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Road map

I mentioned classes like LOGSPACE (usually called L),
SPACE(f (n)) etc. How do they relate to each other, and time
complexity classes?

Next: Various inclusions can be proved, some more easy than
others; let’s begin with “low-hanging fruit”...

e.g., I have noted: TIME(f (n)) is a subset of SPACE(f (n)) (easy!)

We will see e.g. L is a proper subset of PSPACE, although it’s
unknown how they relate to various intermediate classes, e.g. P,
NP

Various interesting problems are complete for PSPACE, EXPTIME,
and some of the others.
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Space Complexity

So far, we have measured the complexity of problems in terms of
the time required to solve them.

Alternatively, we can measure the space/memory required to
compute a solution.

Important difference: space can be re-used

Convention: In this section we will be using Turing machines with
a designated read only input tape. So, “logarithmic space”
becomes meaningful.
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Space Complexity

Definition. Let M be a Turing acceptor with designated input tape.

SPACEM(w): the maximum number of non-blank cells of the work
tapes during the computation of M on input w ∈ Σ∗.

Definition. Let M be a Turing accepter and S : N→ N a
monotone growing function.
M is S-space bounded if it halts on every input w ∈ Σ∗ and

SPACEM(w) ≤ S(|w |).

1 DSPACE(S) is the class of languages L for which there is an
S-space bounded k-tape deterministic Turing accepter
deciding L for some k ≥ 1.

2 NSPACE(S) is the class of languages L for which there is an
S-space bounded non-deterministic k-tape Turing accepter
deciding L for some k ≥ 1.
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Space Complexity Classes

Deterministic Classes:

LOGSPACE :=
⋃

d∈NDSPACE(d log n)

PSPACE :=
⋃

d∈NDSPACE(nd)

EXPSPACE :=
⋃

d∈NDSPACE(2nd )

Non-Deterministic versions: NLOGSPACE etc

Straightforward observation:

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE

⊆ ⊆ ⊆

NLOGSPACE ⊆ NPSPACE ⊆ NEXPSPACE
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Elementary relationships between time and space

Easy observation:
For all functions f : N→ N:

DTIME(f ) ⊆ DSPACE(f )

NTIME(f ) ⊆ NSPACE(f )

A bit harder:
For all monotone growing functions f : N→ N:

DSPACE(f ) ⊆ DTIME(2O(f ))

NSPACE(f ) ⊆ DTIME(2O(f ))

Proof. Based on configuration graphs and a bound on the number of
possible configurations.

Build the configuration graph

 time 2O(f (n))

Find a path from the start to an accepting stop configuration.

 time 2O(f (n))
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Number of Possible Configurations

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a 1-tape Turing accepter.

(plus input tape)

Recall: Configuration of M is a triple (q, p, x) where

q ∈ Q is the current state,

p ∈ N is the head position, and

x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input to M, n := |w |
If M is f (n)-space bounded we can assume that p ≤ f (n) and
|x | ≤ f (n)

Hence, there are at most

|Γ|f (n) · f (n) · |Q| = 2O(f (n))

different configurations on inputs of length n.
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Configuration Graphs

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a 1-tape Turing accepter.

f (n) space bounded

Configuration graph G(M,w) of M on input w :
Directed graph with

Vertices: All possible configurations of M up to length f (|w |)
Edges: Edge (C1,C2) ∈ E (G(M,w)), if C1 `M C2

A computation of M on input w corresponds to a path in
G(M,w) from the start configuration to a stop configuration.

Hence, to test if M accepts input w ,

construct the configuration graph and

find a path from the start to an accepting stop configuration.
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Basic relationships

Recall: L commonly denotes LOGSPACE; NL=NLOGSPACE

L

⊆

NL ⊆ P ⊆ PSPACE

⊆ ⊆

NP ⊆ NPSPACE ⊆ EXPTIME ⊆ EXPSPACE

⊆ ⊆

NEXPTIME⊆NEXPSPACE
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Simulating non-deterministic computations with limited
space

Easy observation: SAT can be solved in linear space

Just try every possible assignment, one after another, reusing
space.

Consequence: NP ⊆ PSPACE
similarly, NEXPTIME is a subset of EXPSPACE

Generally, non-deterministic time f (n) allows O(f (n))
non-deterministic “guesses”; try them all one-by-one, in
lexicographic order, over-writing previous attempts.
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So we can update the previous diagram

L

⊆

NL ⊆ P PSPACE

⊆ ⊆

NP

⊆

NPSPACE ⊆ EXPTIME EXPSPACE
⊆ ⊆

NEXPTIME

⊆

NEXPSPACE

By the time hierarchy theorem (coming up next), P ( EXPTIME,
NP ( NEXPTIME
By the space hierarchy theorem, NL ( PSPACE,
PSPACE ( EXPSPACE.
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Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXPTIME.

Proof sketch: consider “time-bounded halting language”

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

Hf belongs to TIME((f (n))3): construct a universal TM that uses

“quadratic overhead” to simulate a step of M. (The theorem can

be strengthened by using a more economical UTM, but as stated

it’s good enough for P(EXPTIME.)

Next point: Hf 6∈ TIME(f (bn2c)).
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Time Hierarchy theorem

Reminder:

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

To prove Hf 6∈ TIME(f (bn2c)):

Suppose MHf
decides Hf in time f (bn2c).

Define “diagonalising” machine:
Df (M) : if MHf

(〈M,M〉) = “yes” then “no” else “yes”

Does Df accept its own description? Contradiction!

Corollary

P is a proper subset of EXPTIME
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Next: PSPACE-completeness and Quantified Boolean
Formulae
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From polynomial space to linear space

Generic PSPACE-complete problem P1; fix p, a polynomial

Input: 〈M,w〉
Question: Does M accept w in space O(p(|w |))?

Linear space version P2:

Input: 〈M,w〉
Question: Does M accept w in space O(|w |)?

Easy theorem: P1 ≤p P2.
To reduce P1 to P2,

〈M,w〉 7→ 〈M,wbp(|w |)〉

where b denotes the blank symbol. That is, we can “pad” the
original input to give ourselves more space.

Paul Goldberg Space complexity 15 / 51



From polynomial space to linear space

Generic PSPACE-complete problem P1; fix p, a polynomial

Input: 〈M,w〉
Question: Does M accept w in space O(p(|w |))?

Linear space version P2:

Input: 〈M,w〉
Question: Does M accept w in space O(|w |)?

Easy theorem: P1 ≤p P2.
To reduce P1 to P2,

〈M,w〉 7→ 〈M,wbp(|w |)〉

where b denotes the blank symbol. That is, we can “pad” the
original input to give ourselves more space.

Paul Goldberg Space complexity 15 / 51



Savitch’s Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M
can accept w within 2p(n) steps.

Proof idea: predicate reachable(C ,C ′, i) is satisfied by
configurations C ,C ′ and integer i , provided C ′ is reachable from C
within 2i transitions (w.r.t M).

Note: reachable(C ,C ′, i) is satisfied provided there exists C ′′ such
that
reachable(C ,C ′′, i − 1) and reachable(C ′′,C ′, i − 1)

To check reachable(Cinit ,Caccept , p(n)), try for all configs C ′′:
reachable(Cinit ,C

′′, p(n)− 1) and reachable(C ′′,Caccept , p(n)− 1)

Which themselves are checked recursively. Depth of recursion is
p(n), need to remember at most p(n) configs at any time. We
may assume Caccept is unique.
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Savitch’s Theorem

More generally:

Theorem. (Savitch 1970)
For all (space-constructible) S : N→ N such that S(n) ≥ log n,

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

In particular: PSPACE = NPSPACE
EXPSPACE = NEXPSPACE
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Quantified Boolean Formulae: Syntax

A Quantified Boolean Formula is a formula of the form

Q1X1 . . .QnXnϕ(X1, . . . ,Xn)

where

the Qi are quantifiers ∃ or ∀
ϕ is a CNF formula in the variables X1, . . . ,Xn and atoms 0
and 1

Example

∃X1∀X2∃X3∀X4∀X5

(
(X1 ∨ 0 ∨ ¬X5) ∧ (¬X2 ∨ 1 ∨ ¬X5) ∧ (X2 ∨

X3 ∨ X4)
)
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Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula ϕ is true if

ϕ does not contain any quantifiers (and hence no variables)

and it evaluates to true.

ϕ := ∃Xψ and ψ[X 7→ 0] or ψ[X 7→ 1] is true.

ϕ := ∀Xψ and both ψ[X 7→ 0] and ψ[X 7→ 1] are true.

Here ψ[X 7→ 1] is the formula obtained from ψ by replacing each
occurrence of a literal X by 1 and ¬X by 0. Analogously for
ψ[X 7→ 0].

Example

∀X1 ∀X2 ∃X3

(
(¬X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

)
is

true.

∃Y1 ∀Y2 ∀Y3

(
(Y1 ∨ ¬Y2 ∨ ¬Y3) ∧ (¬Y1 ∨ Y2 ∨ ¬Y3)

)
is

false.
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Quantified Boolean Formulae

Consider the following problem:

QBF
Input: A QBF formula ϕ.

Problem: Is ϕ true?

Observation: For any propositional formula ϕ:

ϕ is satisfiable if, and only if, ∃X1 . . . ∃Xnϕ is true.

X1, . . . ,Xn: Variables occurring in ϕ

Consequence: QBF is NP-hard.
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Theorem: QBF is in PSPACE

Proof: Given ϕ := Q1X1 . . .QnXnψ, letting m := |ψ|
Eval-QBF(ϕ):

if n = 0 Accept if ψ evaluates to true. Reject otherwise.

if ϕ := ∃Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to true, accept.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

if ϕ := ∀Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to false, reject.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

Space complexity: Algorithm uses O(nm) tape cells.
(At depth d of recursion tree, remember d simplified versions of ϕ; can be
improved to O(n + m) by remembering ϕ and d bits...)
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Theorem: QBF is NPSPACE-hard

Let L ∈ NPSPACE. We show L ≤p QBF.

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a TM deciding L
such that M never uses more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct a formula ϕM,w

such that

M accepts w if, and only if, ϕM,w is true.

Describe configuration (q, p, a1 . . . ap(n)) by a set

V := {Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}
of variables and the truth assignment β defined as

β(Qs) :=
{

1 s = q
0 s 6= q β(Ps) :=

{
1 s = p
0 s 6= p β(Sa,i ) :=

{
1 a = ai
0 a 6= ai

Paul Goldberg Space complexity 22 / 51



Theorem: QBF is NPSPACE-hard

Let L ∈ NPSPACE. We show L ≤p QBF.

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a TM deciding L
such that M never uses more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct a formula ϕM,w

such that

M accepts w if, and only if, ϕM,w is true.

Describe configuration (q, p, a1 . . . ap(n)) by a set

V := {Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}
of variables and the truth assignment β defined as

β(Qs) :=
{

1 s = q
0 s 6= q β(Ps) :=

{
1 s = p
0 s 6= p β(Sa,i ) :=

{
1 a = ai
0 a 6= ai

Paul Goldberg Space complexity 22 / 51



NPSPACE-Hardness of QBF

Consider the following formula Conf(V) with free variables

V :=
{
Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)

}
Conf(V) :=

∨
q∈Q

(
Qq ∧

∧
q′ 6=q

¬Qq′

)
∧

∨
p≤p(n)

(
Pp ∧

∧
p′ 6=p

¬Pp′

)
∧

∧
1≤i≤p(n)

∨
a∈Γ

(
Sa,i ∧

∧
b 6=a∈Γ

¬Sb,i
)

Definition. For any truth assignment β of V define config(V, β) as{
(q, p,w1 . . .wp(n)) : β(Qq) = β(Pp) = β(Swi ,i ) = 1,∀i ≤ p(n)

}
Lemma

If β satisfies Conf(V) then |config(V, β)| = 1.
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NPSPACE-hardness of QBF

Definition. For an assignment β of V we defined config(V, β) as{
(q, p,w1 . . .wp(n)) : β(Qq) = β(Pp) = β(Swi ,i ) = 1,∀i ≤ p(n)

}
Lemma

If β satisfies Conf(V) then |config(V, β)| = 1.

Remark. β may be defined on other variables than those in V.

config(V, β) is a potential configuration of M, but it may not be
reachable from the start configuration of M on input w .

Conversely: Every configuration (q, p,w1 . . .wp(n)) induces a
satisfying assignment.
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NPSPACE-Hardness of QBF

Consider the following formula Next(V,V ′) defined as

Conf(V) ∧Conf(V ′) ∧Nochange(V,V ′) ∧Change(V,V ′).

Nochange :=
∨

1≤p≤p(n)

Pp ∧
(∧

i 6=p
a∈Γ

(Sa,i ↔ S ′a,i )
)

Change :=
∨

1≤p≤p(n)

(
Pp ∧

∨
q∈Q
a∈Γ

(
Qq ∧ Sa,p ∧

∨
(q,a,q′,b,m)∈∆

(Q ′q′ ∧ S ′b,p ∧ P ′“p + m”)
))

Lemma

For any assignment β defined on V,V ′:
β satisfies Next(V,V ′) ⇐⇒ config(V, β) `M config(V ′, β)
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NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i ) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(( (Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.
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Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i ) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(( (Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.
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NPSPACE-hardness of QBF

Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

Start and end configuration:

Start(V) := Conf(V) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi ,i ∧
∧p(n)

i=n S�,i

End(V) := Conf(V) ∧ ∨q∈Fa
Qq

Lemma

Let Cstart of M on input w .

1 β satisfies Start if, and only if, config(V, β) = Cstart

2 β satisfies End if, and only if, config(V, β) is an accepting
stop configuration. (may not be reachable from Cstart)

Putting it all together: M accepts w if, and only if,

ϕM,w := ∃V1 ∃V2 Start(V1) ∧End(V2) ∧Pathp(n)(V1,V2) is true.
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NPSPACE-hardness of QBF (to conclude)

Theorem

QBF is NPSPACE-hard.

Proof. Let L ∈ NPSPACE, we show L ≤p QBF.

Let M := (Q,Σ, q0,∆,Fa,Fr ) be a TM deciding L. M never uses
more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct (in poly time!) a
formula ϕM,w such that

M accepts w if, and only if, ϕM,w is true.

Glossed over some detail: ϕM,w is not in prenex form, can be
manipulated into that. Also, quantifiers don’t alternate
∀/∃/∀/∃ . . .; that also can be fixed...
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Alternation, Games
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The Formula Game

Players: Played by two Players ∃ and ∀

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

Moves: Players take turns in assigning truth values to X1, . . . ,Xn in
order.

That is, player ∃ assigns values to ”odd” variables X1,X3, . . .

Winning condition: After all variables have been instantiated, ∃
wins if the formula evaluates to true. Otherwise ∀ wins.

Formula Game
Input: A CNF formula ϕ in the variables X1, . . . ,Xn

Problem: Does ∃ have a winning strategy in the game on ϕ?

Theorem. Formula Game is PSPACE-complete.
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Geography

A generalised version of Geography:

The board is a directed graph G and a start node s ∈ V (G )

Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.

If a player cannot move except to a node visited before, he loses.

Geography
Input: Directed graph G , start node s ∈ V (G )

Problem: Does Player 1 have a winning strategy?

Theorem. Geography is PSPACE-complete.

(see blackboard or Sipser Theorem 8.14)
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Alternating Turing Machines
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Alternating Turing Machines

Definition. An alternating Turing machine M is a
non-deterministic Turing accepter whose set of non-final states is
partitioned into existential and universal states.

Q∃: set of existential states Q∀: set of universal states

Acceptance: Consider the computation tree T of M on w

A configuration C in T is eventually accepting if

C is an accepting stop configuration, i.e. an accepting leaf of
T
C = (q, p,w) with q ∈ Q∃ and there is at least one eventually
accepting successor configuration in T
C = (q, p,w) with q ∈ Q∀ and all successor configurations of
C in T are eventually accepting

M accepts w if the start configuration on w is eventually
accepting.
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Example: Alternating Algorithm for Geography

Input: Directed graph G s ∈ V (G ) start node.

Set Visited := {s} Mark s as current node.

repeat

existential move: choose successor v 6∈ Visited of current node s

if not possible then reject.
Visited := Visited ∪ {v}
set current node s := v

universal move: choose successor v 6∈ Visited of current node s

if not possible then accept.
Visited := Visited ∪ {v}
set current node s := v

Note. This algorithm runs in alternating polynomial time.
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Alternation as Model for Parallelism

Alternation can be seen as a form of parallelism:

universal move: choose successor v 6∈ Visited of current node s

parallel computation:
in parallel, try for all successors v 6∈ Visited of current node s

Universal moves are one possible way of modelling parallel
computation.
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Basic definitions of alternating time/space complexity

L(M) denotes words (in Σ∗) accepted by M.

For function T : N→ N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after
≤ T (n) steps.

Analogously for T space-bounded.

For T : N→ N a monotone growing function, define

1 ATIME(T ) as the class of languages L for which there is a
T -time bounded k-tape alternating Turing accepter deciding
L, k ≥ 1.

2 ASPACE(T ) as the class of languages L for which there is a
T -space bounded alternating k-tape Turing accepter deciding
L, k ≥ 1.
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Alternating Complexity Classes:

Time classes:

APTIME :=
⋃

d∈N ATIME(nd) alternating poly time

AEXPTIME :=
⋃

d∈N ATIME(2n
d
) alternating exp. time

2-AEXPTIME :=
⋃

d∈N ATIME(22n
d

)

Space classes:

ALOGSPACE :=
⋃

d∈N ASPACE(d log n)

APSPACE :=
⋃

d∈N ASPACE(nd)

AEXPSPACE :=
⋃

d∈N ASPACE(2n
d
)

Examples.

Geography ∈ APTIME.

Monotone CVP (coming up next) ∈ ALOGSPACE.
Similar alg.: CVP ∈ ALOGSPACE.
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Example: Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex
of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.

Space Complexity and Hierarchy Theorems Alternation

EXAMPLE: CIRCUIT VALUE PROBLEM

Circuit.
A connected dir. acyclic graph with exactly one vertex of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.
∧

∨ ∨

0 ∧ ∧ 0

1 ¬ ¬ 0

0 1

Ian Horrocks Computational Complexity 40/113
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Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

v is a leaf labelled by 1

v is a node labelled by ∨ and one successor evaluates to 1

v is a node labelled by ¬ and its successor evaluates to 0

v is a node labelled by ∧ and both successors evaluate to 1

C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input: Circuit C

Problem: Does C evaluate to 1?

Monotone Circuit Value Problem.

Monotone CVP
Input: Monotone circuit C without negation ¬.

Problem: Does C evaluate to 1?
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Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.

while Current is not a leaf do

if current node v is a ∨-node then

existential move: choose successor v ′ of v

else if current node v is a ∧-node then

universal move: choose successor v ′ of v

end if

set current node Current := v ′

if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space.
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Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T ) and L′ ≤p L then L′ ∈ ATIME(T ).

Hence: PSPACE ⊆ APTIME

(As Geography ∈ APTIME.)

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M′ be obtained from M by swapping

the accepting and rejecting state

swapping existential and universal states.

Then L(M′) = L(M)
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Example

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ
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Alternating vs. Sequential Time and Space
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Alternating vs. Sequential Time and Space

Theorem

APTIME = PSPACE

Proof.

1 We have already seen that Geography ∈ APTIME.
As Geography is PSPACE-complete,

PSPACE ⊆ APTIME.

2 APTIME ⊆ PSPACE follows from the following more general
result.

Lemma. For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n))
(explore config. tree of ATM of depth f (n))
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Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME
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Deterministic Space vs. Alternating Time

Lemma. For f (n) ≥ n we have DSPACE(f (n)) ⊆ ATIME(f 2(n)).

Proof. Let L be in DSPACE(f (n)) and M be an f (n)
space-bounded TM deciding L.

On input w , M makes at most 2O(f (n)) computation steps.

Alternating Algorithm. Reach(C1,C2, t)

Returns 1 if C2 is reachable from C1 in ≤ 2t steps.

Reach(C1,C2, t)
if t = 0 do

if C1 = C2 or C1 ` C2 do return 1 else return 0 od

else
existential step. choose configuration C with |C | ≤ O(f (n))

universal step. choose (D1,D2) = (C1,C) or (D1,D2) = (C ,C2)

return Reach(D1,D2, t − 1).
fi
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Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have
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The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

Intermediate between NP/co-NP and PSPACE:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn ϕ

Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn ϕ

Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn ϕ

etc.

 yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5
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The polynomial-time hierarchy

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn ϕ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...
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The polynomial-time hierarchy

diagram taken from Wikipedia

∆P
i+1 := PΣP

i

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!
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The polynomial-time hierarchy

Some key facts:

PH lies below PSPACE; if any problem is complete for PH, it
must belong to the k-th level of the hierarchy, and PH would
“collapse” to that level

If P is equal to NP, then PH would collapse to P

If NP is equal to co-NP, then PH collapses to that level.
(hints that NP 6= co-NP.)

(some proof details on board)
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