Computational Complexity; slides 5, HT 2019 nondeterminism

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Definition.

A non-deterministic 1-tape Turing machine is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, F)$ where

- Q is a finite set of states
- Σ is a finite alphabet of symbols
- $\bullet \ \Gamma \supseteq \Sigma \cup \{ \Box \}$ is a finite alphabet of symbols
- $\Delta \subseteq (Q \setminus F) \times F \times Q \times F \times \{-1, 0, 1\}$ transition relation
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a set of final states

As before, we assume $\Sigma := \{0, 1\}$ and $\Gamma := \Sigma \cup \{\Box\}$.

The computation of a non-deterministic Turing machine $\mathcal{M} = (Q, \Sigma, \Gamma, \Delta, q_0, F)$ on input *w* is a "computation tree" analogy with NFA, (N)PDA

Non-deterministic Turing acceptor: $(Q, \Sigma, \Gamma, \Delta, q_0, F_a, F_r)$

Computation path:

Any path from the start configuration to a stop configuration in the configuration tree.

accepting path: the stop configuration is in an accepting state. (also called an accepting run)

rejecting path otherwise

Language accepted by an NTM \mathcal{M} :

 $\mathcal{L}(\mathcal{M}) := \{ w \in \Sigma^* : \text{ there exists an accepting path of } \mathcal{M} \text{ on } w \}$

The following models can all be (poly-time) simulated by 1-tape NTMs:

- k-tape non-deterministic Turing machines
- Two way infinite multi-tape NTMs
- Non-det. Random access Turing machines
- ...

All these simulations run in polynomial time.

Can simulate with deterministic TM, but not in poly-time

NP: languages accepted by NTM in polynomially-many steps; equivalently, problems whose yes-instances are accepted by (poly-time) NTM

- \bullet e.g. 3-SAT and 3-COLOURABILITY, TSP, SAT, etc
- No polynomial time algorithms for these problems are known
- but are in NP

"Guess and test": generic NP algorithm. As for P, no need to think in terms of TMs $% \mathcal{A}_{\mathrm{S}}$

Important Non-Deterministic Complexity Classes:

- Time classes:
 - NPTIME a.k.a. NP := $\bigcup_{d \in \mathbb{N}} \operatorname{NTIME}(n^d)$
 - NEXPTIME := $\bigcup_{d \in \mathbb{N}} \operatorname{NTIME}(2^{n^d})$
- Space classes:
 - NLOGSPACE := $\bigcup_{d \in \mathbb{N}} \operatorname{NSPACE}(d \log n)$
 - NPSPACE := $\bigcup_{d \in \mathbb{N}} \text{NSPACE}(n^d)$
 - NEXPSPACE := $\bigcup_{d \in \mathbb{N}} \text{NSPACE}(2^{n^d})$

where NTIME(T) (etc.) means what you think it means. Note that all accepting/non-accepting computations of a NTIME(T) TM should have length at most T

Every yes-instance of such problems has a short and easily checkable certificate that proves it is a yes-instance.

- SAT a satisfying assignment
- *k*-COLOURABILITY a *k*-colouring
- HAMILTONIAN CIRCUIT a Hamiltonian circuit
- TRAVELLING SALESMAN (version with a "distance budget") - a round trip (i.e. permutation)

Verifiers

Definition.

A Turing acceptor *M* which halts on all inputs is called a verifier for language *L* if

 $\mathcal{L} = \{ w : \mathcal{M} \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

The string c is called a certificate (or witness) for w.

A polynomial time verifier for *L* is a polynomially time bounded Turing acceptor *M* such that

 $\mathcal{L} = \{ w : \mathcal{M} \text{ accepts } \langle w, c \rangle \text{ for some string } c \text{ with } |c| \leq p(|w|) \}$

for some fixed polynomial p(n).

All problems for the previous slide have verifiers that run in polynomial time.

The class of languages that have polynomial-time verifiers

Examples.

• SATISFIABILITY is in NP

For any formula that can be satisfied, the satisfying assignment can be used as a certificate.

It can be verified in polynomial time that the assignment satisfies the formula.

• *k*-COLOURABILITY is in NP

For any graph that can be coloured, the colouring can be used as a certificate.

It can be verified in polynomial time that the colouring is a proper colouring.

COMPOSITE (non-prime) NUMBER

Input: A positive integer n > 1*Problem:* Are there integers u, v > 1 such that $u \cdot v = n$?

SUBSET SUMInput:A collection of positive integers $S := \{a_1, \dots, a_k\}$ and a target integer t.Problem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

No Hamiltonian Cycle

Input: A graph *G Problem:* Is it true that *G* has no Hamiltonian cycle?

Note. Whereas it is easy to certify that a graph has a Hamiltonian cycle, there does not seem to be a certificate that it has not.

But we may just not be clever enough to find one.

co-NP

co-NP problem: complement of an NP problem In a co-NP problem, no-instances have (concise) certificates Believed that NP is <u>not</u> equal to co-NP

The following result justifies guess and test approach to establishing membership of NP:

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose $\mathcal{L} \in \mathsf{NP}$.

Hence, there is an NTM ${\mathcal M}$ such that

 $w \in \mathcal{L} \iff$ there is an accepting run of \mathcal{M} of length $\leq n^k$ for some k. This path can be used as a certificate for w

(Clearly, a DTM can check in polynomial time that a candidate $% \left({{\left({{{\left({{{\left({{{c}}} \right)}} \right)}_{0}}} \right)}_{0}}} \right)$

for a certificate is a valid accepting computation path.)

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose $\mathcal{L} \in \mathsf{NP}$.

Hence, there is an NTM ${\mathcal M}$ such that

 $w \in \mathcal{L} \iff$ there is an accepting run of \mathcal{M} of length $\leq n^k$ for some k. This path can be used as a certificate for w

(Clearly, a DTM can check in polynomial time that a candidate

for a certificate is a valid accepting computation path.)

Conversely: If \mathcal{L} has a polynomial-time verifier \mathcal{M} , say of length at most n^k ,

then we can construct an NTM \mathcal{M}^* deciding \mathcal{L} as follows:

- \mathcal{M}^* guesses a string of length $\leq n^k$
- *M*^{*} checks in deterministic polynomial-time if this is a certificate.

Clearly, $P \subseteq NP$.

Question: The question $P \stackrel{?}{=} NP$ is among the most important open problems in computer science and mathematics.

- It is equivalent to determining whether or not the existence of a short solution guarantees an efficient way of finding it.
- Most people are convinced that P ≠ NP But after 30 years of effort there is still no proof.
- Resolving the question (either way) would win a prize of \$1 million - see http://www.claymath.org/millennium-problems/

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

poly-time reductions amongst NP problems

- Some problems in NP will have polynomial-time many-one reductions to others.
- This partitions the complexity class into equivalence classes via polynomial-time reductions:

Each class contains problems that are pairwise inter-reducible.

- Equivalence classes are partially ordered by the reduction relation.
- Problems in the maximal class are called complete

Definition.

- A language *H* is NP-hard, if *L* ≤_p *H* for every language *L* ∈ NP.
- **2** A language C is NP-complete, if C is NP-hard and $C \in NP$.

NP-Completeness:

- NP-complete problems are the hardest problems in NP.
- They are all equally difficult an efficient solution to one would solve them all.

Lemma. If \mathcal{L} is NP-hard and $\mathcal{L} \leq_{p} \mathcal{L}'$, then \mathcal{L}' is NP-hard as well.

- *NP-completeness:* To show that \mathcal{L} is NP-complete, we must show that every language in NPcan be reduced to \mathcal{L} in polynomial time.
- However: Once we have one NP-complete language C, we can show that another language \mathcal{L}' is NP-complete just by showing that
 - $\mathcal{C} \leq_{p} \mathcal{L}'$
 - $\mathcal{L}' \in \mathrm{NP}$

Hence: The problem is to find the first one ...

2 problems involving propositional logic

- Given a formula φ on variables $x_1, \ldots x_n$, and values for those variables, derive the value of φ easy!
- Search for values for x₁,..., x_n that make φ evaluate to TRUE — naive algorithm is exponential: 2ⁿ vectors of truth assignments.

Cook's Theorem (1971) or, Cook-Levin Theorem

The second of these, called SAT, is **NP**-complete.

P vs NP Problem

Suppose that ye accommodation university stude hundred of the dormitory. To co provided you w students, and re appear in your 1 what computer

Stephen Cook, Leonid Levin

There's a HUGE theory literature on the computational challenge of solving various classes of syntactically restricted classes of boolean formulae, also circuits.

Likewise much has been written about their relative *expressive*

power

SAT-solver: software that solves input instances of SAT — OK, so it's worst-case exponential, but aim to solve instances that arise in practice.

- "truth table" approach: clearly exponential
- DPLL algorithm; resolution: worst-case exponential, often fast in practice

Reducing an **NP** problem to SAT

Goal: fixing non-deterministic TM *M*, integer *k*, given *w* create in poly-time a propositional formula **CodesAcceptRun**_{*M*}(*w*) that is satisfied by assignments that code an n^k length accepting run of *M* on *w* (where n = |w|)

Idea: introduce propositional variables

- HasSymbol_{i,j}(a) : "at time i, tape has letter a at location j"
- *HasHead_{i,j}(q)* : "at time *i*, TM is in location *j*, state *q*"

We'll assume M has "stay put" transitions for which it can change tape contents; R and L moves don't change tape. Assume also that to accept, M goes to LHS of tape and prints special symbol.

M has a "configuration table"

Idea: the search for "correct" non-deterministic choices for M shall correspond to search for satisfying assignment for **CodesAcceptRun**_M(w). **CodesAcceptRun**_M(w) shall be a conjunction of *clauses*. To write the formula **CodesAcceptRun**_M(w), let's start by writing:

$HasSymbol_{1,j}(w_j)$

for each j = 1, ..., |w|, where w_j is the *j*-th letter of input *w*, also

 \neg *HasSymbol*_{1,j}(*a*)

for any a where a is not the j-th letter of w.

Similarly

$HasHead_{1,1}(q_0)$

says M is in state q_0 at time 1, location 1. Add a bunch of negated "HasHead" variables.

Include the following:

 $HasHead_{i,j}(q) \Rightarrow \neg HasHead_{i,j'}(q')$

...for all states q, q', for all i, j, j' with $j \neq j'$.

Moving head clauses: leftward-moving State

Leftward moving state. If *M* has transition rule $(q, a) \rightarrow \{(q_1, a, L), (q_2, a, L)\}$ then we write:

 $HasHead_{i,j}(q) \Rightarrow [HasHead_{i+1,j-1}(q_1) \lor HasHead_{i+1,j-1}(q_2)]$

Write the above for all $i, j \in \{1, 2, 3, ..., n^k\}$.

Tape space

Moving head clauses: Rightward-moving State or Leftward-moving State

For every rightward or leftward state q, for every a we add the clause:

 $HasSymbol_{i,j}(a) \land HasHead_{i,j}(q) \Rightarrow HasSymbol_{i+1,j}(a)$

Meaning: if the head is at place j at step i and we are in a rightward- or leftward moving state, symbol in place j at step i + 1 is the same.

Tape space

Moving head clauses: stay-same state

For every stay-and-write state q, if we have transition $(q, w_0) \rightarrow \{(q_1, w_1, Stay), (q_2, w_1, Stay)\}$ then we add:

 $HasSymbol_{i,j}(w_0) \land HasHead_{i,j}(q) \Rightarrow HasSymbol_{i+1,j}(w_1)$

(new symbol is written – use "stay determinism" assumption of M_A here!) And also:

 $HasHead_{i,j}(q) \Rightarrow [HasHead_{i+1,j}(q_1) \lor HasHead_{i+1,j}(q_2)]$

(head does not move, although state may change)

More sub-formulae for Transitions: away from head clauses

Clauses stating that if the head is not close to place j at time i, then symbol in place j is unchanged in the next time. For any state q and symbol w_3 , any $i \le n_k$ and number h in a certain range we have

 $HasHead_{i,j}(q) \land HasSymbol_{i,j+h}(w_3) \Rightarrow HasSymbol_{i+1,j+h}(w_3)$

If q is a rightward-moving state, do this for $n^k - j \ge h \ge 2$ and $-(j-1) \leq h < 0$ If q is a leftward-moving state do this for $n^k - j \ge h \ge 1$ and $-(i-1) \le h \le -1$ If q is a stay put state, do this for $h \neq 0$ $1 \cdots j \cdots n^k$ 1 $(q, w_0) \cdots w_3$ $(q_1, w_1) \cdots w_3$ 1 i+1.

Reducing an **NP** problem to SAT (conclusion)

Final configuration clause: let's assume that whenever M accepts, it accepts at LHS of tape and prints special symbol \Box there

 $\mathit{HasSymbol}_{n^k,1}(\Box) \land \mathit{HasHead}_{n^k,1}(q_{\mathit{accept}})$

At time n^k , head is at the beginning and state is accepting with special termination symbol

•	1				• • •	n ^k
1	q 0	w ₁	<i>W</i> ₂	•••		
÷						
n ^k	(q_{accept}, \Box)					

We started with M, w, constructed formula **CodesAcceptRun**_M(w). Two items to establish:

- **CodesAcceptRun**_M(w) is constructed in polynomial time
- CodesAcceptRun_M(w) is satisfiable iff M accepts w

For the first item, as I pointed out, many clauses were added, but polynomially-many. (large polynomial blow-up may be counter-intuitive)

For the second, the main point is that an accepting run gives rise to a satisfying assignment of the formula (and vice versa) is a direct way, according to our understanding of what the **HasHead** and **HasSymbol** variables mean, for runs of *M*.

To prove that a problem ${\mathcal X}$ is NP-complete, we now just have to perform two steps:

- **②** Find a known NP-complete problem X' and reduce $X' ≤_p X$. the FUN part

Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

To prove that a problem \mathcal{X} is NP-complete, we now just have to perform two steps:

- **②** Find a known NP-complete problem X' and reduce $X' ≤_p X$. the FUN part

Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

Coming up next: some examples. I pointed out earlier that CNF-SAT \leq_p 3-SAT (BTW, goes back to Cook's paper) 3-SAT is a more convenient starting-point of reductions.

3-SAT \leq_p INTEGER PROGRAMMING (simple but important) 3-SAT \leq_p IND SET \leq_p CLIQUE 3-SAT \leq_p DIRECTED HAMILTONIAM PATH 3-SAT \leq_p SUBSET SUM \leq_p KNAPSACK IP: Input: a set of linear constraints, Question: can we satisfy them with integer values? 3-SAT \leq_{p} IP (I will do this on board)

```
(Recall:) CLIQUE: Given G, k, does G contain a clique of order \geq k?
```

Theorem

CLIQUE is NP-complete.

SAT \leq_p CLIQUE I will do this on the board. It's convenient to reduce from 3-SAT to IND SET and from there to CLIQUE.

Directed Hamiltonian Path

Input: G: directed graph. Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. DIRECTED HAMILTONIAN PATH is NP-complete

Directed Hamiltonian Path

Input: G: directed graph. Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. DIRECTED HAMILTONIAN PATH is NP-complete

Proof.

• Directed Hamiltonian Path \in NP.

Take the path to be the certificate.
Directed Hamiltonian Path

Input: G: directed graph.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem. DIRECTED HAMILTONIAN PATH is NP-complete

Proof.

• Directed Hamiltonian Path \in NP.

Take the path to be the certificate.

2 DIRECTED HAMILTONIAN PATH is NP-hard.

3-Satisfiability \leq_{p} Directed Hamiltonian Path

Digression: How to design reductions

Show that problem \mathcal{X} (DIR. HAMILTONIAN PATH) is NP-hard.

Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to DIRECTED HAMILTONIAN PATH something graph-theoretic?
- Considerations:
 - Is there an NP-complete problem similar to \mathcal{X} ?

(E.g. CLIQUE and INDEPENDENT SET)

- It is not always beneficial to choose a problem of the same type (E.g. reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem

(find a structure (the Ham. path) containing all vertices)

Digression: How to design reductions

Show that problem \mathcal{X} (DIR. HAMILTONIAN PATH) is NP-hard.

Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to DIRECTED HAMILTONIAN PATH something graph-theoretic?
- Considerations:
 - Is there an NP-complete problem similar to \mathcal{X} ?

(E.g. CLIQUE and INDEPENDENT SET)

- It is not always beneficial to choose a problem of the same type (E.g. reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a global problem

(find a structure (the Ham. path) containing all vertices)

How to design the reduction:

• Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?

SUBSET SUMInput:A collection of positive integers $S := \{a_1, \dots, a_k\}$ and a target integer t.Problem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Theorem. SUBSET SUM is NP-complete

Proof.

3 SUBSET SUM \in NP.

Take T to be the certificate.

2 SUBSET SUM is NP-hard.

SAT \leq_p SUBSET SUM (example next slide)

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃ <i>X</i> ₄ <i>X</i> ₅ <i>C</i> ₁ <i>C</i> ₂ <i>C</i> ₃								
t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1 1	0 0 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ 1 \\ 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$							1 1 0 0 0 0	0 0 1 0 0 0	0 0 1 1 1
t	=	1	1	1	1	1	3	2	4

SAT \leq_p SUBSET SUM

Given: $\varphi := C_1 \wedge \cdots \wedge C_k$ in conjunctive normal form.

(w.l.o.g. at most 9 literals per clause)

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_{i} := a_{1} \dots a_{n}c_{1} \dots c_{k} \quad \text{where} \quad \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$c_{j} := \begin{cases} 1 & X_{i} \text{ occurs in } C_{j} \\ 0 & \text{otherwise} \end{cases}$$

$$f_{i} := a_{1} \dots a_{n}c_{1} \dots c_{k} \quad \text{where} \quad \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$c_{j} := \begin{cases} 1 & -X_{i} \text{ occurs in } C_{j} \\ 0 & \text{otherwise} \end{cases}$$

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃ <i>X</i> ₄ <i>X</i> ₅ <i>C</i> ₁ <i>C</i> ₂ <i>C</i> ₃								
t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1 1	0 0 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ 1 \\ 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$							1 1 0 0 0 0	0 0 1 0 0 0	0 0 1 1 1
t	=	1	1	1	1	1	3	2	4

SAT \leq_p SUBSET SUM

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$m_{i,j} := c_i \dots c_k$$
 with $c_j := \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$
Definition of S: Let

 $S := \{t_i, f_i : 1 \le i \le n\} \cup \{m_{i,j} : 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$

Target: Finally, choose as target

 $t := a_1 \dots a_n c_1 \dots c_k$ where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃ <i>X</i> ₄ <i>X</i> ₅ <i>C</i> ₁ <i>C</i> ₂ <i>C</i> ₃								
t1 f1 t2 f2 t3 f3 t4 f4 t5 f5		1 1	0 0 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ 1 \\ 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{array}$
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$							1 1 0 0 0 0	0 0 1 0 0 0	0 0 1 1 1
t	=	1	1	1	1	1	3	2	4

Let $\varphi := \bigwedge C_i$ C_i : clauses

Show. If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assignment for φ

Set
$$T_1 := \{t_i : \beta(X_i) = 1 \ 1 \le i \le m\} \cup \{f_i : \beta(X_i) = 0 \ 1 \le i \le m\}$$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i

(with resp. to β).

Set $T_2 := \{m_{i,j} : 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}$

and define $T := T_1 \cup T_2$.

It follows: $\sum_{s \in T} s = t$

Show. If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

Let
$$T \subseteq S$$
 s.th. $\sum_{s \in T} s = t$
Define $\beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}$

This is well defined as for all $i: t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all i,

the $m_{i,j}$: $m_{i,j} \in S$ do not sum up to the number of literals in the clause.

KNAPSACK and Strong NP-Completeness

Theorem. KNAPSACK is NP-complete

Theorem. KNAPSACK is NP-complete

- $\textcircled{\ } \mathsf{KNAPSACK} \in \mathsf{NP}$
 - Take T as certificate.
- KNAPSACK is NP-hard
 - By reduction SUBSET SUM \leq_p KNAPSACK

SUBSET SUM \leq_p KNAPSACK

SUBSET SUM:
Given:S := $\{a_1, \ldots, a_n\}$
tcollection of positive integers
target integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

SUBSET SUM:Given: $S := \{a_1, \dots, a_n\}$ collection of positive integerstttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

- $I := \{1, \ldots, n\}$: set of items
- $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t weight limit $\ell := t$

SUBSET SUM:Given: $S := \{a_1, \dots, a_n\}$ collection of positive integerstttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

• $I := \{1, \ldots, n\}$: set of items

• $v_i = w_i = a_i$ for all $1 \le i \le n$

• target value t' := t weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{a_i \in T} a_i = t \qquad \Longleftrightarrow \qquad \frac{\sum_{a_i \in T} v_i \ge t'}{\sum_{a_i \in T} w_i \le \ell} = t$$

Hence: The reduction is correct and in polynomial time.

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n\ell)$ using dynamic programming

Initialisation:

Create a $(\ell + 1) \times (n + 1)$ matrix M

Set M(w, 0) = M(0, i) = 0 for all $1 \le w \le \ell$ $1 \le i \le n$

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$

Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0							
1							
2							
3							
4							
5							

Set M(w, 0) = M(0, i) = 0

for all $1 \le w \le \ell$ $1 \le i \le n$

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$

Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0						
2	0						
3	0						
4	0						
5	0						

Set M(w, 0) = M(0, i) = 0

for all $1 \le w \le \ell$ $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n\ell)$ using dynamic programming

Initialisation:

Create a $(\ell + 1) \times (n + 1)$ matrix M

Set M(w, 0) = M(0, i) = 0 for all $1 \le w \le \ell$ $1 \le i \le n$

A Polynomial Time Algorithm for KNAPSACK?

KNAPSACK can be solved in time $\mathcal{O}(n\ell)$ using dynamic programming

Initialisation:

Create a $(\ell + 1) \times (n + 1)$ matrix M

Set M(w, 0) = M(0, i) = 0 for all $1 \le w \le \ell$ $1 \le i \le n$

Computation: For i = 0, 1, ..., n-1 set M(w, i+1) as

 $M(w, i+1) := \max\{M(w, i), M(w - w_{i+1}, i) + v_{i+1}\}$

Here, if $w - w_{i+1} < 0$ we always take M(w, i).

M(w, i): Largest total value obtainable by selecting from the first *i* items with weight limit *w*

Acceptance: If M contains an entry $\geq t$, answer yes Otherwise reject

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items							
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4			
0	0	0	0	0	0			
1	0							
2	0							
3	0							
4	0							
5	0							

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1					
2	0	1					
3	0	1					
4	0	1					
5	0	1					

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1	3				
2	0	1					
3	0	1					
4	0	1					
5	0	1					

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1					
4	0	1					
5	0	1					

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1	4				
4	0	1					
5	0	1					

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1	4				
4	0	1	4				
5	0	1					

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first <i>i</i> items						
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4		
0	0	0	0	0	0		
1	0	1	3				
2	0	1	4				
3	0	1	4				
4	0	1	4				
5	0	1	4				

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

Input: $I := \{1, 2, 3, 4\}$ with

Values: $v_1 := 1$ $v_2 := 3$ $v_3 := 4$ $v_4 := 2$ Weight: $w_1 := 1$ $w_2 := 1$ $w_3 := 3$ $w_4 := 2$

Weight limit: $\ell := 5$ Target value: t := 7

weight	max. total value from first i items				
limit w	<i>i</i> = 0	i = 1	<i>i</i> = 2	<i>i</i> = 3	<i>i</i> = 4
0	0	0	0	0	0
1	0	1	3	3	3
2	0	1	4	4	4
3	0	1	4	4	5
4	0	1	4	7	7
5	0	1	4	8	8

For i = 0, 1, ..., n - 1 set M(w, i + 1) as

NP-completeness of KNAPSACK

So what's wrong? Did we prove P = NP?

Recall:

- Theorem: KNAPSACK is NP-complete
- KNAPSACK can be solved in time O(nl) using dynamic programming

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!

The length of the input to KNAPSACK is $\mathcal{O}(n \log \ell)$

 $n \cdot \ell$ is not bounded by a polynomial in the input length!

- *Pseudo-Polynomial Time:* Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.
 - If KNAPSACK is restricted to instances with $\ell \leq p(n)$ for some polynomial p, then we obtain a problem in P.

Equivalently: KNAPSACK is in polynomial time for unary encoding of numbers.

Pseudo-Polynomial Time

This algorithm does not show that KNAPSACK is in P!

The length of the input to KNAPSACK is $\mathcal{O}(n \log \ell)$

 $n \cdot \ell$ is not bounded by a polynomial in the input length!

Pseudo-Polynomial Time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

If KNAPSACK is restricted to instances with $\ell \leq p(n)$ for some polynomial p, then we obtain a problem in P.

Equivalently: KNAPSACK is in polynomial time for unary encoding of numbers.

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length (equivalently, for unary encoding of numbers).

Strong NP-completeness

Pseudo Polynomial time: Algorithms polynomial in the maximum of the input length and the value of numbers occurring in the input.

Examples.

- SUBSET SUM
- KNAPSACK

Strong NP-completeness: Problems which remain NP-complete even if all numbers are bounded by a polynomial in the input length.

Examples.

- CLIQUE
- SAT
- HAMILTON CYCLE

Note. The reduction SAT \leq_p SUBSET SUM involved exponentially large numbers.

- Maybe a pseudo-polynomial time algorithm is OK
- Move from exact to approximate optimisation: it may be hard to find optimal solution, but finding one within fact 2 (say) of optimal of optimal, is in P.
- fixed-parameter tractability
- model data as noisy (e.g. in smoothed analysis)

Notation. For a language $\mathcal{L} \subseteq \Sigma^*$ let $\overline{\mathcal{L}} := \Sigma^* \setminus \mathcal{L}$ be its complement.

Definition.

If $\ensuremath{\mathcal{C}}$ is a complexity class, we define

 $\mathsf{co-}\mathcal{C}:=\{\mathcal{L}:\overline{\mathcal{L}}\in\mathcal{C}\}.$

CO-NP: In particular, $co - NP := \{\mathcal{L} : \overline{\mathcal{L}} \in NP\}$

A problem belongs to co-NP, if no-instances have short certificates.

Examples of problems in co-NP:

NO HAMILTONIAN CYCLE **Given:** Graph G **Question:** Is it true that G contains no Hamiltonian cycle?

TAUTOLOGYGiven:Formula φ Question:Is φ a tautology, i.e. satisfied by all assignments?
Examples of problems in co-NP:

```
NO HAMILTONIAN CYCLE

Given: Graph G

Question: Is it true that G contains no Hamiltonian cycle?
```

TAUTOLOGYGiven:Formula φ Question:Is φ a tautology, i.e. satisfied by all assignments?

Definition. A language $C \in \text{co-NP}$ is co-NP-complete, if $\mathcal{L} \leq_p C$ for all $\mathcal{L} \in \text{co-NP}$.

Proposition.

- $\bullet P = co-P$
- $\textcircled{O} \text{ Hence, } \mathsf{P} \subseteq \mathrm{NP} \cap \mathrm{co-NP}$

Question:

• NP = co-NP?

Again, most people do not think so.

• $P = NP \cap co-NP?$

Again, most people do not think so.