
Computational Complexity; slides 6, HT 2019
Space complexity

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2019

Paul Goldberg Space complexity 1 / 51

Road map

I mentioned classes like LOGSPACE (usually called L),
SPACE(f (n)) etc. How do they relate to each other, and time
complexity classes?

Next: Various inclusions can be proved, some more easy than
others; let’s begin with “low-hanging fruit”...

e.g., I have noted: TIME(f (n)) is a subset of SPACE(f (n)) (easy!)

We will see e.g. L is a proper subset of PSPACE, although it’s
unknown how they relate to various intermediate classes, e.g. P,
NP

Various interesting problems are complete for PSPACE, EXPTIME,
and some of the others.

Paul Goldberg Space complexity 2 / 51

Space Complexity

So far, we have measured the complexity of problems in terms of
the time required to solve them.

Alternatively, we can measure the space/memory required to
compute a solution.

Important difference: space can be re-used

Convention: In this section we will be using Turing machines with
a designated read only input tape. So, “logarithmic space”
becomes meaningful.

Paul Goldberg Space complexity 3 / 51

Space Complexity

So far, we have measured the complexity of problems in terms of
the time required to solve them.

Alternatively, we can measure the space/memory required to
compute a solution.

Important difference: space can be re-used

Convention: In this section we will be using Turing machines with
a designated read only input tape. So, “logarithmic space”
becomes meaningful.

Paul Goldberg Space complexity 3 / 51

Space Complexity

Definition. Let M be a Turing acceptor with designated input tape.

SPACEM(w): the maximum number of non-blank cells of the work
tapes during the computation of M on input w ∈ Σ∗.

Definition. Let M be a Turing accepter and S : N→ N a
monotone growing function.
M is S-space bounded if it halts on every input w ∈ Σ∗ and

SPACEM(w) ≤ S(|w |).

1 DSPACE(S) is the class of languages L for which there is an
S-space bounded k-tape deterministic Turing accepter
deciding L for some k ≥ 1.

2 NSPACE(S) is the class of languages L for which there is an
S-space bounded non-deterministic k-tape Turing accepter
deciding L for some k ≥ 1.

Paul Goldberg Space complexity 4 / 51

Space Complexity

Definition. Let M be a Turing acceptor with designated input tape.

SPACEM(w): the maximum number of non-blank cells of the work
tapes during the computation of M on input w ∈ Σ∗.

Definition. Let M be a Turing accepter and S : N→ N a
monotone growing function.
M is S-space bounded if it halts on every input w ∈ Σ∗ and

SPACEM(w) ≤ S(|w |).

1 DSPACE(S) is the class of languages L for which there is an
S-space bounded k-tape deterministic Turing accepter
deciding L for some k ≥ 1.

2 NSPACE(S) is the class of languages L for which there is an
S-space bounded non-deterministic k-tape Turing accepter
deciding L for some k ≥ 1.

Paul Goldberg Space complexity 4 / 51

Space Complexity Classes

Deterministic Classes:

LOGSPACE :=
⋃

d∈NDSPACE(d log n)

PSPACE :=
⋃

d∈NDSPACE(nd)

EXPSPACE :=
⋃

d∈NDSPACE(2nd)

Non-Deterministic versions: NLOGSPACE etc

Straightforward observation:

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE

⊆ ⊆ ⊆

NLOGSPACE ⊆ NPSPACE ⊆ NEXPSPACE

Paul Goldberg Space complexity 5 / 51

Elementary relationships between time and space

Easy observation:
For all functions f : N→ N:

DTIME(f) ⊆ DSPACE(f)

NTIME(f) ⊆ NSPACE(f)

A bit harder:
For all monotone growing functions f : N→ N:

DSPACE(f) ⊆ DTIME(2O(f))

NSPACE(f) ⊆ DTIME(2O(f))

Proof. Based on configuration graphs and a bound on the number of
possible configurations.

Build the configuration graph

 time 2O(f (n))

Find a path from the start to an accepting stop configuration.

 time 2O(f (n))

Paul Goldberg Space complexity 6 / 51

Elementary relationships between time and space

Easy observation:
For all functions f : N→ N:

DTIME(f) ⊆ DSPACE(f)

NTIME(f) ⊆ NSPACE(f)

A bit harder:
For all monotone growing functions f : N→ N:

DSPACE(f) ⊆ DTIME(2O(f))

NSPACE(f) ⊆ DTIME(2O(f))

Proof. Based on configuration graphs and a bound on the number of
possible configurations.

Build the configuration graph time 2O(f (n))

Find a path from the start to an accepting stop configuration.
 time 2O(f (n))

Paul Goldberg Space complexity 6 / 51

Number of Possible Configurations

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr) be a 1-tape Turing accepter.

(plus input tape)

Recall: Configuration of M is a triple (q, p, x) where

q ∈ Q is the current state,

p ∈ N is the head position, and

x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input to M, n := |w |
If M is f (n)-space bounded we can assume that p ≤ f (n) and
|x | ≤ f (n)

Hence, there are at most

|Γ|f (n) · f (n) · |Q| = 2O(f (n))

different configurations on inputs of length n.

Paul Goldberg Space complexity 7 / 51

Configuration Graphs

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr) be a 1-tape Turing accepter.

f (n) space bounded

Configuration graph G(M,w) of M on input w :
Directed graph with

Vertices: All possible configurations of M up to length f (|w |)
Edges: Edge (C1,C2) ∈ E (G(M,w)), if C1 `M C2

A computation of M on input w corresponds to a path in
G(M,w) from the start configuration to a stop configuration.

Hence, to test if M accepts input w ,

construct the configuration graph and

find a path from the start to an accepting stop configuration.

Paul Goldberg Space complexity 8 / 51

Basic relationships

Recall: L commonly denotes LOGSPACE; NL=NLOGSPACE

L

⊆

NL ⊆ P ⊆ PSPACE

⊆ ⊆

NP ⊆ NPSPACE ⊆ EXPTIME ⊆ EXPSPACE

⊆ ⊆

NEXPTIME⊆NEXPSPACE

Paul Goldberg Space complexity 9 / 51

Simulating non-deterministic computations with limited
space

Easy observation: SAT can be solved in linear space

Just try every possible assignment, one after another, reusing
space.

Consequence: NP ⊆ PSPACE
similarly, NEXPTIME is a subset of EXPSPACE

Generally, non-deterministic time f (n) allows O(f (n))
non-deterministic “guesses”; try them all one-by-one, in
lexicographic order, over-writing previous attempts.

Paul Goldberg Space complexity 10 / 51

Simulating non-deterministic computations with limited
space

Easy observation: SAT can be solved in linear space

Just try every possible assignment, one after another, reusing
space.

Consequence: NP ⊆ PSPACE
similarly, NEXPTIME is a subset of EXPSPACE

Generally, non-deterministic time f (n) allows O(f (n))
non-deterministic “guesses”; try them all one-by-one, in
lexicographic order, over-writing previous attempts.

Paul Goldberg Space complexity 10 / 51

So we can update the previous diagram

L

⊆

NL ⊆ P PSPACE

⊆ ⊆

NP

⊆

NPSPACE ⊆ EXPTIME EXPSPACE
⊆ ⊆

NEXPTIME

⊆

NEXPSPACE

By the time hierarchy theorem (coming up next), P (EXPTIME,
NP (NEXPTIME
By the space hierarchy theorem, NL (PSPACE,
PSPACE (EXPSPACE.

Paul Goldberg Space complexity 11 / 51

Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXPTIME.

Proof sketch: consider “time-bounded halting language”

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

Hf belongs to TIME((f (n))3): construct a universal TM that uses

“quadratic overhead” to simulate a step of M. (The theorem can

be strengthened by using a more economical UTM, but as stated

it’s good enough for P(EXPTIME.)

Next point: Hf 6∈ TIME(f (bn2c)).

Paul Goldberg Space complexity 12 / 51

Time Hierarchy theorem

Reminder:

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

To prove Hf 6∈ TIME(f (bn2c)):

Suppose MHf
decides Hf in time f (bn2c).

Define “diagonalising” machine:
Df (M) : if MHf

(〈M,M〉) = “yes” then “no” else “yes”

Does Df accept its own description? Contradiction!

Corollary

P is a proper subset of EXPTIME

Paul Goldberg Space complexity 13 / 51

Next: PSPACE-completeness and Quantified Boolean
Formulae

Paul Goldberg Space complexity 14 / 51

From polynomial space to linear space

Generic PSPACE-complete problem P1; fix p, a polynomial

Input: 〈M,w〉
Question: Does M accept w in space O(p(|w |))?

Linear space version P2:

Input: 〈M,w〉
Question: Does M accept w in space O(|w |)?

Easy theorem: P1 ≤p P2.
To reduce P1 to P2,

〈M,w〉 7→ 〈M,wbp(|w |)〉

where b denotes the blank symbol. That is, we can “pad” the
original input to give ourselves more space.

Paul Goldberg Space complexity 15 / 51

From polynomial space to linear space

Generic PSPACE-complete problem P1; fix p, a polynomial

Input: 〈M,w〉
Question: Does M accept w in space O(p(|w |))?

Linear space version P2:

Input: 〈M,w〉
Question: Does M accept w in space O(|w |)?

Easy theorem: P1 ≤p P2.
To reduce P1 to P2,

〈M,w〉 7→ 〈M,wbp(|w |)〉

where b denotes the blank symbol. That is, we can “pad” the
original input to give ourselves more space.

Paul Goldberg Space complexity 15 / 51

Savitch’s Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M
can accept w within 2p(n) steps.

Proof idea: predicate reachable(C ,C ′, i) is satisfied by
configurations C ,C ′ and integer i , provided C ′ is reachable from C
within 2i transitions (w.r.t M).

Note: reachable(C ,C ′, i) is satisfied provided there exists C ′′ such
that
reachable(C ,C ′′, i − 1) and reachable(C ′′,C ′, i − 1)

To check reachable(Cinit ,Caccept , p(n)), try for all configs C ′′:
reachable(Cinit ,C

′′, p(n)− 1) and reachable(C ′′,Caccept , p(n)− 1)

Which themselves are checked recursively. Depth of recursion is
p(n), need to remember at most p(n) configs at any time. We
may assume Caccept is unique.

Paul Goldberg Space complexity 16 / 51

Savitch’s Theorem

More generally:

Theorem. (Savitch 1970)
For all (space-constructible) S : N→ N such that S(n) ≥ log n,

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

In particular: PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

Paul Goldberg Space complexity 17 / 51

Quantified Boolean Formulae: Syntax

A Quantified Boolean Formula is a formula of the form

Q1X1 . . .QnXnϕ(X1, . . . ,Xn)

where

the Qi are quantifiers ∃ or ∀
ϕ is a CNF formula in the variables X1, . . . ,Xn and atoms 0
and 1

Example

∃X1∀X2∃X3∀X4∀X5

(
(X1 ∨ 0 ∨ ¬X5) ∧ (¬X2 ∨ 1 ∨ ¬X5) ∧ (X2 ∨

X3 ∨ X4)
)

Paul Goldberg Space complexity 18 / 51

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula ϕ is true if

ϕ does not contain any quantifiers (and hence no variables)

and it evaluates to true.

ϕ := ∃Xψ and ψ[X 7→ 0] or ψ[X 7→ 1] is true.

ϕ := ∀Xψ and both ψ[X 7→ 0] and ψ[X 7→ 1] are true.

Here ψ[X 7→ 1] is the formula obtained from ψ by replacing each
occurrence of a literal X by 1 and ¬X by 0. Analogously for
ψ[X 7→ 0].

Example

∀X1 ∀X2 ∃X3

(
(¬X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

)
is

true.

∃Y1 ∀Y2 ∀Y3

(
(Y1 ∨ ¬Y2 ∨ ¬Y3) ∧ (¬Y1 ∨ Y2 ∨ ¬Y3)

)
is

false.

Paul Goldberg Space complexity 19 / 51

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula ϕ is true if

ϕ does not contain any quantifiers (and hence no variables)

and it evaluates to true.

ϕ := ∃Xψ and ψ[X 7→ 0] or ψ[X 7→ 1] is true.

ϕ := ∀Xψ and both ψ[X 7→ 0] and ψ[X 7→ 1] are true.

Here ψ[X 7→ 1] is the formula obtained from ψ by replacing each
occurrence of a literal X by 1 and ¬X by 0. Analogously for
ψ[X 7→ 0].

Example

∀X1 ∀X2 ∃X3

(
(¬X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

)

is
true.

∃Y1 ∀Y2 ∀Y3

(
(Y1 ∨ ¬Y2 ∨ ¬Y3) ∧ (¬Y1 ∨ Y2 ∨ ¬Y3)

)
is

false.

Paul Goldberg Space complexity 19 / 51

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula ϕ is true if

ϕ does not contain any quantifiers (and hence no variables)

and it evaluates to true.

ϕ := ∃Xψ and ψ[X 7→ 0] or ψ[X 7→ 1] is true.

ϕ := ∀Xψ and both ψ[X 7→ 0] and ψ[X 7→ 1] are true.

Here ψ[X 7→ 1] is the formula obtained from ψ by replacing each
occurrence of a literal X by 1 and ¬X by 0. Analogously for
ψ[X 7→ 0].

Example

∀X1 ∀X2 ∃X3

(
(¬X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

)
is

true.

∃Y1 ∀Y2 ∀Y3

(
(Y1 ∨ ¬Y2 ∨ ¬Y3) ∧ (¬Y1 ∨ Y2 ∨ ¬Y3)

)

is

false.

Paul Goldberg Space complexity 19 / 51

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula ϕ is true if

ϕ does not contain any quantifiers (and hence no variables)

and it evaluates to true.

ϕ := ∃Xψ and ψ[X 7→ 0] or ψ[X 7→ 1] is true.

ϕ := ∀Xψ and both ψ[X 7→ 0] and ψ[X 7→ 1] are true.

Here ψ[X 7→ 1] is the formula obtained from ψ by replacing each
occurrence of a literal X by 1 and ¬X by 0. Analogously for
ψ[X 7→ 0].

Example

∀X1 ∀X2 ∃X3

(
(¬X1 ∨ ¬X2 ∨ X3) ∧ (¬X1 ∨ X2 ∨ ¬X3)

)
is

true.

∃Y1 ∀Y2 ∀Y3

(
(Y1 ∨ ¬Y2 ∨ ¬Y3) ∧ (¬Y1 ∨ Y2 ∨ ¬Y3)

)
is

false.

Paul Goldberg Space complexity 19 / 51

Quantified Boolean Formulae

Consider the following problem:

QBF
Input: A QBF formula ϕ.

Problem: Is ϕ true?

Observation: For any propositional formula ϕ:

ϕ is satisfiable if, and only if, ∃X1 . . . ∃Xnϕ is true.

X1, . . . ,Xn: Variables occurring in ϕ

Consequence: QBF is NP-hard.

Paul Goldberg Space complexity 20 / 51

Theorem: QBF is in PSPACE

Proof: Given ϕ := Q1X1 . . .QnXnψ, letting m := |ψ|
Eval-QBF(ϕ):

if n = 0 Accept if ψ evaluates to true. Reject otherwise.

if ϕ := ∃Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to true, accept.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

if ϕ := ∀Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to false, reject.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

Space complexity: Algorithm uses O(nm) tape cells.
(At depth d of recursion tree, remember d simplified versions of ϕ; can be
improved to O(n + m) by remembering ϕ and d bits...)

Paul Goldberg Space complexity 21 / 51

Theorem: QBF is in PSPACE

Proof: Given ϕ := Q1X1 . . .QnXnψ, letting m := |ψ|
Eval-QBF(ϕ):

if n = 0 Accept if ψ evaluates to true. Reject otherwise.

if ϕ := ∃Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to true, accept.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

if ϕ := ∀Xψ′

construct ϕ1 := ψ′[X 7→ 1]
if Eval-QBF(ϕ1) evaluates to false, reject.
else construct ϕ0 := ψ′[X 7→ 0] (reuse space in Eval-QBF(ϕ1))

return Eval-QBF(ϕ0)

Space complexity: Algorithm uses O(nm) tape cells.
(At depth d of recursion tree, remember d simplified versions of ϕ; can be
improved to O(n + m) by remembering ϕ and d bits...)

Paul Goldberg Space complexity 21 / 51

Theorem: QBF is NPSPACE-hard

Let L ∈ NPSPACE. We show L ≤p QBF.

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr) be a TM deciding L
such that M never uses more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct a formula ϕM,w

such that

M accepts w if, and only if, ϕM,w is true.

Describe configuration (q, p, a1 . . . ap(n)) by a set

V := {Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}
of variables and the truth assignment β defined as

β(Qs) :=
{

1 s = q
0 s 6= q β(Ps) :=

{
1 s = p
0 s 6= p β(Sa,i) :=

{
1 a = ai
0 a 6= ai

Paul Goldberg Space complexity 22 / 51

Theorem: QBF is NPSPACE-hard

Let L ∈ NPSPACE. We show L ≤p QBF.

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr) be a TM deciding L
such that M never uses more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct a formula ϕM,w

such that

M accepts w if, and only if, ϕM,w is true.

Describe configuration (q, p, a1 . . . ap(n)) by a set

V := {Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)}
of variables and the truth assignment β defined as

β(Qs) :=
{

1 s = q
0 s 6= q β(Ps) :=

{
1 s = p
0 s 6= p β(Sa,i) :=

{
1 a = ai
0 a 6= ai

Paul Goldberg Space complexity 22 / 51

NPSPACE-Hardness of QBF

Consider the following formula Conf(V) with free variables

V :=
{
Qq,Pi ,Sa,i : q ∈ Q, a ∈ Γ, 0 ≤ i < p(n)

}
Conf(V) :=

∨
q∈Q

(
Qq ∧

∧
q′ 6=q

¬Qq′

)
∧

∨
p≤p(n)

(
Pp ∧

∧
p′ 6=p

¬Pp′

)
∧

∧
1≤i≤p(n)

∨
a∈Γ

(
Sa,i ∧

∧
b 6=a∈Γ

¬Sb,i
)

Definition. For any truth assignment β of V define config(V, β) as{
(q, p,w1 . . .wp(n)) : β(Qq) = β(Pp) = β(Swi ,i) = 1,∀i ≤ p(n)

}
Lemma

If β satisfies Conf(V) then |config(V, β)| = 1.

Paul Goldberg Space complexity 23 / 51

NPSPACE-hardness of QBF

Definition. For an assignment β of V we defined config(V, β) as{
(q, p,w1 . . .wp(n)) : β(Qq) = β(Pp) = β(Swi ,i) = 1,∀i ≤ p(n)

}
Lemma

If β satisfies Conf(V) then |config(V, β)| = 1.

Remark. β may be defined on other variables than those in V.

config(V, β) is a potential configuration of M, but it may not be
reachable from the start configuration of M on input w .

Conversely: Every configuration (q, p,w1 . . .wp(n)) induces a
satisfying assignment.

Paul Goldberg Space complexity 24 / 51

NPSPACE-Hardness of QBF

Consider the following formula Next(V,V ′) defined as

Conf(V) ∧Conf(V ′) ∧Nochange(V,V ′) ∧Change(V,V ′).

Nochange :=
∨

1≤p≤p(n)

Pp ∧
(∧

i 6=p
a∈Γ

(Sa,i ↔ S ′a,i)
)

Change :=
∨

1≤p≤p(n)

(
Pp ∧

∨
q∈Q
a∈Γ

(
Qq ∧ Sa,p ∧

∨
(q,a,q′,b,m)∈∆

(Q ′q′ ∧ S ′b,p ∧ P ′“p + m”)
))

Lemma

For any assignment β defined on V,V ′:
β satisfies Next(V,V ′) ⇐⇒ config(V, β) `M config(V ′, β)

Paul Goldberg Space complexity 25 / 51

NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(((Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.

Paul Goldberg Space complexity 26 / 51

NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]

Problem: |Pathi | = O(2i) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(((Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.

Paul Goldberg Space complexity 26 / 51

NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(((Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.

Paul Goldberg Space complexity 26 / 51

NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(((Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.

Paul Goldberg Space complexity 26 / 51

NPSPACE-hardness of QBF

Define Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

For i = 0: Path0 := V1 = V2 ∨ Next(V1,V2)

For i → i + 1:

Idea: Pathi+1(V1,V2) := ∃V
[
Conf(V) ∧ Pathi (V1,V) ∧ Pathi (V,V2)

]
Problem: |Pathi | = O(2i) (Reduction would use exp. time/space)

New Idea:
Pathi+1(V1,V2) := ∃V Conf(V) ∧

∀Z1∀Z2

(((Z1 = V1 ∧ Z2 = V)
(Z1 = V ∧ Z2 = V2) ∨

)
→ Pathi (Z1,Z2)

)

Lemma

For any assignment β defined on V1,V2: If β satisfies Pathi (V1,V2), then
config(V2, β) is reachable from config(V1, β) in ≤ 2i steps.

Paul Goldberg Space complexity 26 / 51

NPSPACE-hardness of QBF

Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

Start and end configuration:

Start(V) := Conf(V) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi ,i ∧
∧p(n)

i=n S�,i

End(V) := Conf(V) ∧ ∨q∈Fa
Qq

Lemma

Let Cstart of M on input w .

1 β satisfies Start if, and only if, config(V, β) = Cstart

2 β satisfies End if, and only if, config(V, β) is an accepting
stop configuration. (may not be reachable from Cstart)

Putting it all together: M accepts w if, and only if,

ϕM,w := ∃V1 ∃V2 Start(V1) ∧End(V2) ∧Pathp(n)(V1,V2) is true.

Paul Goldberg Space complexity 27 / 51

NPSPACE-hardness of QBF

Pathi (V1,V2):

M starting on config(V1, β) can reach config(V2, β) in ≤ 2i steps.

Start and end configuration:

Start(V) := Conf(V) ∧ Qq0 ∧ P0 ∧
∧n−1

i=0 Swi ,i ∧
∧p(n)

i=n S�,i

End(V) := Conf(V) ∧ ∨q∈Fa
Qq

Lemma

Let Cstart of M on input w .

1 β satisfies Start if, and only if, config(V, β) = Cstart

2 β satisfies End if, and only if, config(V, β) is an accepting
stop configuration. (may not be reachable from Cstart)

Putting it all together: M accepts w if, and only if,

ϕM,w := ∃V1 ∃V2 Start(V1) ∧End(V2) ∧Pathp(n)(V1,V2) is true.

Paul Goldberg Space complexity 27 / 51

NPSPACE-hardness of QBF (to conclude)

Theorem

QBF is NPSPACE-hard.

Proof. Let L ∈ NPSPACE, we show L ≤p QBF.

Let M := (Q,Σ, q0,∆,Fa,Fr) be a TM deciding L. M never uses
more than p(n) cells.

For each input w ∈ Σ∗, |w | = n, we construct (in poly time!) a
formula ϕM,w such that

M accepts w if, and only if, ϕM,w is true.

Glossed over some detail: ϕM,w is not in prenex form, can be
manipulated into that. Also, quantifiers don’t alternate
∀/∃/∀/∃ . . .; that also can be fixed...

Paul Goldberg Space complexity 28 / 51

Alternation, Games

Paul Goldberg Space complexity 29 / 51

The Formula Game

Players: Played by two Players ∃ and ∀

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

Moves: Players take turns in assigning truth values to X1, . . . ,Xn in
order.

That is, player ∃ assigns values to ”odd” variables X1,X3, . . .

Winning condition: After all variables have been instantiated, ∃
wins if the formula evaluates to true. Otherwise ∀ wins.

Formula Game
Input: A CNF formula ϕ in the variables X1, . . . ,Xn

Problem: Does ∃ have a winning strategy in the game on ϕ?

Theorem. Formula Game is PSPACE-complete.

Paul Goldberg Space complexity 30 / 51

The Formula Game

Players: Played by two Players ∃ and ∀

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

Moves: Players take turns in assigning truth values to X1, . . . ,Xn in
order.

That is, player ∃ assigns values to ”odd” variables X1,X3, . . .

Winning condition: After all variables have been instantiated, ∃
wins if the formula evaluates to true. Otherwise ∀ wins.

Formula Game
Input: A CNF formula ϕ in the variables X1, . . . ,Xn

Problem: Does ∃ have a winning strategy in the game on ϕ?

Theorem. Formula Game is PSPACE-complete.
Paul Goldberg Space complexity 30 / 51

Geography

A generalised version of Geography:

The board is a directed graph G and a start node s ∈ V (G)

Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.

If a player cannot move except to a node visited before, he loses.

Geography
Input: Directed graph G , start node s ∈ V (G)

Problem: Does Player 1 have a winning strategy?

Theorem. Geography is PSPACE-complete.

(see blackboard or Sipser Theorem 8.14)

Paul Goldberg Space complexity 31 / 51

Geography

A generalised version of Geography:

The board is a directed graph G and a start node s ∈ V (G)

Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.

If a player cannot move except to a node visited before, he loses.

Geography
Input: Directed graph G , start node s ∈ V (G)

Problem: Does Player 1 have a winning strategy?

Theorem. Geography is PSPACE-complete.

(see blackboard or Sipser Theorem 8.14)

Paul Goldberg Space complexity 31 / 51

Alternating Turing Machines

Paul Goldberg Space complexity 32 / 51

Alternating Turing Machines

Definition. An alternating Turing machine M is a
non-deterministic Turing accepter whose set of non-final states is
partitioned into existential and universal states.

Q∃: set of existential states Q∀: set of universal states

Acceptance: Consider the computation tree T of M on w

A configuration C in T is eventually accepting if

C is an accepting stop configuration, i.e. an accepting leaf of
T
C = (q, p,w) with q ∈ Q∃ and there is at least one eventually
accepting successor configuration in T
C = (q, p,w) with q ∈ Q∀ and all successor configurations of
C in T are eventually accepting

M accepts w if the start configuration on w is eventually
accepting.

Paul Goldberg Space complexity 33 / 51

Alternating Turing Machines

Definition. An alternating Turing machine M is a
non-deterministic Turing accepter whose set of non-final states is
partitioned into existential and universal states.

Q∃: set of existential states Q∀: set of universal states

Acceptance: Consider the computation tree T of M on w

A configuration C in T is eventually accepting if

C is an accepting stop configuration, i.e. an accepting leaf of
T
C = (q, p,w) with q ∈ Q∃ and there is at least one eventually
accepting successor configuration in T
C = (q, p,w) with q ∈ Q∀ and all successor configurations of
C in T are eventually accepting

M accepts w if the start configuration on w is eventually
accepting.

Paul Goldberg Space complexity 33 / 51

Example: Alternating Algorithm for Geography

Input: Directed graph G s ∈ V (G) start node.

Set Visited := {s} Mark s as current node.

repeat

existential move: choose successor v 6∈ Visited of current node s

if not possible then reject.
Visited := Visited ∪ {v}
set current node s := v

universal move: choose successor v 6∈ Visited of current node s

if not possible then accept.
Visited := Visited ∪ {v}
set current node s := v

Note. This algorithm runs in alternating polynomial time.

Paul Goldberg Space complexity 34 / 51

Alternation as Model for Parallelism

Alternation can be seen as a form of parallelism:

universal move: choose successor v 6∈ Visited of current node s

parallel computation:
in parallel, try for all successors v 6∈ Visited of current node s

Universal moves are one possible way of modelling parallel
computation.

Paul Goldberg Space complexity 35 / 51

Basic definitions of alternating time/space complexity

L(M) denotes words (in Σ∗) accepted by M.

For function T : N→ N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after
≤ T (n) steps.

Analogously for T space-bounded.

For T : N→ N a monotone growing function, define

1 ATIME(T) as the class of languages L for which there is a
T -time bounded k-tape alternating Turing accepter deciding
L, k ≥ 1.

2 ASPACE(T) as the class of languages L for which there is a
T -space bounded alternating k-tape Turing accepter deciding
L, k ≥ 1.

Paul Goldberg Space complexity 36 / 51

Basic definitions of alternating time/space complexity

L(M) denotes words (in Σ∗) accepted by M.

For function T : N→ N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after
≤ T (n) steps.

Analogously for T space-bounded.

For T : N→ N a monotone growing function, define

1 ATIME(T) as the class of languages L for which there is a
T -time bounded k-tape alternating Turing accepter deciding
L, k ≥ 1.

2 ASPACE(T) as the class of languages L for which there is a
T -space bounded alternating k-tape Turing accepter deciding
L, k ≥ 1.

Paul Goldberg Space complexity 36 / 51

Alternating Complexity Classes:

Time classes:

APTIME :=
⋃

d∈N ATIME(nd) alternating poly time

AEXPTIME :=
⋃

d∈N ATIME(2n
d
) alternating exp. time

2-AEXPTIME :=
⋃

d∈N ATIME(22n
d

)

Space classes:

ALOGSPACE :=
⋃

d∈N ASPACE(d log n)

APSPACE :=
⋃

d∈N ASPACE(nd)

AEXPSPACE :=
⋃

d∈N ASPACE(2n
d
)

Examples.

Geography ∈ APTIME.

Monotone CVP (coming up next) ∈ ALOGSPACE.
Similar alg.: CVP ∈ ALOGSPACE.

Paul Goldberg Space complexity 37 / 51

Example: Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex
of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.

Space Complexity and Hierarchy Theorems Alternation

EXAMPLE: CIRCUIT VALUE PROBLEM

Circuit.
A connected dir. acyclic graph with exactly one vertex of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.
∧

∨ ∨

0 ∧ ∧ 0

1 ¬ ¬ 0

0 1

Ian Horrocks Computational Complexity 40/113

Paul Goldberg Space complexity 38 / 51

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

v is a leaf labelled by 1

v is a node labelled by ∨ and one successor evaluates to 1

v is a node labelled by ¬ and its successor evaluates to 0

v is a node labelled by ∧ and both successors evaluate to 1

C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input: Circuit C

Problem: Does C evaluate to 1?

Monotone Circuit Value Problem.

Monotone CVP
Input: Monotone circuit C without negation ¬.

Problem: Does C evaluate to 1?

Paul Goldberg Space complexity 39 / 51

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

v is a leaf labelled by 1

v is a node labelled by ∨ and one successor evaluates to 1

v is a node labelled by ¬ and its successor evaluates to 0

v is a node labelled by ∧ and both successors evaluate to 1

C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input: Circuit C

Problem: Does C evaluate to 1?

Monotone Circuit Value Problem.

Monotone CVP
Input: Monotone circuit C without negation ¬.

Problem: Does C evaluate to 1?

Paul Goldberg Space complexity 39 / 51

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.

while Current is not a leaf do

if current node v is a ∨-node then

existential move: choose successor v ′ of v

else if current node v is a ∧-node then

universal move: choose successor v ′ of v

end if

set current node Current := v ′

if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space.

Paul Goldberg Space complexity 40 / 51

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.

while Current is not a leaf do

if current node v is a ∨-node then

existential move: choose successor v ′ of v

else if current node v is a ∧-node then

universal move: choose successor v ′ of v

end if

set current node Current := v ′

if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space.

Paul Goldberg Space complexity 40 / 51

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then L′ ∈ ATIME(T).

Hence: PSPACE ⊆ APTIME

(As Geography ∈ APTIME.)

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M′ be obtained from M by swapping

the accepting and rejecting state

swapping existential and universal states.

Then L(M′) = L(M)

Paul Goldberg Space complexity 41 / 51

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then L′ ∈ ATIME(T).

Hence: PSPACE ⊆ APTIME

(As Geography ∈ APTIME.)

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M′ be obtained from M by swapping

the accepting and rejecting state

swapping existential and universal states.

Then L(M′) = L(M)

Paul Goldberg Space complexity 41 / 51

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then L′ ∈ ATIME(T).

Hence: PSPACE ⊆ APTIME

(As Geography ∈ APTIME.)

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M′ be obtained from M by swapping

the accepting and rejecting state

swapping existential and universal states.

Then L(M′) = L(M)
Paul Goldberg Space complexity 41 / 51

Example

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg Space complexity 42 / 51

Example

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg Space complexity 42 / 51

Example

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg Space complexity 42 / 51

Alternating vs. Sequential Time and Space

Paul Goldberg Space complexity 43 / 51

Alternating vs. Sequential Time and Space

Theorem

APTIME = PSPACE

Proof.

1 We have already seen that Geography ∈ APTIME.
As Geography is PSPACE-complete,

PSPACE ⊆ APTIME.

2 APTIME ⊆ PSPACE follows from the following more general
result.

Lemma. For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n))
(explore config. tree of ATM of depth f (n))

Paul Goldberg Space complexity 44 / 51

Alternating vs. Sequential Time and Space

Theorem

APTIME = PSPACE

Proof.

1 We have already seen that Geography ∈ APTIME.
As Geography is PSPACE-complete,

PSPACE ⊆ APTIME.

2 APTIME ⊆ PSPACE follows from the following more general
result.

Lemma. For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n))
(explore config. tree of ATM of depth f (n))

Paul Goldberg Space complexity 44 / 51

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg Space complexity 45 / 51

Deterministic Space vs. Alternating Time

Lemma. For f (n) ≥ n we have DSPACE(f (n)) ⊆ ATIME(f 2(n)).

Proof. Let L be in DSPACE(f (n)) and M be an f (n)
space-bounded TM deciding L.

On input w , M makes at most 2O(f (n)) computation steps.

Alternating Algorithm. Reach(C1,C2, t)

Returns 1 if C2 is reachable from C1 in ≤ 2t steps.

Reach(C1,C2, t)
if t = 0 do

if C1 = C2 or C1 ` C2 do return 1 else return 0 od

else
existential step. choose configuration C with |C | ≤ O(f (n))

universal step. choose (D1,D2) = (C1,C) or (D1,D2) = (C ,C2)

return Reach(D1,D2, t − 1).
fi

Paul Goldberg Space complexity 46 / 51

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg Space complexity 47 / 51

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg Space complexity 47 / 51

The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

Intermediate between NP/co-NP and PSPACE:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn ϕ

Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn ϕ

Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn ϕ

etc.

 yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5

Paul Goldberg Space complexity 48 / 51

The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

Intermediate between NP/co-NP and PSPACE:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn ϕ

Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn ϕ

Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn ϕ

etc.

 yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5

Paul Goldberg Space complexity 48 / 51

The polynomial-time hierarchy

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn ϕ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...

Paul Goldberg Space complexity 49 / 51

The polynomial-time hierarchy

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn ϕ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...

Paul Goldberg Space complexity 49 / 51

The polynomial-time hierarchy

diagram taken from Wikipedia

∆P
i+1 := PΣP

i

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!

Paul Goldberg Space complexity 50 / 51

The polynomial-time hierarchy

diagram taken from Wikipedia

∆P
i+1 := PΣP

i

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!

Paul Goldberg Space complexity 50 / 51

The polynomial-time hierarchy

Some key facts:

PH lies below PSPACE; if any problem is complete for PH, it
must belong to the k-th level of the hierarchy, and PH would
“collapse” to that level

If P is equal to NP, then PH would collapse to P

If NP is equal to co-NP, then PH collapses to that level.
(hints that NP 6= co-NP.)

(some proof details on board)

Paul Goldberg Space complexity 51 / 51

