Computational Complexity; slides 5, HT 2019 nondeterminism

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Nondeterministic Turing Machines

Definition.

A non-deterministic 1-tape Turing machine is a 6-tuple $\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is a finite alphabet of symbols
- $\Gamma \supseteq \Sigma \cup\{\square\}$ is a finite alphabet of symbols
- $\Delta \subseteq(Q \backslash F) \times \Gamma \times Q \times \Gamma \times\{-1,0,1\} \quad$ transition relation
- $q_{0} \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

As before, we assume $\Sigma:=\{0,1\}$ and $\Gamma:=\Sigma \cup\{\square\}$.
The computation of a non-deterministic Turing machine $\mathcal{M}=\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F\right)$ on input w is a "computation tree" analogy with NFA, (N)PDA

Non-Deterministic Turing Acceptor

Non-deterministic Turing acceptor: $\left(Q, \Sigma, \Gamma, \Delta, q_{0}, F_{a}, F_{r}\right)$
Computation path:
Any path from the start configuration to a stop configuration in the configuration tree.
accepting path: the stop configuration is in an accepting state. (also called an accepting run)
rejecting path otherwise
Language accepted by an NTM \mathcal{M} :
$\mathcal{L}(\mathcal{M}):=\left\{w \in \Sigma^{*}:\right.$ there exists an accepting path of \mathcal{M} on $\left.w\right\}$

The following models can all be (poly-time) simulated by 1-tape NTMs:

- k-tape non-deterministic Turing machines
- Two way infinite multi-tape NTMs
- Non-det. Random access Turing machines
- ...

All these simulations run in polynomial time.
Can simulate with deterministic TM, but not in poly-time

From P to NP

NP: languages accepted by NTM in polynomially-many steps; equivalently, problems whose yes-instances are accepted by (poly-time) NTM

- e.g. 3-Sat and 3-Colourability, TSP, SAT, etc
- No polynomial time algorithms for these problems are known
- but are in NP
"Guess and test": generic NP algorithm. As for P , no need to think in terms of TMs

Non-Deterministic Complexity Classes

Important Non-Deterministic Complexity Classes:

- Time classes:
- NPtime a.k.a. NP $:=\bigcup_{d \in \mathbb{N}} \operatorname{NTime}\left(n^{d}\right)$
- NExptime : $=\bigcup_{d \in \mathbb{N}} \operatorname{NTime}\left(2^{n^{d}}\right)$
- Space classes:
- NLogspace $:=\bigcup_{d \in \mathbb{N}} \operatorname{NsPace}(d \log n)$
- NPSpace $:=\bigcup_{d \in \mathbb{N}} \operatorname{Nspace}\left(n^{d}\right)$
- NEXPSPace $:=\bigcup_{d \in \mathbb{N}} \operatorname{NSPACE}\left(2^{n^{d}}\right)$
where $\operatorname{NTime(T)~(etc.)~means~what~you~think~it~means.~Note~}$ that all accepting/non-accepting computations of a NTime(T) TM should have length at most T

Certificates

Every yes-instance of such problems has a short and easily checkable certificate that proves it is a yes-instance.

- SAT - a satisfying assignment
- k-Colourability - a k-colouring
- Hamiltonian Circuit - a Hamiltonian circuit
- Travelling Salesman (version with a "distance budget")
- a round trip (i.e. permutation)

Verifiers

Definition.

(1) A Turing acceptor \mathcal{M} which halts on all inputs is called a verifier for language \mathcal{L} if

$$
\mathcal{L}=\{w: \mathcal{M} \text { accepts }\langle w, c\rangle \text { for some string } c\}
$$

The string c is called a certificate (or witness) for w.
(2) A polynomial time verifier for \mathcal{L} is a polynomially time bounded Turing acceptor \mathcal{M} such that
$\mathcal{L}=\{w: \mathcal{M}$ accepts $\langle w, c\rangle$ for some string c with $|c| \leq p(|w|)\}$
for some fixed polynomial $p(n)$.
All problems for the previous slide have verifiers that run in polynomial time.

Equivalent def of NP

The class of languages that have polynomial-time verifiers

Examples.

- Satisfiability is in NP

For any formula that can be satisfied, the satisfying assignment can be used as a certificate.
It can be verified in polynomial time that the assignment satisfies the formula.

- k-Colourability is in NP

For any graph that can be coloured, the colouring can be used as a certificate.
It can be verified in polynomial time that the colouring is a proper colouring.

More Examples of Problems in NP

COMPOSITE (non-prime) NUMBER

Input: A positive integer $n>1$
Problem: Are there integers $u, v>1$ such that $u \cdot v=n$?

SUBSET SUM

Input: A collection of positive integers $S:=\left\{a_{1}, \ldots, a_{k}\right\}$ and a target integer t.
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=$ t ?

A Problem (probably) not in NP

> No Hamiltonian Cycle
> Input: A graph G
> Problem: Is it true that G has no Hamiltonian cycle?

Note. Whereas it is easy to certify that a graph has a Hamiltonian cycle, there does not seem to be a certificate that it has not.

But we may just not be clever enough to find one.

```
co-NP
co-NP problem: complement of an NP problem
In a co-NP problem, no-instances have (concise) certificates
Believed that NP is not equal to co-NP
```

The following result justifies guess and test approach to establishing membership of NP:

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates
Proof. Suppose $\mathcal{L} \in$ NP.
Hence, there is an NTM \mathcal{M} such that
$w \in \mathcal{L} \Longleftrightarrow$ there is an accepting run of \mathcal{M} of length $\leq n^{k}$
for some k. This path can be used as a certificate for w
(Clearly, a DTM can check in polynomial time that a
candidate
for a certificate is a valid accepting computation path.)

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates
Proof. Suppose $\mathcal{L} \in$ NP.
Hence, there is an NTM \mathcal{M} such that
$w \in \mathcal{L} \Longleftrightarrow$ there is an accepting run of \mathcal{M} of length $\leq n^{k}$
for some k. This path can be used as a certificate for w
(Clearly, a DTM can check in polynomial time that a
candidate
for a certificate is a valid accepting computation path.)
Conversely: If \mathcal{L} has a polynomial-time verifier \mathcal{M}, say of length at most n^{k},
then we can construct an NTM \mathcal{M}^{*} deciding \mathcal{L} as follows:
(1) \mathcal{M}^{*} guesses a string of length $\leq n^{k}$
(2) \mathcal{M}^{*} checks in deterministic polynomial-time if this is a certificate.

Deterministic vs. Non-Deterministic Time

Clearly, $\mathrm{P} \subseteq \mathrm{NP}$.
Question: The question $\mathrm{P} \stackrel{?}{=}$ NP is among the most important open problems in computer science and mathematics.

- It is equivalent to determining whether or not the existence of a short solution guarantees an efficient way of finding it.
- Most people are convinced that $P \neq N P$ But after 30 years of effort there is still no proof.
- Resolving the question (either way) would win a prize of $\$ 1$ million - see http://www.claymath.org/millennium-problems/

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:
Each class contains problems that are pairwise inter-reducible.
- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:
Each class contains problems that are pairwise inter-reducible.
- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:
Each class contains problems that are pairwise inter-reducible.
- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

NP-Hardness and NP-Completeness

Definition.

(1) A language \mathcal{H} is NP-hard, if $\mathcal{L} \leq_{p} \mathcal{H}$ for every language $\mathcal{L} \in N P$.
(2) A language \mathcal{C} is NP-complete, if \mathcal{C} is NP-hard and $\mathcal{C} \in \mathrm{NP}$.

NP-Completeness:

- NP-complete problems are the hardest problems in NP.
- They are all equally difficult - an efficient solution to one would solve them all.

Lemma. If \mathcal{L} is NP-hard and $\mathcal{L} \leq_{p} \mathcal{L}^{\prime}$, then \mathcal{L}^{\prime} is NP-hard as well.

Proving NP-Completeness

NP-completeness: To show that \mathcal{L} is NP-complete, we must show that every language in NPcan be reduced to \mathcal{L} in polynomial time.

However: Once we have one NP-complete language \mathcal{C}, we can show that another language \mathcal{L}^{\prime} is NP-complete just by showing that

- $\mathcal{C} \leq_{p} \mathcal{L}^{\prime}$
- $\mathcal{L}^{\prime} \in \mathrm{NP}$

Hence: The problem is to find the first one ...

2 problems involving propositional logic

(1) Given a formula φ on variables $x_{1}, \ldots x_{n}$, and values for those variables, derive the value of φ - easy!
(2) Search for values for x_{1}, \ldots, x_{n} that make φ evaluate to TRUE - naive algorithm is exponential: 2^{n} vectors of truth assignments.

Cook's Theorem (1971) or, Cook-Levin Theorem
The second of these, called SAT, is NP-complete.

P vs NP Problem

Suppose that yc accommodatio university stud, hundred of the dormitory. To CI
provided you w
students, and ri
appear in your 1
what computer

Stephen Cook, Leonid Levin

The challenge of solving boolean formulae

There's a HUGE theory literature on the computational challenge of solving various classes of syntactically restricted classes of boolean formulae, also circuits.
Likewise much has been written about their relative expressive power
SAT-solver: software that solves input instances of SAT - OK, so it's worst-case exponential, but aim to solve instances that arise in practice.

- "truth table" approach: clearly exponential
- DPLL algorithm; resolution: worst-case exponential, often fast in practice

Reducing an NP problem to SAT

Goal: fixing non-deterministic TM M, integer k, given w create in poly-time a propositional formula CodesAcceptRun $M(w)$ that is satisfied by assignments that code an n^{k} length accepting run of M on $w($ where $n=|w|)$

Idea: introduce propositional variables

- HasSymbol $i_{i, j}(a)$: "at time i, tape has letter a at location j "
- HasHead ${ }_{i, j}(q)$: "at time i, TM is in location j, state q "

We'll assume M has "stay put" transitions for which it can change tape contents; R and L moves don't change tape. Assume also that to accept, M goes to LHS of tape and prints special symbol.

M has a "configuration table"

Time i

Tape space j				
	1	2	\cdots	n^{k}
1	$\left(q_{0}, w_{1}\right)$	w_{2}	\cdots	
2	w_{1}^{\prime}	$\left(q_{1}, w_{2}\right)$		
\vdots				
\vdots				
n^{k}				

This corresponds to a run where HasSymbol $_{1,1}\left(w_{1}\right)$ HasHead $_{1,1}\left(q_{0}\right)$ HasSymbol $_{1,2}\left(w_{2}\right)$ HasSymbol ${ }_{2,1}\left(w_{1}^{\prime}\right)$ $H_{\text {HasSymbol }}^{2,2}\left(w_{2}\right)$ $\mathrm{HasHead}_{2,2}\left(q_{1}\right)$
...are true
(Others, e.g.
HasHead $_{1,2}\left(q_{0}\right)$ are false)

Idea: the search for "correct" non-determinstic choices for M shall correspond to search for satisfying assignment for CodesAcceptRun $M(w)$.
CodesAcceptRun $M(w)$ shall be a conjunction of clauses.

Getting started

To write the formula CodesAcceptRun $M(w)$, let's start by writing:

$$
\text { HasSymbol }_{1, j}\left(w_{j}\right)
$$

for each $j=1, \ldots,|w|$, where w_{j} is the j-th letter of input w, also

$$
\neg \text { HasSymbol }_{1, j}(a)
$$

for any a where a is not the j-th letter of w.
Similarly

$$
\text { HasHead }_{1,1}\left(q_{0}\right)
$$

says M is in state q_{0} at time 1 , location 1 . Add a bunch of negated "HasHead" variables.

Include the following:

$$
\operatorname{HasHead}_{i, j}(q) \Rightarrow \neg \text { HasHead }_{i, j^{\prime}}\left(q^{\prime}\right)
$$

...for all states q, q^{\prime}, for all i, j, j^{\prime} with $j \neq j^{\prime}$.

Moving head clauses: leftward-moving State

Leftward moving state. If M has transition rule $(q, a) \rightarrow\left\{\left(q_{1}, a, L\right),\left(q_{2}, a, L\right)\right\}$ then we write:
$\operatorname{HasHead}_{i, j}(q) \Rightarrow\left[\operatorname{HasHead}_{i+1, j-1}\left(q_{1}\right) \vee \operatorname{HasHead}_{i+1, j-1}\left(q_{2}\right)\right]$
Write the above for all $i, j \in\left\{1,2,3, \ldots, n^{k}\right\}$.
Tape space

Time

	1	\cdots	$j-1$	j	\cdots	n^{k}
1						
i			w_{2}	(q, a)		
$i+1$		$\left(q_{1}, w_{2}\right)$	a			
\vdots						
n^{k}						

Moving head clauses: Rightward-moving State or Leftward-moving State

For every rightward or leftward state q, for every a we add the clause:

$$
\operatorname{HasSymbol}_{i, j}(a) \wedge \operatorname{HasHead}_{i, j}(q) \Rightarrow \operatorname{HasSymbol}_{i+1, j}(a)
$$

Meaning: if the head is at place j at step i and we are in a rightward- or leftward moving state, symbol in place j at step $i+1$ is the same.

Tape space

	1	\cdots	j		\cdots	n^{k}
1						
Time i			(q, a)	w_{2}	\cdots	
$i+1$			a	$\left(q_{1}, w_{2}\right)$	\cdots	

Moving head clauses: stay-same state

For every stay-and-write state q, if we have transition $\left(q, w_{0}\right) \rightarrow\left\{\left(q_{1}, w_{1}\right.\right.$, Stay $),\left(q_{2}, w_{1}\right.$, Stay $\left.)\right\}$ then we add:

$$
\operatorname{HasSymbol}_{i, j}\left(w_{0}\right) \wedge \operatorname{HasHead}_{i, j}(q) \Rightarrow \operatorname{HasSymbol}_{i+1, j}\left(w_{1}\right)
$$

(new symbol is written - use "stay determinism" assumption of M_{A} here!) And also:

$$
\operatorname{HasHead}_{i, j}(q) \Rightarrow\left[\operatorname{HasHead}_{i+1, j}\left(q_{1}\right) \vee \operatorname{HasHead}_{i+1, j}\left(q_{2}\right)\right]
$$

(head does not move, although state may change)

	1	\cdots	j		\cdots
1					
i			$\left(q, w_{0}\right)$	\cdots	
$i+1$			$\left(q_{1}, w_{1}\right)$	\cdots	
\vdots					
n^{k}					

More sub-formulae for Transitions: away from head clauses

Clauses stating that if the head is not close to place j at time i, then symbol in place j is unchanged in the next time.
For any state q and symbol w_{3}, any $i \leq n_{k}$ and number h in a certain range we have

$$
\operatorname{HasHead}_{i, j}(q) \wedge \operatorname{HasSymbol}_{i, j+h}\left(w_{3}\right) \Rightarrow \operatorname{HasSymbol}_{i+1, j+h}\left(w_{3}\right)
$$

If q is a rightward-moving state, do this for $n^{k}-j \geq h \geq 2$ and $-(j-1) \leq h<0$
If q is a leftward-moving state do this for $n^{k}-j \geq h \geq 1$ and $-(j-1) \leq h<-1$
If q is a stay put state, do this for $h \neq 0$

	1	\cdots	j		\cdots
1					n^{k}
i			$\left(q, w_{0}\right)$	\cdots	w_{3}
$i+1$			$\left(q_{1}, w_{1}\right)$	\cdots	w_{3}

Reducing an NP problem to SAT (conclusion)

Final configuration clause: let's assume that whenever M accepts, it accepts at LHS of tape and prints special symbol \square there

$$
\operatorname{HasSymbol}_{n^{k}, 1}(\square) \wedge \operatorname{HasHead}_{n^{k}, 1}\left(q_{\text {accept }}\right)
$$

At time n^{k}, head is at the beginning and state is accepting with special termination symbol

	1	\cdots		\cdots	n^{k}
1	q_{0}	w_{1}	w_{2}	\cdots	
\vdots					
n^{k}	$\left(q_{\text {accept }}, \square\right)$				

Proof of the construction (overview, not details)

We started with M, w, constructed formula
CodesAcceptRun $_{M}(w)$. Two items to establish:

- CodesAcceptRun $M(w)$ is constructed in polynomial time
- CodesAcceptRun $M_{M}(w)$ is satisfiable iff M accepts w

For the first item, as I pointed out, many clauses were added, but polynomially-many. (large polynomial blow-up may be counter-intuitive)

For the second, the main point is that an accepting run gives rise to a satisfying assignment of the formula (and vice versa) is a direct way, according to our understanding of what the HasHead and HasSymbol variables mean, for runs of M.

NP-Completeness Proofs

To prove that a problem \mathcal{X} is NP-complete, we now just have to perform two steps:
(1) Show that $\mathcal{X} \in \mathrm{NP}$ usually easy
(2) Find a known NP-complete problem \mathcal{X}^{\prime} and reduce $\mathcal{X}^{\prime} \leq_{p} \mathcal{X}$. the FUN part

Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

NP-Completeness Proofs

To prove that a problem \mathcal{X} is NP-complete, we now just have to perform two steps:
(1) Show that $\mathcal{X} \in \mathrm{NP}$ usually easy
(2) Find a known NP-complete problem \mathcal{X}^{\prime} and reduce $\mathcal{X}^{\prime} \leq_{p} \mathcal{X}$. the FUN part

Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

Coming up next: some examples. I pointed out earlier that CNF-SAT $\leq_{p} 3$-SAT (BTW, goes back to Cook's paper) 3-SAT is a more convenient starting-point of reductions.

3 -SAT \leq_{p} INTEGER PROGRAMMING (simple but important)
$3-$ SAT \leq_{p} IND SET \leq_{p} CLIQUE
3 -SAT \leq_{p} DIRECTED HAMILTONIAM PATH
$3-$ SAT \leq_{p} SUBSET SUM \leq_{p} KNAPSACK

NP-Completeness of INTEGER PROGRAMMING, CLIQUE

IP: Input: a set of linear constraints, Question: can we satisfy them with integer values?
3 -SAT \leq_{p} IP (I will do this on board)
(Recall:) CLIQUE: Given G, k, does G contain a clique of order $\geq k$?

Theorem

CLIQUE is NP-complete.
SAT \leq_{p} CLIQUE
I will do this on the board. It's convenient to reduce from 3-SAT to IND SET and from there to CLIQUE.

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
 Input: G: directed graph.
 Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
 Input: G: directed graph.
 Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete
Proof.
(1) Directed Hamiltonian Path \in NP.

Take the path to be the certificate.

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
 Input: G: directed graph.
 Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete
Proof.
(1) Directed Hamiltonian Path \in NP.

Take the path to be the certificate.
(2) Directed Hamiltonian Path is NP-hard.

3 -Satisfiability $\leq{ }_{p}$ Directed Hamiltonian Path

Digression: How to design reductions

Show that problem \mathcal{X} (Dir. Hamiltonian Path) is NP-hard.
Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to Directed Hamiltonian Path - something graph-theoretic?
- Considerations:
- Is there an NP-complete problem similar to \mathcal{X} ?
(E.g. CLIQUE and Independent Set)
- It is not always beneficial to choose a problem of the same type
(E.g. reducing a graph problem to a graph problem)
- For instance, CLIQUE, Independent Set are "local" problems (is there a set of vertices inducing some structure)
- Hamiltonian Path is a global problem
(find a structure (the Ham. path) containing all vertices)

Digression: How to design reductions

Show that problem \mathcal{X} (Dir. Hamiltonian Path) is NP-hard.
Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to Directed Hamiltonian Path - something graph-theoretic?
- Considerations:
- Is there an NP-complete problem similar to \mathcal{X} ?
(E.g. CLIQUE and Independent Set)
- It is not always beneficial to choose a problem of the same type (E.g. reducing a graph problem to a graph problem)
- For instance, CLIQUE, Independent Set are "local" problems (is there a set of vertices inducing some structure)
- Hamiltonian Path is a global problem
(find a structure (the Ham. path) containing all vertices)
How to design the reduction:
- Does your problem come from an optimisation problem? If so: a maximisation problem? a minimisation problem?

NP-Completeness of SUBSET SUM

SUBSET SUM

Input: A collection of positive integers
$S:=\left\{a_{1}, \ldots, a_{k}\right\}$ and a target integer t.
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?

Theorem. SUBSET SUM is NP-complete
Proof.
(1) SUBSET SUM $\in \mathrm{NP}$.

Take T to be the certificate.
(2) SUBSET SUM is NP-hard. SAT \leq_{p} SUBSET SUM (example next slide)

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

SAT \leq_{p} SUBSET SUM

Given: $\varphi:=C_{1} \wedge \cdots \wedge C_{k}$ in conjunctive normal form. (w.l.o.g. at most 9 literals per clause)

Let X_{1}, \ldots, X_{n} be the variables in φ. For each X_{i} let

$$
\begin{aligned}
& t_{i}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where }:= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& c_{j}:= \begin{cases}1 & X_{i} \text { occurs in } C_{j} \\
0 & \text { otherwise }\end{cases} \\
& a_{j}:= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& f_{i}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } \\
& c_{j}:= \begin{cases}1 & \neg X_{i} \text { occurs in } C_{j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

SAT \leq_{p} SUBSET SUM

Further, for each clause C_{i} take $r:=\left|C_{i}\right|-1$ integers $m_{i, 1}, \ldots, m_{i, r}$ where $m_{i, j}:=c_{i} \ldots c_{k}$ with $c_{j}:= \begin{cases}1 & j=i \\ 0 & j \neq i\end{cases}$
Definition of S: Let

$$
S:=\left\{t_{i}, f_{i}: 1 \leq i \leq n\right\} \cup\left\{m_{i, j}: 1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-1\right\}
$$

Target: Finally, choose as target

$$
t:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } a_{i}:=1 \text { and } c_{i}:=\left|C_{i}\right|
$$

Claim: There is $T \subseteq S$ with $\sum_{a_{i} \in T} a_{i}=t$ iff φ is satisfiable.

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

NP-Completeness of SUBSET SUM

Let $\varphi:=\bigwedge C_{i}$
C_{i} : clauses

Show. If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s=t$.
Let β be a satisfying assigment for φ
Set $\quad T_{1}:=\left\{t_{i}: \beta\left(X_{i}\right)=1 \quad 1 \leq i \leq m\right\} \cup$

$$
\left\{f_{i}: \beta\left(X_{i}\right)=0 \quad 1 \leq i \leq m\right\}
$$

Further, for each clause C_{i} let r_{i} be the number of satisfied literals in C_{i}
(with resp. to β).
Set $T_{2}:=\left\{m_{i, j}: 1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-r_{i}\right\}$
and define $T:=T_{1} \cup T_{2}$.
It follows: $\sum_{s \in T} s=t$

NP-Completeness of SUBSET SUM

Show. If there is $T \subseteq S$ with $\sum_{s \in T} s=t$, then φ is satisfiable.
Let $T \subseteq S$ s.th. $\sum_{s \in T} s=t$
Define $\beta\left(X_{i}\right)= \begin{cases}1 & \text { if } t_{i} \in T \\ 0 & \text { if } f_{i} \in T\end{cases}$
This is well defined as for all $i: t_{i} \in T$ or $f_{i} \in T$ but not both.
Further, for each clause, there must be one literal set to 1 as for all i,
the $m_{i, j}: m_{i, j} \in S$ do not sum up to the number of literals in the clause.

KNAPSACK and Strong NP-Completeness

KNAPSACK
Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight $w_{i} \quad$ for $1 \leq i \leq n$ target value $t \quad$ weight limit ℓ
Problem: Is there $T \subseteq I$ such that

- $\sum_{i \in T} v_{i} \geq t$
- $\sum_{i \in T} w_{i} \leq \ell$

Theorem. KNAPSACK is NP-complete

NP-completeness of KNAPSACK

Knapsack
Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight $w_{i} \quad$ for $1 \leq i \leq$ n target value $t \quad$ weight limit ℓ
Problem: Is there $T \subseteq I$ such that

- $\sum_{i \in T} v_{i} \geq t$
- $\sum_{i \in T} w_{i} \leq \ell$

Theorem. KNAPSACK is NP-complete
(1) KNAPSACK $\in \mathrm{NP}$

Take T as certificate.
(2) KNAPSACK is NP-hard

By reduction SUBSET SUM \leq_{p} KNAPSACK

SUBSET SUM \leq_{p} KNAPSACK

SUBSET SUM:

Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?

SUBSET SUM \leq_{p} KNAPSACK

SUBSET SUM:

Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?
Reduction: From this input to SUBSET SUM construct

- $l:=\{1, \ldots, n\}: \quad$ set of items
- $v_{i}=w_{i}=a_{i} \quad$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t \quad$ weight limit $\ell:=t$

SUBSET SUM \leq_{p} KNAPSACK

SUBSET SUM:

Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?
Reduction: From this input to SUBSET SUM construct

- $I:=\{1, \ldots, n\}: \quad$ set of items
- $v_{i}=w_{i}=a_{i} \quad$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t \quad$ weight limit $\ell:=t$

Clearly: For every $T \subseteq S$

$$
\sum_{a_{i} \in T} a_{i}=t \quad \Longleftrightarrow \quad \begin{aligned}
& \sum_{a_{i} \in T} v_{i} \geq t^{\prime}=t \\
& \sum_{a_{i} \in T} w_{i} \leq \ell=t
\end{aligned}
$$

Hence: The reduction is correct and in polynomial time.

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n \ell)$ using dynamic programming

Initialisation:

Create a $(\ell+1) \times(n+1)$ matrix M
Set $M(w, 0)=M(0, i)=0 \quad$ for all $1 \leq w \leq \ell \quad 1 \leq i \leq n$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight limit w	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0					
1					
2					
3					
4					
5					

Set $M(w, 0)=M(0, i)=0 \quad$ for all $1 \leq w \leq \ell \quad 1 \leq i \leq n$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight limit w	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				

Set $M(w, 0)=M(0, i)=0 \quad$ for all $1 \leq w \leq \ell \quad 1 \leq i \leq n$

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n \ell)$ using dynamic programming

Initialisation:

Create a $(\ell+1) \times(n+1)$ matrix M
Set $M(w, 0)=M(0, i)=0 \quad$ for all $1 \leq w \leq \ell \quad 1 \leq i \leq n$

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n \ell)$ using dynamic programming

Initialisation:

Create a $(\ell+1) \times(n+1)$ matrix M
Set $M(w, 0)=M(0, i)=0 \quad$ for all $1 \leq w \leq \ell \quad 1 \leq i \leq n$
Computation: For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Here, if $w-w_{i+1}<0$ we always take $M(w, i)$.
$M(w, i)$: Largest total value obtainable by selecting from the first i items with weight limit w

Acceptance: If M contains an entry $\geq t$, answer yes
Otherwise reject

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1			
2	0	1			
3	0	1			
4	0	1			
5	0	1			

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3		
2	0	1			
3	0	1			
4	0	1			
5	0	1			

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1			
4	0	1			
5	0	1			

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1			
5	0	1			

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1			

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3		
2	0	1	4		
3	0	1	4		
4	0	1	4		
5	0	1	4		

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

Example

Input: $\quad I:=\{1,2,3,4\}$ with
Values: $\quad v_{1}:=1 \quad v_{2}:=3 \quad v_{3}:=4 \quad v_{4}:=2$
Weight: $\quad w_{1}:=1 \quad w_{2}:=1 \quad w_{3}:=3 \quad w_{4}:=2$
Weight limit: $\quad \ell:=5 \quad$ Target value: $\quad t:=7$

weight	max. total value from first i items				
	$i=0$	$i=1$	$i=2$	$i=3$	$i=4$
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

For $i=0,1, \ldots, n-1$ set $M(w, i+1)$ as

$$
M(w, i+1):=\max \left\{M(w, i), \quad M\left(w-w_{i+1}, i\right)+v_{i+1}\right\}
$$

NP-completeness of KNAPSACK

So what's wrong? Did we prove $\mathrm{P}=\mathrm{NP}$?

Recall:

- Theorem: KNAPSACK is NP-complete
- KNAPSACK can be solved in time $\mathcal{O}(n \ell)$ using dynamic programming

KNAPSACK

Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight $w_{i} \quad$ for $1 \leq i \leq n$ target value $t \quad$ weight limit ℓ
Problem: Is there $T \subseteq I$ such that

- $\sum_{i \in T} v_{i} \geq t$
- $\sum_{i \in T} w_{i} \leq \ell$

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!
The length of the input to KNAPSACK is $\mathcal{O}(n \log \ell)$

$$
n \cdot \ell \text { is not bounded by a polynomial in the input length! }
$$

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

If KNAPSACK is restricted to instances with $\ell \leq p(n)$ for some polynomial p, then we obtain a problem in P .

Equivalently: KNAPSACK is in polynomial time for unary encoding of numbers.

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!
The length of the input to KNAPSACK is $\mathcal{O}(n \log \ell)$

$$
n \cdot \ell \text { is not bounded by a polynomial in the input length! }
$$

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

If KNAPSACK is restricted to instances with $\ell \leq p(n)$ for some polynomial p, then we obtain a problem in P .

Equivalently: KNAPSACK is in polynomial time for unary encoding of numbers.

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently, for unary encoding of numbers).

Strong NP-completeness

Pseudo Polynomial time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples.

- SUBSET SUM
- KNAPSACK

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length.
Examples.

- CLIQUE
- SAT
- HAMILTON CYCLE

Note. The reduction SAT \leq_{p} SUBSET SUM involved exponentially large numbers.

digression: dealing with NP-hardness

- Maybe a pseudo-polynomial time algorithm is OK
- Move from exact to approximate optimisation: it may be hard to find optimal solution, but finding one within fact 2 (say) of optimal of optimal, is in P .
- fixed-parameter tractability
- model data as noisy (e.g. in smoothed analysis)

NP and co-NP

Notation. For a language $\mathcal{L} \subseteq \Sigma^{*}$ let $\overline{\mathcal{L}}:=\Sigma^{*} \backslash \mathcal{L}$ be its complement.

Definition.

If \mathcal{C} is a complexity class, we define

$$
\text { co-C }:=\{\mathcal{L}: \overline{\mathcal{L}} \in \mathcal{C}\}
$$

co-NP: In particular, co $-N P:=\{\mathcal{L}: \overline{\mathcal{L}} \in \mathrm{NP}\}$
A problem belongs to co-NP, if no-instances have short certificates.

Examples of problems in co-NP:

NO HAMILTONIAN CYCLE
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?
TAUTOLOGY
Given:
Formula φ
Question: Is φ a tautology, i.e. satisfied by all assignments?

Examples of problems in co-NP:
NO HAMILTONIAN CYCLE
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?
TAUTOLOGY
Given:
Formula φ
Question: Is φ a tautology, i.e. satisfied by all assignments?

Definition. A language $\mathcal{C} \in$ co-NP is co-NP-complete, if $\mathcal{L} \leq{ }_{p} \mathcal{C}$ for all $\mathcal{L} \in$ co-NP.

P, NP, and co-NP

Proposition.
(1) $\mathrm{P}=\mathrm{co}-\mathrm{P}$
(2) Hence, $\mathrm{P} \subseteq \mathrm{NP} \cap \mathrm{co}-\mathrm{NP}$

Question:

- $N P=c o-N P ?$

Again, most people do not think so.

- $\mathrm{P}=\mathrm{NP} \cap \mathrm{co}-\mathrm{NP}$?

Again, most people do not think so.

