
Computational Complexity; slides 5, HT 2019
nondeterminism

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2019

Paul Goldberg nondeterminism 1 / 54

Nondeterministic Turing Machines

Definition.
A non-deterministic 1-tape Turing machine is a 6-tuple
(Q,Σ, Γ,∆, q0,F) where

Q is a finite set of states

Σ is a finite alphabet of symbols

Γ ⊇ Σ ∪ {�} is a finite alphabet of symbols

∆ ⊆ (Q \ F)× Γ× Q × Γ× {−1, 0, 1} transition relation

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states

As before, we assume Σ := {0, 1} and Γ := Σ ∪ {�}.

The computation of a non-deterministic Turing machine
M = (Q,Σ, Γ,∆, q0,F) on input w is a “computation tree”
analogy with NFA, (N)PDA

Paul Goldberg nondeterminism 2 / 54

Non-Deterministic Turing Acceptor

Non-deterministic Turing acceptor: (Q,Σ, Γ,∆, q0,Fa,Fr)

Computation path:
Any path from the start configuration to a stop configuration in
the configuration tree.

accepting path: the stop configuration is in an accepting state.
(also called an accepting run)

rejecting path otherwise

Language accepted by an NTM M:

L(M) := {w ∈ Σ∗ : there exists an accepting path of M on w}

Paul Goldberg nondeterminism 3 / 54

Simulation

The following models can all be (poly-time) simulated by
1-tape NTMs:

k-tape non-deterministic Turing machines

Two way infinite multi-tape NTMs

Non-det. Random access Turing machines

...

All these simulations run in polynomial time.
Can simulate with deterministic TM, but not in poly-time

Paul Goldberg nondeterminism 4 / 54

From P to NP

NP: languages accepted by NTM in polynomially-many steps;
equivalently, problems whose yes-instances are accepted by
(poly-time) NTM

e.g. 3-Sat and 3-Colourability, TSP, SAT, etc

No polynomial time algorithms for these problems are known

but are in NP

“Guess and test”: generic NP algorithm. As for P, no need to
think in terms of TMs

Paul Goldberg nondeterminism 5 / 54

Non-Deterministic Complexity Classes

Important Non-Deterministic Complexity Classes:

Time classes:

NPtime a.k.a. NP :=
⋃

d∈N NTime(nd)

NExptime :=
⋃

d∈N NTime(2nd)

Space classes:

NLogspace :=
⋃

d∈N Nspace(d log n)

NPspace :=
⋃

d∈N Nspace(nd)

NExpspace :=
⋃

d∈N Nspace(2nd)

where NTime(T) (etc.) means what you think it means. Note
that all accepting/non-accepting computations of a NTime(T)
TM should have length at most T

Paul Goldberg nondeterminism 6 / 54

Certificates

Every yes-instance of such problems has a short and easily
checkable certificate that proves it is a yes-instance.

SAT – a satisfying assignment

k-Colourability – a k-colouring

Hamiltonian Circuit – a Hamiltonian circuit

Travelling Salesman (version with a “distance budget”)
– a round trip (i.e. permutation)

Paul Goldberg nondeterminism 7 / 54

Verifiers

Definition.

1 A Turing acceptor M which halts on all inputs is called a
verifier for language L if

L = {w : M accepts 〈w , c〉 for some string c}

The string c is called a certificate (or witness) for w .

2 A polynomial time verifier for L is a polynomially time
bounded Turing acceptor M such that

L = {w : M accepts 〈w , c〉 for some string c with |c | ≤ p(|w |)}

for some fixed polynomial p(n).

All problems for the previous slide have verifiers that run in
polynomial time.

Paul Goldberg nondeterminism 8 / 54

Equivalent def of NP

The class of languages that have polynomial-time verifiers

Examples.

Satisfiability is in NP

For any formula that can be satisfied, the satisfying
assignment can be used as a certificate.

It can be verified in polynomial time that the assignment
satisfies the formula.

k-Colourability is in NP

For any graph that can be coloured, the colouring can be used
as a certificate.

It can be verified in polynomial time that the colouring is a
proper colouring.

Paul Goldberg nondeterminism 9 / 54

More Examples of Problems in NP

COMPOSITE (non-prime) NUMBER
Input: A positive integer n > 1

Problem: Are there integers u, v > 1 such that u·v = n?

SUBSET SUM
Input: A collection of positive integers

S := {a1, . . . , ak} and a target integer t.
Problem: Is there a subset T ⊆ S such that

∑
ai∈T ai =

t?

Paul Goldberg nondeterminism 10 / 54

A Problem (probably) not in NP

No Hamiltonian Cycle
Input: A graph G

Problem: Is it true that G has no Hamiltonian cycle?

Note. Whereas it is easy to certify that a graph has a Hamiltonian
cycle, there does not seem to be a certificate that it has not.

But we may just not be clever enough to find one.

co-NP

co-NP problem: complement of an NP problem
In a co-NP problem, no-instances have (concise) certificates
Believed that NP is not equal to co-NP

The following result justifies guess and test approach to
establishing membership of NP:

Paul Goldberg nondeterminism 11 / 54

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose L ∈ NP.

Hence, there is an NTM M such that

w ∈ L ⇐⇒ there is an accepting run of M of length ≤ nk

for some k . This path can be used as a certificate for w

(Clearly, a DTM can check in polynomial time that a
candidate

for a certificate is a valid accepting computation path.)

Conversely: If L has a polynomial-time verifier M, say of length at
most nk ,

then we can construct an NTM M∗ deciding L as follows:
1 M∗ guesses a string of length ≤ nk

2 M∗ checks in deterministic polynomial-time if this is a
certificate.

Paul Goldberg nondeterminism 12 / 54

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose L ∈ NP.

Hence, there is an NTM M such that

w ∈ L ⇐⇒ there is an accepting run of M of length ≤ nk

for some k . This path can be used as a certificate for w

(Clearly, a DTM can check in polynomial time that a
candidate

for a certificate is a valid accepting computation path.)

Conversely: If L has a polynomial-time verifier M, say of length at
most nk ,

then we can construct an NTM M∗ deciding L as follows:
1 M∗ guesses a string of length ≤ nk

2 M∗ checks in deterministic polynomial-time if this is a
certificate.

Paul Goldberg nondeterminism 12 / 54

Deterministic vs. Non-Deterministic Time

Clearly, P⊆NP.

Question: The question P
?
= NP is among the most important

open problems in computer science and mathematics.

It is equivalent to determining whether or not the existence of
a short solution guarantees an efficient way of finding it.

Most people are convinced that P 6= NP

But after 30 years of effort there is still no proof.

Resolving the question (either way) would win a prize of $1
million – see
http://www.claymath.org/millennium-problems/

Paul Goldberg nondeterminism 13 / 54

poly-time reductions amongst NP problems

Some problems in NP will have polynomial-time many-one
reductions to others.

This partitions the complexity class into equivalence classes
via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

Equivalence classes are partially ordered by the reduction
relation.

Problems in the maximal class are called complete

NP:

Paul Goldberg nondeterminism 14 / 54

poly-time reductions amongst NP problems

Some problems in NP will have polynomial-time many-one
reductions to others.

This partitions the complexity class into equivalence classes
via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

Equivalence classes are partially ordered by the reduction
relation.

Problems in the maximal class are called complete

NP:

Paul Goldberg nondeterminism 14 / 54

poly-time reductions amongst NP problems

Some problems in NP will have polynomial-time many-one
reductions to others.

This partitions the complexity class into equivalence classes
via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

Equivalence classes are partially ordered by the reduction
relation.

Problems in the maximal class are called complete

NP:

Paul Goldberg nondeterminism 14 / 54

NP-Hardness and NP-Completeness

Definition.

1 A language H is NP-hard, if L ≤p H for every language
L ∈ NP.

2 A language C is NP-complete, if C is NP-hard and C ∈ NP.

NP-Completeness:

NP-complete problems are the hardest problems in NP.

They are all equally difficult – an efficient solution to one
would solve them all.

Lemma. If L is NP-hard and L ≤p L′, then L′ is NP-hard as well.

Paul Goldberg nondeterminism 15 / 54

Proving NP-Completeness

NP-completeness: To show that L is NP-complete, we must show
that every language in NPcan be reduced to L in polynomial time.

However: Once we have one NP-complete language C, we can
show that another language L′ is NP-complete just by showing
that

C ≤p L′

L′ ∈ NP

Hence: The problem is to find the first one ...

Paul Goldberg nondeterminism 16 / 54

2 problems involving propositional logic

1 Given a formula ϕ on variables x1, . . . xn, and values for those
variables, derive the value of ϕ — easy!

2 Search for values for x1, . . . , xn that make ϕ evaluate to
TRUE — naive algorithm is exponential: 2n vectors of truth
assignments.

Cook’s Theorem (1971)
or, Cook-Levin Theorem

The second of these, called
SAT, is NP-complete.

Stephen Cook, Leonid Levin

Paul Goldberg nondeterminism 17 / 54

The challenge of solving boolean formulae

There’s a HUGE theory literature on the computational challenge
of solving various classes of syntactically restricted classes of
boolean formulae, also circuits.
Likewise much has been written about their relative expressive
power
SAT-solver: software that solves input instances of SAT — OK, so
it’s worst-case exponential, but aim to solve instances that arise in
practice.

“truth table” approach: clearly exponential

DPLL algorithm; resolution: worst-case exponential, often fast
in practice

Paul Goldberg nondeterminism 18 / 54

Reducing an NP problem to SAT

Goal: fixing non-deterministic TM M, integer k , given w create in
poly-time a propositional formula CodesAcceptRunM(w) that is
satisfied by assignments that code an nk length accepting run of
M on w (where n = |w |)

Idea: introduce propositional variables

HasSymboli ,j(a) : “at time i , tape has letter a at location j”

HasHeadi ,j(q) : “at time i , TM is in location j , state q”

We’ll assume M has “stay put” transitions for which it can change
tape contents; R and L moves don’t change tape. Assume also
that to accept, M goes to LHS of tape and prints special symbol.

Paul Goldberg nondeterminism 19 / 54

M has a “configuration table”

Time i

Tape space j

1 2 · · · nk

1 (q0,w1) w2 · · ·
2 w ′

1 (q1,w2)
...
...

nk

This corresponds to a
run where
HasSymbol1,1(w1)
HasHead1,1(q0)
HasSymbol1,2(w2)
HasSymbol2,1(w ′

1)
HasSymbol2,2(w2)
HasHead2,2(q1)
...are true
(Others, e.g.
HasHead1,2(q0) are
false)

Idea: the search for “correct” non-determinstic choices for M shall

correspond to search for satisfying assignment for

CodesAcceptRunM(w).

CodesAcceptRunM(w) shall be a conjunction of clauses.

Paul Goldberg nondeterminism 20 / 54

Getting started

To write the formula CodesAcceptRunM(w), let’s start by
writing:

HasSymbol1,j(wj)

for each j = 1, ..., |w |, where wj is the j-th letter of input w , also

¬HasSymbol1,j(a)

for any a where a is not the j-th letter of w .

Similarly
HasHead1,1(q0)

says M is in state q0 at time 1, location 1. Add a bunch of
negated “HasHead” variables.

Paul Goldberg nondeterminism 21 / 54

TM head “sanity clauses”

Include the following:

HasHeadi ,j(q)⇒ ¬HasHeadi ,j ′(q′)

...for all states q, q′, for all i , j , j ′ with j 6= j ′.

Paul Goldberg nondeterminism 22 / 54

Moving head clauses: leftward-moving State

Leftward moving state. If M has transition rule
(q, a)→ {(q1, a, L), (q2, a, L)} then we write:

HasHeadi ,j(q)⇒ [HasHeadi+1,j−1(q1) ∨ HasHeadi+1,j−1(q2)]

Write the above for all i , j ∈ {1, 2, 3, . . . , nk}.

Time

Tape space

1 · · · j − 1 j · · · nk

1

i w2 (q, a)
i + 1 (q1,w2) a

...
nk

Paul Goldberg nondeterminism 23 / 54

Moving head clauses: Rightward-moving State or
Leftward-moving State

For every rightward or leftward state q, for every a we add the
clause:

HasSymboli ,j(a) ∧ HasHeadi ,j(q)⇒ HasSymboli+1,j(a)

Meaning: if the head is at place j at step i and we are in a
rightward- or leftward moving state, symbol in place j at step i + 1
is the same.

Tape space

1 · · · j · · · nk

1

Time i (q, a) w2 · · ·
i + 1 a (q1,w2) · · ·

...
nk

Paul Goldberg nondeterminism 24 / 54

Moving head clauses: stay-same state

For every stay-and-write state q, if we have transition
(q,w0)→ {(q1,w1, Stay), (q2,w1, Stay)} then we add:

HasSymboli ,j(w0) ∧ HasHeadi ,j(q)⇒ HasSymboli+1,j(w1)

(new symbol is written – use “stay determinism” assumption of
MA here!) And also:

HasHeadi ,j(q)⇒ [HasHeadi+1,j(q1) ∨ HasHeadi+1,j(q2)]

(head does not move, although state may change)
1 · · · j · · · nk

1

i (q,w0) · · ·
i + 1 (q1,w1) · · ·

...
nk

Paul Goldberg nondeterminism 25 / 54

More sub-formulae for Transitions: away from head clauses

Clauses stating that if the head is not close to place j at time i ,
then symbol in place j is unchanged in the next time.
For any state q and symbol w3, any i ≤ nk and number h in a
certain range we have

HasHeadi ,j(q) ∧ HasSymboli ,j+h(w3)⇒ HasSymboli+1,j+h(w3)

If q is a rightward-moving state, do this for nk − j ≥ h ≥ 2 and
−(j − 1) ≤ h < 0
If q is a leftward-moving state do this for nk − j ≥ h ≥ 1 and
−(j − 1) ≤ h < −1

If q is a stay put state, do this for h 6= 0

1 · · · j · · · nk

1

i (q,w0) · · · w3

i + 1 (q1,w1) · · · w3
...

nk Paul Goldberg nondeterminism 26 / 54

Reducing an NP problem to SAT (conclusion)

Final configuration clause: let’s assume that whenever M accepts,
it accepts at LHS of tape and prints special symbol � there

HasSymbolnk ,1(�) ∧ HasHeadnk ,1(qaccept)

At time nk , head is at the beginning and state is accepting with
special termination symbol

1 · · · · · · nk

1 q0 w1 w2 · · ·

...

nk (qaccept ,�)

Paul Goldberg nondeterminism 27 / 54

Proof of the construction (overview, not details)

We started with M, w , constructed formula
CodesAcceptRunM(w). Two items to establish:

CodesAcceptRunM(w) is constructed in polynomial time

CodesAcceptRunM(w) is satisfiable iff M accepts w

For the first item, as I pointed out, many clauses were added, but
polynomially-many. (large polynomial blow-up may be
counter-intuitive)

For the second, the main point is that an accepting run gives rise
to a satisfying assignment of the formula (and vice versa) is a
direct way, according to our understanding of what the HasHead
and HasSymbol variables mean, for runs of M.

Paul Goldberg nondeterminism 28 / 54

NP-Completeness Proofs

To prove that a problem X is NP-complete, we now just have to
perform two steps:

1 Show that X ∈ NP usually easy

2 Find a known NP-complete problem X ′ and reduce X ′ ≤p X .
the FUN part

Thousands of problem have now been shown to be NP-complete
(See Garey and Johnson for an early survey); Karp 1972,
“reducibility among combinatorial problems” kicked-off this work

Coming up next: some examples. I pointed out earlier that
CNF-SAT≤p3-SAT (BTW, goes back to Cook’s paper) 3-SAT is a
more convenient starting-point of reductions.

3-SAT≤pINTEGER PROGRAMMING (simple but important)
3-SAT≤pIND SET≤pCLIQUE
3-SAT≤pDIRECTED HAMILTONIAM PATH
3-SAT≤pSUBSET SUM≤pKNAPSACK

Paul Goldberg nondeterminism 29 / 54

NP-Completeness Proofs

To prove that a problem X is NP-complete, we now just have to
perform two steps:

1 Show that X ∈ NP usually easy

2 Find a known NP-complete problem X ′ and reduce X ′ ≤p X .
the FUN part

Thousands of problem have now been shown to be NP-complete
(See Garey and Johnson for an early survey); Karp 1972,
“reducibility among combinatorial problems” kicked-off this work

Coming up next: some examples. I pointed out earlier that
CNF-SAT≤p3-SAT (BTW, goes back to Cook’s paper) 3-SAT is a
more convenient starting-point of reductions.

3-SAT≤pINTEGER PROGRAMMING (simple but important)
3-SAT≤pIND SET≤pCLIQUE
3-SAT≤pDIRECTED HAMILTONIAM PATH
3-SAT≤pSUBSET SUM≤pKNAPSACK

Paul Goldberg nondeterminism 29 / 54

NP-Completeness of INTEGER PROGRAMMING, CLIQUE

IP: Input: a set of linear constraints, Question: can we satisfy
them with integer values?
3-SAT≤pIP (I will do this on board)

(Recall:) CLIQUE: Given G , k , does G contain a clique of order
≥ k?

Theorem

CLIQUE is NP-complete.

SAT ≤p CLIQUE
I will do this on the board. It’s convenient to reduce from 3-SAT
to IND SET and from there to CLIQUE.

Paul Goldberg nondeterminism 30 / 54

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈ NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg nondeterminism 31 / 54

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈ NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg nondeterminism 31 / 54

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem. Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈ NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg nondeterminism 31 / 54

Digression: How to design reductions

Show that problem X (Dir. Hamiltonian Path) is NP-hard.

Which problem to reduce to X :

Arguably, the most important part is to decide where to start
from; e.g. which problem to reduce to Directed
Hamiltonian Path — something graph-theoretic?
Considerations:

Is there an NP-complete problem similar to X ?
(E.g. CLIQUE and Independent Set)

It is not always beneficial to choose a problem of the same type
(E.g. reducing a graph problem to a graph problem)

For instance, CLIQUE, Independent Set are “local”
problems (is there a set of vertices inducing some structure)
Hamiltonian Path is a global problem

(find a structure (the Ham. path) containing all
vertices)

How to design the reduction:

Does your problem come from an optimisation problem?
If so: a maximisation problem? a minimisation problem?

Paul Goldberg nondeterminism 32 / 54

Digression: How to design reductions

Show that problem X (Dir. Hamiltonian Path) is NP-hard.

Which problem to reduce to X :

Arguably, the most important part is to decide where to start
from; e.g. which problem to reduce to Directed
Hamiltonian Path — something graph-theoretic?
Considerations:

Is there an NP-complete problem similar to X ?
(E.g. CLIQUE and Independent Set)

It is not always beneficial to choose a problem of the same type
(E.g. reducing a graph problem to a graph problem)

For instance, CLIQUE, Independent Set are “local”
problems (is there a set of vertices inducing some structure)
Hamiltonian Path is a global problem

(find a structure (the Ham. path) containing all
vertices)

How to design the reduction:

Does your problem come from an optimisation problem?
If so: a maximisation problem? a minimisation problem?

Paul Goldberg nondeterminism 32 / 54

NP-Completeness of SUBSET SUM

SUBSET SUM
Input: A collection of positive integers

S := {a1, . . . , ak} and a target integer t.
Problem: Is there a subset T ⊆ S such that

∑
ai∈T ai = t?

Theorem. SUBSET SUM is NP-complete

Proof.

1 SUBSET SUM ∈ NP.

Take T to be the certificate.

2 SUBSET SUM is NP-hard.

SAT ≤p SUBSET SUM (example next slide)

Paul Goldberg nondeterminism 33 / 54

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Paul Goldberg nondeterminism 34 / 54

SAT ≤p SUBSET SUM

Given: ϕ := C1 ∧ · · · ∧ Ck in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X1, . . . ,Xn be the variables in ϕ. For each Xi let

ti := a1 . . . anc1 . . . ck where

aj :=

{
1 i = j

0 i 6= j

cj :=

{
1 Xi occurs in Cj

0 otherwise

fi := a1 . . . anc1 . . . ck where

aj :=

{
1 i = j

0 i 6= j

cj :=

{
1 ¬Xi occurs in Cj

0 otherwise

Paul Goldberg nondeterminism 35 / 54

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Paul Goldberg nondeterminism 36 / 54

SAT ≤p SUBSET SUM

Further, for each clause Ci take r := |Ci | − 1 integers mi ,1, . . . ,mi ,r

where mi ,j := ci . . . ck with cj :=

{
1 j = i

0 j 6= i
Definition of S: Let

S := {ti , fi : 1 ≤ i ≤ n} ∪ {mi ,j : 1 ≤ i ≤ k , 1 ≤ j ≤ |Ci | − 1}

Target: Finally, choose as target

t := a1 . . . anc1 . . . ck where ai := 1 and ci := |Ci |

Claim: There is T ⊆ S with
∑

ai∈T ai = t iff ϕ is satisfiable.

Paul Goldberg nondeterminism 37 / 54

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Paul Goldberg nondeterminism 38 / 54

NP-Completeness of SUBSET SUM

Let ϕ :=
∧
Ci Ci : clauses

Show. If ϕ is satisfiable, then there is T ⊆ S with
∑

s∈T s = t.

Let β be a satisfying assigment for ϕ

Set T1 := {ti : β(Xi) = 1 1 ≤ i ≤ m} ∪
{fi : β(Xi) = 0 1 ≤ i ≤ m}

Further, for each clause Ci let ri be the number of satisfied literals
in Ci

(with resp. to β).

Set T2 := {mi ,j : 1 ≤ i ≤ k , 1 ≤ j ≤ |Ci | − ri}
and define T := T1 ∪ T2.

It follows:
∑

s∈T s = t

Paul Goldberg nondeterminism 39 / 54

NP-Completeness of SUBSET SUM

Show. If there is T ⊆ S with
∑

s∈T s = t, then ϕ is satisfiable.

Let T ⊆ S s.th.
∑

s∈T s = t

Define β(Xi) =

{
1 if ti ∈ T

0 if fi ∈ T

This is well defined as for all i : ti ∈ T or fi ∈ T but not both.

Further, for each clause, there must be one literal set to 1 as for all
i ,

the mi ,j : mi ,j ∈ S do not sum up to the number of literals in the
clause.

Paul Goldberg nondeterminism 40 / 54

KNAPSACK and Strong NP-Completeness

KNAPSACK
Input: A set I := {1, . . . , n} of items

each of value vi and weight wi for 1 ≤ i ≤ n
target value t weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t∑
i∈T wi ≤ `

Theorem. KNAPSACK is NP-complete

1 KNAPSACK ∈ NP
Take T as certificate.

2 KNAPSACK is NP-hard
By reduction SUBSET SUM ≤p KNAPSACK

Paul Goldberg nondeterminism 41 / 54

NP-completeness of KNAPSACK

Knapsack
Input: A set I := {1, . . . , n} of items

each of value vi and weight wi for 1 ≤ i ≤
n
target value t weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t∑
i∈T wi ≤ `

Theorem. KNAPSACK is NP-complete

1 KNAPSACK ∈ NP
Take T as certificate.

2 KNAPSACK is NP-hard
By reduction SUBSET SUM ≤p KNAPSACK

Paul Goldberg nondeterminism 42 / 54

SUBSET SUM ≤p KNAPSACK

SUBSET SUM:
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to SUBSET SUM construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg nondeterminism 43 / 54

SUBSET SUM ≤p KNAPSACK

SUBSET SUM:
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to SUBSET SUM construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg nondeterminism 43 / 54

SUBSET SUM ≤p KNAPSACK

SUBSET SUM:
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to SUBSET SUM construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg nondeterminism 43 / 54

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time O(n`) using dynamic
programming

Initialisation:
Create a (`+ 1)× (n + 1) matrix M

Set M(w , 0) = M(0, i) = 0 for all 1 ≤ w ≤ ` 1 ≤ i ≤ n

Computation: For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Here, if w − wi+1 < 0 we always take M(w , i).

M(w , i): Largest total value obtainable by selecting from the first i
items with weight limit w

Acceptance: If M contains an entry ≥ t, answer yes
Otherwise reject

Paul Goldberg nondeterminism 44 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0

0 0 0 0 0

1

0 1 3 3 3

2

0 1 4 4 4

3

0 1 4 4 5

4

0 1 4 7 7

5

0 1 4 8 8

Set M(w , 0) = M(0, i) = 0 for all 1 ≤ w ≤ ` 1 ≤ i ≤ n

Paul Goldberg nondeterminism 45 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0

1 3 3 3

2 0

1 4 4 4

3 0

1 4 4 5

4 0

1 4 7 7

5 0

1 4 8 8

Set M(w , 0) = M(0, i) = 0 for all 1 ≤ w ≤ ` 1 ≤ i ≤ n

Paul Goldberg nondeterminism 45 / 54

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time O(n`) using dynamic
programming

Initialisation:
Create a (`+ 1)× (n + 1) matrix M

Set M(w , 0) = M(0, i) = 0 for all 1 ≤ w ≤ ` 1 ≤ i ≤ n

Computation: For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Here, if w − wi+1 < 0 we always take M(w , i).

M(w , i): Largest total value obtainable by selecting from the first i
items with weight limit w

Acceptance: If M contains an entry ≥ t, answer yes
Otherwise reject

Paul Goldberg nondeterminism 46 / 54

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time O(n`) using dynamic
programming

Initialisation:
Create a (`+ 1)× (n + 1) matrix M

Set M(w , 0) = M(0, i) = 0 for all 1 ≤ w ≤ ` 1 ≤ i ≤ n

Computation: For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Here, if w − wi+1 < 0 we always take M(w , i).

M(w , i): Largest total value obtainable by selecting from the first i
items with weight limit w

Acceptance: If M contains an entry ≥ t, answer yes
Otherwise reject

Paul Goldberg nondeterminism 46 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0

1 3 3 3

2 0

1 4 4 4

3 0

1 4 4 5

4 0

1 4 7 7

5 0

1 4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1

3 3 3

2 0 1

4 4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1

4 4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1

4 4 5

4 0 1

4 7 7

5 0 1

4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1

4 7 7

5 0 1

4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1 4

7 7

5 0 1

4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3

3 3

2 0 1 4

4 4

3 0 1 4

4 5

4 0 1 4

7 7

5 0 1 4

8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

Example

Input: I := {1, 2, 3, 4} with

Values: v1 := 1 v2 := 3 v3 := 4 v4 := 2
Weight: w1 := 1 w2 := 1 w3 := 3 w4 := 2

Weight limit: ` := 5 Target value: t := 7

weight max. total value from first i items
limit w i = 0 i = 1 i = 2 i = 3 i = 4

0 0 0 0 0 0

1 0 1 3 3 3

2 0 1 4 4 4

3 0 1 4 4 5

4 0 1 4 7 7

5 0 1 4 8 8

For i = 0, 1, . . . , n − 1 set M(w , i + 1) as

M(w , i + 1) := max{M(w , i), M(w − wi+1, i) + vi+1}

Paul Goldberg nondeterminism 47 / 54

NP-completeness of KNAPSACK

So what’s wrong? Did we prove P = NP?

Recall:

Theorem: KNAPSACK is NP-complete

KNAPSACK can be solved in time O(n`) using dynamic
programming

KNAPSACK
Input: A set I := {1, . . . , n} of items

each of value vi and weight wi for 1 ≤ i ≤ n
target value t weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t∑
i∈T wi ≤ `

Paul Goldberg nondeterminism 48 / 54

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!

The length of the input to KNAPSACK is O(n log `)

n · ` is not bounded by a polynomial in the input length!

Pseudo-Polynomial Time: Algorithms polynomial in the
maximum of the input length and the value of numbers occurring
in the input.

If KNAPSACK is restricted to instances with ` ≤ p(n) for some
polynomial p, then we obtain a problem in P.

Equivalently: KNAPSACK is in polynomial time for unary
encoding of numbers.

Strong NP-completeness: Problems which remain NP-complete
even if all numbers are bounded by a polynomial in the input length
(equivalently, for unary encoding of numbers).

Paul Goldberg nondeterminism 49 / 54

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!

The length of the input to KNAPSACK is O(n log `)

n · ` is not bounded by a polynomial in the input length!

Pseudo-Polynomial Time: Algorithms polynomial in the
maximum of the input length and the value of numbers occurring
in the input.

If KNAPSACK is restricted to instances with ` ≤ p(n) for some
polynomial p, then we obtain a problem in P.

Equivalently: KNAPSACK is in polynomial time for unary
encoding of numbers.

Strong NP-completeness: Problems which remain NP-complete
even if all numbers are bounded by a polynomial in the input length
(equivalently, for unary encoding of numbers).

Paul Goldberg nondeterminism 49 / 54

Strong NP-completeness

Pseudo Polynomial time: Algorithms polynomial in the
maximum of the input length and the value of numbers occurring
in the input.

Examples.

SUBSET SUM

KNAPSACK

Strong NP-completeness: Problems which remain NP-complete
even if all numbers are bounded by a polynomial in the input
length.

Examples.

CLIQUE

SAT

HAMILTON CYCLE

Note. The reduction SAT ≤p SUBSET SUM involved exponentially
large numbers.

Paul Goldberg nondeterminism 50 / 54

digression: dealing with NP-hardness

Maybe a pseudo-polynomial time algorithm is OK

Move from exact to approximate optimisation: it may be hard
to find optimal solution, but finding one within fact 2 (say) of
optimal of optimal, is in P.

fixed-parameter tractability

model data as noisy (e.g. in smoothed analysis)

Paul Goldberg nondeterminism 51 / 54

NP and co-NP

Notation. For a language L ⊆ Σ∗ let L := Σ∗ \ L be its
complement.

Definition.
If C is a complexity class, we define

co-C := {L : L ∈ C}.

co-NP: In particular, co − NP := {L : L ∈ NP}

A problem belongs to co-NP, if no-instances have short certificates.

Paul Goldberg nondeterminism 52 / 54

co-NP-completeness

Examples of problems in co-NP:

NO HAMILTONIAN CYCLE
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?

TAUTOLOGY
Given: Formula ϕ
Question: Is ϕ a tautology, i.e. satisfied by all assignments?

Definition. A language C ∈ co-NP is co-NP-complete, if L ≤p C for
all L ∈ co-NP.

Paul Goldberg nondeterminism 53 / 54

co-NP-completeness

Examples of problems in co-NP:

NO HAMILTONIAN CYCLE
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?

TAUTOLOGY
Given: Formula ϕ
Question: Is ϕ a tautology, i.e. satisfied by all assignments?

Definition. A language C ∈ co-NP is co-NP-complete, if L ≤p C for
all L ∈ co-NP.

Paul Goldberg nondeterminism 53 / 54

P, NP, and co-NP

Proposition.

1 P = co-P

2 Hence, P ⊆ NP ∩ co-NP

Question:

NP = co-NP?

Again, most people do not think so.

P = NP ∩ co-NP?

Again, most people do not think so.

Paul Goldberg nondeterminism 54 / 54

