form (CNF) if

$$\varphi := C_1 \wedge \cdots \wedge C_m$$

where each C_i is a clause, that is, a disjunction of literals

$$C_i := (L_{i1} \vee \cdots \vee L_{ik})$$

A literal is a variable X_i or a negation $\neg X_i$ thereof.

k-*CNF*: If φ has at most *k* literals per clause.

Example: $(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$ (3-CNF)

Notation:

$$\varphi := \left\{ \{X_1, X_2, \neg X_5\}, \{\neg X_2, \neg X_4, \neg X_5\}, \{X_2, X_3, X_4\} \right\}$$

Definition. A formula φ is satisfiable if there is a satisfying assignment for φ .

In the case of formulae in CNF: An assignment β assigning values 0 or 1 to the variables of φ so that every clause contains at least

- one variable to which β assigns 1 or
- one negated variable to which β assigns 0.

Example:

$$(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$$

Satisfying assignment:

 $X_1\mapsto 1$ $X_2\mapsto 0$ $X_3\mapsto 1$ $X_4\mapsto 0$ $X_5\mapsto 1$

In association with propositional formulae, the following two problems are the most important:

SAT	
Input:	Propositional formula $arphi$ in CNF
Problem:	ls $arphi$ satisfiable?

k-SAT	
Input:	Propositional formula $arphi$ in k -CNF
Problem:	ls $arphi$ satisfiable?

Lemma. 2-SAT is in PTIME.

Lemma. 2-SAT is in PTIME.

Proof. The following algorithm solves the problem in poly time.

Main: Input Γ in CNF bcp(Γ) if conflict return UNSAT while $\Gamma \neq \emptyset$ do choose var. X from Γ set $\Gamma' := \Gamma$ assign($\Gamma, X, 1$) bcp(Γ) if conflict $\Gamma := \Gamma'$ assign($\Gamma, X, 0$) bcp(Γ) if conflict return UNSAT

(boolean constraint propagation) $bcp(\Gamma)$ while E contains unit-clause C do if $C = \{X\}$ assign $(\Gamma, X, 1)$ if $C = \{\neg X\}$ assign $(\Gamma, X, 0)$ od if Γ contains empty clause return conflict $assign(\Gamma, X, c)$ if c = 1 do remove from Γ all clauses C with $X \in C$ remove $\neg X$ from all remaining clauses if c = 0 do remove from Γ all clauses C with $\neg X \in C$ remove X from all remaining clauses

As for decidability we can use many-one reductions to show membership in PTIME.

Definition. A language $\mathcal{L}_1 \subseteq \Sigma^*$ is polynomially reducible to $\mathcal{L}_2 \subseteq \Sigma^*$, denoted $\mathcal{L}_1 \leq_p \mathcal{L}_2$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

$$w \in \mathcal{L}_1 \qquad \Longleftrightarrow \qquad f(w) \in \mathcal{L}_2.$$

As for decidability we can use many-one reductions to show membership in PTIME.

Definition. A language $\mathcal{L}_1 \subseteq \Sigma^*$ is polynomially reducible to $\mathcal{L}_2 \subseteq \Sigma^*$, denoted $\mathcal{L}_1 \leq_p \mathcal{L}_2$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

$$w \in \mathcal{L}_1 \quad \iff \quad f(w) \in \mathcal{L}_2.$$

Lemma.

If $\mathcal{L}_1 \leq_p \mathcal{L}_2$ and $\mathcal{L}_2 \in \mathsf{PTIME}$ then $\mathcal{L}_1 \in \mathsf{PTIME}$.

Proof. The sum and composition of polynomials is a polynomial.

All non-trivial members of PTIME can be reduced to each other

Lemma. If \mathcal{B} is any language in PTIME, $\mathcal{B} \neq \emptyset$, $\mathcal{B} \neq \Sigma^*$, then $\mathcal{A} \leq_p \mathcal{B}$ for any $\mathcal{A} \in \mathsf{PTIME}$.

Proof. Choose $w \in \mathcal{B}$ and $w' \notin \mathcal{B}$

Define the function f by setting

$$f(x) := w \quad x \in \mathcal{A}$$

$$f(x) := w' \quad x \notin \mathcal{A}$$

Since $A \in \mathsf{PTIME}$, f is computable in polynomial time, and is a reduction from A to B.

Vertex Colouring:

A vertex colouring of G with k colours is a function

$$c: V(G) \longrightarrow \{1, \ldots, k\}$$

such that adjacent nodes have different colours

i.e. $\{u, v\} \in E(G)$ implies $c(u) \neq c(v)$

k-COLOURABILITY

Input: Graph G, $k \in \mathbb{N}$ Problem: Does G have a vertex colouring with k colours?

For k = 2 this is the same as BIPARTITE.

A reduction to $2\text{-}\mathrm{SAT}$

Lemma. 2-COLOURABILITY \leq_p 2-SAT

Proof. We define a reduction as follows: Given graph G

- For each vertex $v \in V(G)$ of the graph introduce variable X_v
- For each $\{u, v\} \in E(G)$ add clauses $(X_u \vee X_v)$ and $(\neg X_u \vee \neg X_v)$

This is obviously computable in polynomial time.

We check that it is a reduction:

- If *G* is 2-colourable, use colouring to assign truth values. (One colour is *true*, the other *false*)
- If the formula is satisfiable, the truth assignment defines valid 2-colouring.

For every edge $\{u, v\} \in E(G)$, one variable X_u, X_v must be set to *true*, the other to *false*.

A reduction to $2\text{-}\mathrm{SAT}$

Lemma. 2-COLOURABILITY \leq_p 2-SAT

Proof. We define a reduction as follows: Given graph G

- For each vertex $v \in V(G)$ of the graph introduce variable X_v
- For each $\{u, v\} \in E(G)$ add clauses $(X_u \vee X_v)$ and $(\neg X_u \vee \neg X_v)$

This is obviously computable in polynomial time.

We check that it is a reduction:

- If *G* is 2-colourable, use colouring to assign truth values. (One colour is *true*, the other *false*)
- If the formula is satisfiable, the truth assignment defines valid 2-colouring.

For every edge $\{u, v\} \in E(G)$, one variable X_u, X_v must be set to *true*, the other to *false*.

Corollary. 2-COLOURABILITY \in PTIME

Lemma. k-COLOURABILITY $\leq_p 3$ -SAT

Proof. I will do this on board (going via *k*-SAT).

Reducible to 2-SAT ??