Computational Complexity; slides 6, HT 2019 Space complexity

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Road map

I mentioned classes like LOGSPACE (usually called L), $\operatorname{SPACE}(f(n))$ etc. How do they relate to each other, and time complexity classes?

Next: Various inclusions can be proved, some more easy than others; let's begin with "low-hanging fruit"...
e.g., I have noted: $\operatorname{TIME}(f(n))$ is a subset of $\operatorname{SPACE}(f(n))$ (easy!)

We will see e.g. L is a proper subset of PSPACE, although it's unknown how they relate to various intermediate classes, e.g. P, NP

Various interesting problems are complete for PSPACE, EXPTIME, and some of the others.

Space Complexity

So far, we have measured the complexity of problems in terms of the time required to solve them.

Alternatively, we can measure the space/memory required to compute a solution.

Important difference: space can be re-used

Space Complexity

So far, we have measured the complexity of problems in terms of the time required to solve them.

Alternatively, we can measure the space/memory required to compute a solution.

Important difference: space can be re-used

Convention: In this section we will be using Turing machines with a designated read only input tape. So, "logarithmic space" becomes meaningful.

Space Complexity

Definition. Let \mathcal{M} be a Turing acceptor with designated input tape. $\operatorname{SPACE}_{\mathcal{M}}(w)$: the maximum number of non-blank cells of the work tapes during the computation of \mathcal{M} on input $w \in \Sigma^{*}$.

Space Complexity

Definition. Let \mathcal{M} be a Turing acceptor with designated input tape. SPACE $_{\mathcal{M}}(w)$: the maximum number of non-blank cells of the work tapes during the computation of \mathcal{M} on input $w \in \Sigma^{*}$.

Definition. Let \mathcal{M} be a Turing accepter and $S: \mathbb{N} \rightarrow \mathbb{N}$ a monotone growing function.
\mathcal{M} is S-space bounded if it halts on every input $w \in \Sigma^{*}$ and

$$
\operatorname{SPACE}_{\mathcal{M}}(w) \leq S(|w|)
$$

(1) $\operatorname{DSPACE}(S)$ is the class of languages \mathcal{L} for which there is an S-space bounded k-tape deterministic Turing accepter deciding \mathcal{L} for some $k \geq 1$.
(2) $\operatorname{NSPACE}(S)$ is the class of languages \mathcal{L} for which there is an S-space bounded non-deterministic k-tape Turing accepter deciding \mathcal{L} for some $k \geq 1$.

Space Complexity Classes

- Deterministic Classes:
- LOGSPACE := $\bigcup_{d \in \mathbb{N}} \operatorname{DSPACE}(d \log n)$
- PSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{DSPACE}\left(n^{d}\right)$
- EXPSPACE := $\bigcup_{d \in \mathbb{N}} \operatorname{DSPACE}\left(2^{n^{d}}\right)$
- Non-Deterministic versions: NLOGSPACE etc

Straightforward observation:
LOGSPACE \subseteq PSPACE \subseteq EXPSPACE $1 \cap$

NLOGSPACE \subseteq NPSPACE \subseteq NEXPSPACE

Elementary relationships between time and space

Easy observation:
For all functions $f: \mathbb{N} \rightarrow \mathbb{N}$:
$\operatorname{DTIME}(f) \subseteq \operatorname{DSPACE}(f)$
$\operatorname{NTIME}(f) \subseteq \operatorname{NSPACE}(f)$

A bit harder:
For all monotone growing functions $f: \mathbb{N} \rightarrow \mathbb{N}$:
> $\operatorname{DSPACE}(f) \subseteq \operatorname{DTIME}\left(2^{\mathcal{O}(f)}\right)$
> $\operatorname{NSPACE}(f) \subseteq \operatorname{DTIME}\left(2^{\mathcal{O}(f)}\right)$

Elementary relationships between time and space

Easy observation:
For all functions $f: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{array}{lll}
\operatorname{DTIME}(f) & \subseteq \operatorname{DSPACE}(f) \\
\operatorname{NTIME}(f) & \subseteq \operatorname{NSPACE}(f)
\end{array}
$$

A bit harder:
For all monotone growing functions $f: \mathbb{N} \rightarrow \mathbb{N}$:

$$
\begin{aligned}
\operatorname{DSPACE}(f) & \subseteq \operatorname{DTIME}\left(2^{\mathcal{O}(f)}\right) \\
\operatorname{NSPACE}(f) & \subseteq \operatorname{DTIME}\left(2^{\mathcal{O}(f)}\right)
\end{aligned}
$$

Proof. Based on configuration graphs and a bound on the number of possible configurations.

- Build the configuration graph
\rightsquigarrow time $2^{\mathcal{O}(f(n))}$
- Find a path from the start to an accepting stop configuration.
\rightsquigarrow time $2^{\mathcal{O}(f(n))}$

Number of Possible Configurations

Let $\mathcal{M}:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a 1-tape Turing accepter. (plus input tape)

Recall: Configuration of \mathcal{M} is a triple (q, p, x) where

- $q \in Q$ is the current state,
- $p \in \mathbb{N}$ is the head position, and
- $x \in \Gamma^{*}$ is the tape content.

Let $w \in \Sigma^{*}$ be an input to $\mathcal{M}, n:=|w|$
If \mathcal{M} is $f(n)$-space bounded we can assume that $p \leq f(n)$ and $|x| \leq f(n)$

Hence, there are at most

$$
|\Gamma|^{f(n)} \cdot f(n) \cdot|Q|=2^{\mathcal{O}(f(n))}
$$

different configurations on inputs of length n.

Configuration Graphs

Let $\mathcal{M}:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a 1-tape Turing accepter. $f(n)$ space bounded

Configuration graph $\mathcal{G}(\mathcal{M}, w)$ of \mathcal{M} on input w : Directed graph with
Vertices: All possible configurations of \mathcal{M} up to length $f(|w|)$
Edges: Edge $\left(C_{1}, C_{2}\right) \in E(\mathcal{G}(\mathcal{M}, w))$, if $C_{1} \vdash_{\mathcal{M}} C_{2}$
A computation of \mathcal{M} on input w corresponds to a path in $\mathcal{G}(\mathcal{M}, w)$ from the start configuration to a stop configuration. Hence, to test if \mathcal{M} accepts input w,

- construct the configuration graph and
- find a path from the start to an accepting stop configuration.

Basic relationships

Recall: L commonly denotes LOGSPACE; NL=NLOGSPACE

L
in
$N L \subseteq P \subseteq P S P A C E$

$N P \subseteq$ NPSPACE $\subseteq E X P T I M E \subseteq E X P S P A C E$
$i \cap \quad i \cap$
NEXPTIME \subseteq NEXPSPACE

Simulating non-deterministic computations with limited space

Easy observation: SAT can be solved in linear space Just try every possible assignment, one after another, reusing space.

Easy observation: SAT can be solved in linear space
Just try every possible assignment, one after another, reusing space.

Consequence: NP \subseteq PSPACE
similarly, NEXPTIME is a subset of EXPSPACE
Generally, non-deterministic time $f(n)$ allows $O(f(n))$ non-deterministic "guesses"; try them all one-by-one, in lexicographic order, over-writing previous attempts.

So we can update the previous diagram

$$
\begin{aligned}
& \text { L } \\
& \text { in } \\
& \mathrm{NL} \subseteq \mathrm{P} \quad \mathrm{PSPACE} \\
& \text { in } C, \quad \text { in } \\
& \text { NP NPSPACE } \subseteq \text { EXPTIME EXPSPACE } \\
& \text { in } \quad \text {, } \quad \text { in }
\end{aligned}
$$

NEXPTIME NEXPSPACE

By the time hierarchy theorem (coming up next), $\mathrm{P} \subsetneq$ EXPTIME, NP \subsetneq NEXPTIME
By the space hierarchy theorem, NL \subsetneq PSPACE, PSPACE $\subsetneq ~ E X P S P A C E . ~$

Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be computed by a TM in time $f(n)+n$

For $f(n) \geq n$ a proper complexity function, we have $\operatorname{TIME}(f(n))$ is a proper subset of $\operatorname{TIME}\left((f(2 n+1))^{3}\right)$.

It follows that P is a proper subset of EXPTIME.
Proof sketch: consider "time-bounded halting language"

$$
H_{f}:=\{\langle M, w\rangle: M \text { accepts } w \text { after } \leq f(|w|) \text { steps }\}
$$

H_{f} belongs to $\operatorname{TIME}\left((f(n))^{3}\right)$: construct a universal TM that uses "quadratic overhead" to simulate a step of M. (The theorem can be strengthened by using a more economical UTM, but as stated it's good enough for $\mathrm{P} \subsetneq$ EXPTIME.)

Next point: $H_{f} \notin \operatorname{TIME}\left(f\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right)$.

Time Hierarchy theorem

Reminder:

$$
H_{f}:=\{\langle M, w\rangle: M \text { accepts } w \text { after } \leq f(|w|) \text { steps }\}
$$

To prove $H_{f} \notin \operatorname{TIME}\left(f\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right)$:

- Suppose $M_{H_{f}}$ decides H_{f} in time $f\left(\left\lfloor\frac{n}{2}\right\rfloor\right)$.
- Define "diagonalising" machine: $D_{f}(M)$: if $M_{H_{f}}(\langle M, M\rangle)=$ "yes" then "no" else "yes"
- Does D_{f} accept its own description? Contradiction!

Corollary

P is a proper subset of EXPTIME

Next: PSPACE-completeness and Quantified Boolean Formulae

From polynomial space to linear space

Generic PSPACE-complete problem P_{1}; fix p, a polynomial
Input: $\langle M, w\rangle$
Question: Does M accept w in space $O(p(|w|))$?

Linear space version P_{2} :
Input: $\langle M, w\rangle$
Question: Does M accept w in space $O(|w|)$?

From polynomial space to linear space

Generic PSPACE-complete problem P_{1}; fix p, a polynomial
Input: $\langle M, w\rangle$
Question: Does M accept w in space $O(p(|w|))$?

Linear space version P_{2} :
Input: $\langle M, w\rangle$
Question: Does M accept w in space $O(|w|)$?
Easy theorem: $P_{1} \leq_{p} P_{2}$.
To reduce P_{1} to P_{2},

$$
\langle M, w\rangle \mapsto\left\langle M, w \mathrm{~b}^{p(|w|)}\right\rangle
$$

where b denotes the blank symbol. That is, we can "pad" the original input to give ourselves more space.

Savitch's Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M can accept w within $2^{p(n)}$ steps.

Proof idea: predicate reachable $\left(C, C^{\prime}, i\right)$ is satisfied by configurations C, C^{\prime} and integer i, provided C^{\prime} is reachable from C within 2^{i} transitions (w.r.t M).

Note: reachable $\left(C, C^{\prime}, i\right)$ is satisfied provided there exists $C^{\prime \prime}$ such that
reachable $\left(C, C^{\prime \prime}, i-1\right)$ and reachable $\left(C^{\prime \prime}, C^{\prime}, i-1\right)$
To check reachable $\left(C_{\text {init }}, C_{\text {accept }}, p(n)\right)$, try for all configs $C^{\prime \prime}$: reachable $\left(C_{\text {init }}, C^{\prime \prime}, p(n)-1\right)$ and reachable ($\left.C^{\prime \prime}, C_{\text {accept }}, p(n)-1\right)$

Which themselves are checked recursively. Depth of recursion is $p(n)$, need to remember at most $p(n)$ configs at any time. We may assume $C_{\text {accept }}$ is unique.

Savitch's Theorem

More generally:
Theorem.
(Savitch 1970)
For all (space-constructible) $S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(n) \geq \log n$, $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{DSPACE}\left(S(n)^{2}\right)$.

In particular: $\mathrm{PSPACE}=$ NPSPACE EXPSPACE $=$ NEXPSPACE

Quantified Boolean Formulae: Syntax

A Quantified Boolean Formula is a formula of the form

$$
Q_{1} X_{1} \ldots Q_{n} X_{n} \varphi\left(X_{1}, \ldots, X_{n}\right)
$$

where

- the Q_{i} are quantifiers \exists or \forall
- φ is a CNF formula in the variables X_{1}, \ldots, X_{n} and atoms 0 and 1

Example

$\exists X_{1} \forall X_{2} \exists X_{3} \forall X_{4} \forall X_{5}\left(\left(X_{1} \vee 0 \vee \neg X_{5}\right) \wedge\left(\neg X_{2} \vee 1 \vee \neg X_{5}\right) \wedge\left(X_{2} \vee\right.\right.$ $\left.X_{3} \vee X_{4}\right)$)

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula φ is true if

- φ does not contain any quantifiers (and hence no variables) and it evaluates to true.
- $\varphi:=\exists X \psi$ and $\psi[X \mapsto 0]$ or $\psi[X \mapsto 1]$ is true.
- $\varphi:=\forall X \psi$ and both $\psi[X \mapsto 0]$ and $\psi[X \mapsto 1]$ are true.

Here $\psi[X \mapsto 1]$ is the formula obtained from ψ by replacing each occurrence of a literal X by 1 and $\neg X$ by 0 . Analogously for $\psi[X \mapsto 0]$.

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula φ is true if

- φ does not contain any quantifiers (and hence no variables) and it evaluates to true.
- $\varphi:=\exists X \psi$ and $\psi[X \mapsto 0]$ or $\psi[X \mapsto 1]$ is true.
- $\varphi:=\forall X \psi$ and both $\psi[X \mapsto 0]$ and $\psi[X \mapsto 1]$ are true.

Here $\psi[X \mapsto 1]$ is the formula obtained from ψ by replacing each occurrence of a literal X by 1 and $\neg X$ by 0 . Analogously for $\psi[X \mapsto 0]$.

Example

$\forall X_{1} \forall X_{2} \exists X_{3} \quad\left(\left(\neg X_{1} \vee \neg X_{2} \vee X_{3}\right) \quad \wedge \quad\left(\neg X_{1} \vee X_{2} \vee \neg X_{3}\right)\right)$

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula φ is true if

- φ does not contain any quantifiers (and hence no variables) and it evaluates to true.
- $\varphi:=\exists X \psi$ and $\psi[X \mapsto 0]$ or $\psi[X \mapsto 1]$ is true.
- $\varphi:=\forall X \psi$ and both $\psi[X \mapsto 0]$ and $\psi[X \mapsto 1]$ are true.

Here $\psi[X \mapsto 1]$ is the formula obtained from ψ by replacing each occurrence of a literal X by 1 and $\neg X$ by 0 . Analogously for $\psi[X \mapsto 0]$.

Example

$\forall X_{1} \forall X_{2} \exists X_{3} \quad\left(\left(\neg X_{1} \vee \neg X_{2} \vee X_{3}\right) \quad \wedge \quad\left(\neg X_{1} \vee X_{2} \vee \neg X_{3}\right)\right)$ is true.
$\exists Y_{1} \forall Y_{2} \forall Y_{3} \quad\left(\left(Y_{1} \vee \neg Y_{2} \vee \neg Y_{3}\right) \quad \wedge \quad\left(\neg Y_{1} \vee Y_{2} \vee \neg Y_{3}\right)\right)$

Quantified Boolean Formulae: Semantics

Definition. A quantified boolean formula φ is true if

- φ does not contain any quantifiers (and hence no variables) and it evaluates to true.
- $\varphi:=\exists X \psi$ and $\psi[X \mapsto 0]$ or $\psi[X \mapsto 1]$ is true.
- $\varphi:=\forall X \psi$ and both $\psi[X \mapsto 0]$ and $\psi[X \mapsto 1]$ are true.

Here $\psi[X \mapsto 1]$ is the formula obtained from ψ by replacing each occurrence of a literal X by 1 and $\neg X$ by 0 . Analogously for $\psi[X \mapsto 0]$.

Example

$\forall X_{1} \forall X_{2} \exists X_{3} \quad\left(\left(\neg X_{1} \vee \neg X_{2} \vee X_{3}\right) \quad \wedge \quad\left(\neg X_{1} \vee X_{2} \vee \neg X_{3}\right)\right)$ is true.
$\exists Y_{1} \forall Y_{2} \forall Y_{3} \quad\left(\left(Y_{1} \vee \neg Y_{2} \vee \neg Y_{3}\right) \quad \wedge \quad\left(\neg Y_{1} \vee Y_{2} \vee \neg Y_{3}\right)\right)$ is false.

Quantified Boolean Formulae

Consider the following problem:

$$
\begin{aligned}
& \text { QBF } \\
& \text { Input: } \\
& \text { Problem: } \mathrm{I} \text { QBF formula } \varphi \text { true? }
\end{aligned}
$$

Observation: For any propositional formula φ :
φ is satisfiable if, and only if, $\exists X_{1} \ldots \exists X_{n} \varphi$ is true.
X_{1}, \ldots, X_{n} : Variables occurring in φ
Consequence: QBF is NP-hard.

Proof: Given $\varphi:=Q_{1} X_{1} \ldots Q_{n} X_{n} \psi$, letting $m:=|\psi|$
Eval-QBF (φ) :
if $n=0$ Accept if ψ evaluates to true. Reject otherwise.
if $\varphi:=\exists X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to true, accept.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$
if $\varphi:=\forall X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to false, reject.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$

Theorem: QBF is in PSPACE

Proof: Given $\varphi:=Q_{1} X_{1} \ldots Q_{n} X_{n} \psi$, letting $m:=|\psi|$
Eval-QBF(φ):
if $n=0$ Accept if ψ evaluates to true. Reject otherwise.
if $\varphi:=\exists X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to true, accept.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$
if $\varphi:=\forall X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to false, reject.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$

Space complexity: Algorithm uses $\mathcal{O}(\mathrm{nm})$ tape cells.
(At depth d of recursion tree, remember d simplified versions of φ; can be improved to $\mathcal{O}(n+m)$ by remembering φ and d bits...)

Theorem: QBF is NPSPACE-hard

Let $\mathcal{L} \in$ NPSPACE. We show $\mathcal{L} \leq_{p}$ QBF.
Let $\mathcal{M}:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding \mathcal{L} such that \mathcal{M} never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct a formula $\varphi_{\mathcal{M}, w}$ such that

$$
\mathcal{M} \text { accepts } w \quad \text { if, and only if, } \quad \varphi_{\mathcal{M}, w} \text { is true. }
$$

Theorem: QBF is NPSPACE-hard

Let $\mathcal{L} \in$ NPSPACE. We show $\mathcal{L} \leq_{p}$ QBF.
Let $\mathcal{M}:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding \mathcal{L} such that \mathcal{M} never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct a formula $\varphi_{\mathcal{M}, w}$ such that

$$
\mathcal{M} \text { accepts } w \quad \text { if, and only if, } \quad \varphi_{\mathcal{M}, w} \text { is true. }
$$

Describe configuration $\left(q, p, a_{1} \ldots a_{p(n)}\right)$ by a set

$$
\mathcal{V}:=\left\{Q_{q}, P_{i}, S_{a, i}: q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

of variables and the truth assignment β defined as
$\beta\left(Q_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(P_{s}\right):=\left\{\begin{array}{ll}1 & s=p \\ 0 & s \neq p\end{array} \quad \beta\left(S_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

NPSPACE-Hardness of QBF

Consider the following formula $\operatorname{ConF}(\mathcal{V})$ with free variables

$$
\begin{aligned}
& \mathcal{V}:=\left\{Q_{q}, P_{i}, S_{a, i}: q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\} \\
& \operatorname{CoNF}(\mathcal{V}):=\bigvee_{q \in Q}\left(Q_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg Q_{q^{\prime}}\right) \wedge \bigvee_{p \leq p(n)}\left(P_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg P_{p^{\prime}}\right) \\
& \bigwedge_{1 \leq i \leq p(n)} \bigvee_{a \in \Gamma}\left(S_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg S_{b, i}\right)
\end{aligned}
$$

Definition. For any truth assignment β of \mathcal{V} define $\operatorname{config}(\mathcal{V}, \beta)$ as $\left\{\left(q, p, w_{1} \ldots w_{p(n)}\right): \beta\left(Q_{q}\right)=\beta\left(P_{p}\right)=\beta\left(S_{w_{i}, i}\right)=1, \forall i \leq p(n)\right\}$

Lemma
If β satisfies $\operatorname{Conf}(\mathcal{V})$ then $|\operatorname{config}(\mathcal{V}, \beta)|=1$.

NPSPACE-hardness of QBF

Definition. For an assignment β of \mathcal{V} we defined config (\mathcal{V}, β) as

$$
\left\{\left(q, p, w_{1} \ldots w_{p(n)}\right): \beta\left(Q_{q}\right)=\beta\left(P_{p}\right)=\beta\left(S_{w_{i}}, i\right)=1, \forall i \leq p(n)\right\}
$$

Lemma

If β satisfies $\operatorname{Conf}(\mathcal{V})$ then $|\operatorname{config}(\mathcal{V}, \beta)|=1$.

Remark. β may be defined on other variables than those in \mathcal{V}.
$\operatorname{config}(\mathcal{V}, \beta)$ is a potential configuration of \mathcal{M}, but it may not be reachable from the start configuration of \mathcal{M} on input w.

Conversely: Every configuration ($q, p, w_{1} \ldots w_{p(n)}$) induces a satisfying assignment.

NPSPACE-Hardness of QBF

Consider the following formula $\operatorname{Next}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$ defined as
$\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Conf}\left(\mathcal{V}^{\prime}\right) \wedge \operatorname{Nochange}\left(\mathcal{V}, \mathcal{V}^{\prime}\right) \wedge \operatorname{Change}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$.

$$
\begin{aligned}
& \text { NOCHANGE }:= \bigvee_{1 \leq p \leq p(n)} P_{p} \wedge\left(\bigwedge_{\substack{i \neq p \\
a \in \Gamma}}\left(S_{a, i} \leftrightarrow S_{a, i}^{\prime}\right)\right) \\
& \text { CHANGE }:= \bigvee_{1 \leq p \leq p(n)}\left(P _ { p } \wedge \bigvee _ { \substack { q \in Q \\
a \in \Gamma } } \left(Q_{q} \wedge S_{a, p} \wedge\right.\right. \\
&\left.\left.\bigvee_{\left(q, a, q^{\prime}, b, m\right) \in \Delta}\left(Q_{q^{\prime}}^{\prime} \wedge S_{b, p}^{\prime} \wedge P^{\prime}{ }^{\prime} p+m^{\prime \prime}\right)\right)\right)
\end{aligned}
$$

Lemma
For any assignment β defined on $\mathcal{V}, \mathcal{V}^{\prime}$:
β satisfies $\operatorname{NEXT}\left(\mathcal{V}, \mathcal{V}^{\prime}\right) \Longleftrightarrow \operatorname{config}(\mathcal{V}, \beta) \vdash_{\mathcal{M}} \operatorname{config}\left(\mathcal{V}^{\prime}, \beta\right)$

NPSPACE-hardness of QBF

Define $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
\mathcal{M} starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Ратн $\quad:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$

NPSPACE-hardness of QBF

Define Path $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
\mathcal{M} starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Path $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{Path}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$

NPSPACE-hardness of QBF

Define Path $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
\mathcal{M} starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Ратн $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{Path}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right)$
(Reduction would use exp. time/space)

NPSPACE-hardness of QBF

Define Path $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
\mathcal{M} starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Ратн $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right)$
(Reduction would use exp. time/space)
New Idea:

$$
\begin{aligned}
\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):= & \exists \mathcal{V} \operatorname{ConF}(\mathcal{V}) \wedge \\
& \forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2}\left(\left(\left(\mathcal{Z}_{1}=\mathcal{V}_{1} \wedge \mathcal{Z}_{2}=\mathcal{V}\right) \quad \vee\right) \rightarrow \operatorname{Path}_{1}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)\right)
\end{aligned}
$$

NPSPACE-hardness of QBF

Define Path $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
\mathcal{M} starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Path $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{Path}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right) \quad$ (Reduction would use exp. time/space)
New Idea:

$$
\begin{aligned}
\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):= & \exists \mathcal{V} \operatorname{ConF}(\mathcal{V}) \wedge \\
& \left.\forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2}\left(\left(\begin{array}{l}
\left(\begin{array}{l}
\mathcal{Z}_{1}=\mathcal{V}_{1} \wedge \mathcal{Z}_{2}=\mathcal{V} \\
\mathcal{Z}_{1} \\
\mathcal{V}
\end{array}\right) \quad \mathcal{Z}_{2}=\mathcal{V}_{2}
\end{array}\right) \quad \vee\right) \rightarrow \operatorname{PATH}_{i}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)\right)
\end{aligned}
$$

Lemma

For any assignment β defined on $\mathcal{V}_{1}, \mathcal{V}_{2}$: If β satisfies $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$, then $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ is reachable from config($\left.\mathcal{V}_{1}, \beta\right)$ in $\leq 2^{i}$ steps.

NPSPACE-hardness of QBF

$\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
\mathcal{M} starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
Start and end configuration:

$$
\begin{aligned}
& \operatorname{Start}(\mathcal{V}):=\operatorname{ConF}(\mathcal{V}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)} S_{\square, i} \\
& \operatorname{End}(\mathcal{V}):=\operatorname{ConF}(\mathcal{V}) \wedge \bigvee_{q \in F_{a}} Q_{q}
\end{aligned}
$$

Lemma

Let $C_{\text {start }}$ of \mathcal{M} on input w.
(1) β satisfies Start if, and only if, config $(\mathcal{V}, \beta)=C_{\text {start }}$
(2) β satisfies End if, and only if, config (\mathcal{V}, β) is an accepting stop configuration. (may not be reachable from $C_{\text {start }}$)

NPSPACE-hardness of QBF

$\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
\mathcal{M} starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
Start and end configuration:

$$
\begin{aligned}
& \operatorname{Start}(\mathcal{V}):=\operatorname{ConF}(\mathcal{V}) \wedge Q_{q_{0}} \wedge P_{0} \wedge \bigwedge_{i=0}^{n-1} S_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)} S_{\square, i} \\
& \operatorname{End}(\mathcal{V}):=\operatorname{ConF}(\mathcal{V}) \wedge \bigvee_{q \in F_{a}} Q_{q}
\end{aligned}
$$

Lemma

Let $C_{\text {start }}$ of \mathcal{M} on input w.
(1) β satisfies Start if, and only if, config $(\mathcal{V}, \beta)=C_{\text {start }}$
(2) β satisfies End if, and only if, config (\mathcal{V}, β) is an accepting stop configuration. (may not be reachable from $C_{\text {start }}$)

Putting it all together: \mathcal{M} accepts w if, and only if, $\varphi_{\mathcal{M}, w}:=\exists \mathcal{V}_{1} \exists \mathcal{V}_{2} \operatorname{START}\left(\mathcal{V}_{1}\right) \wedge \operatorname{End}\left(\mathcal{V}_{2}\right) \wedge \operatorname{PATH}_{p(n)}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ is true.

NPSPACE-hardness of QBF (to conclude)

Theorem

QBF is NPSPACE-hard.

Proof. Let $\mathcal{L} \in$ NPSPACE, we show $\mathcal{L} \leq_{p}$ QBF.
Let $\mathcal{M}:=\left(Q, \Sigma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding $\mathcal{L} . \mathcal{M}$ never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct (in poly time!) a formula $\varphi_{\mathcal{M}, w}$ such that
\mathcal{M} accepts $w \quad$ if, and only if, $\quad \varphi_{\mathcal{M}, w}$ is true.

Glossed over some detail: $\varphi_{\mathcal{M}, w}$ is not in prenex form, can be manipulated into that. Also, quantifiers don't alternate $\forall / \exists / \forall / \exists \ldots$; that also can be fixed...

Alternation, Games

The Formula Game

Players: Played by two Players \exists and \forall
Board: A formula φ in conjunctive normal form with variables X_{1}, \ldots, X_{n}

Moves: Players take turns in assigning truth values to X_{1}, \ldots, X_{n} in order.

That is, player \exists assigns values to " odd" variables X_{1}, X_{3}, \ldots
Winning condition: After all variables have been instantiated, \exists wins if the formula evaluates to true. Otherwise \forall wins.

The Formula Game

Players: Played by two Players \exists and \forall
Board: A formula φ in conjunctive normal form with variables X_{1}, \ldots, X_{n}

Moves: Players take turns in assigning truth values to X_{1}, \ldots, X_{n} in order.
That is, player \exists assigns values to " odd" variables X_{1}, X_{3}, \ldots
Winning condition: After all variables have been instantiated, \exists wins if the formula evaluates to true. Otherwise \forall wins.

> Formula Game
> Input: A CNF formula φ in the variables X_{1}, \ldots, X_{n}
> Problem: Does \exists have a winning strategy in the game on φ ?

Theorem. Formula Game is PSPACE-complete.

Geography

A generalised version of Geography: The board is a directed graph G and a start node $s \in V(G)$ Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.
If a player cannot move except to a node visited before, he loses.

Geography

A generalised version of Geography:
The board is a directed graph G and a start node $s \in V(G)$
Initially the token is on the start node.
Players take turns in pushing this token along a directed edge.
If a player cannot move except to a node visited before, he loses.

> Geography Input: Problem: Directed graph G, start node $s \in V(G)$ Does Player 1 have a winning strategy?

Theorem. GEOGRAPHY is PSPACE-complete. (see blackboard or Sipser Theorem 8.14)

Alternating Turing Machines

Alternating Turing Machines

Definition. An alternating Turing machine \mathcal{M} is a non-deterministic Turing accepter whose set of non-final states is partitioned into existential and universal states.
Q_{\exists} : set of existential states $\quad Q_{\forall}$: set of universal states
Acceptance: Consider the computation tree \mathcal{T} of \mathcal{M} on w

Alternating Turing Machines

Definition. An alternating Turing machine \mathcal{M} is a non-deterministic Turing accepter whose set of non-final states is partitioned into existential and universal states.
Q_{\exists} : set of existential states $\quad Q_{\forall}$: set of universal states
Acceptance: Consider the computation tree \mathcal{T} of \mathcal{M} on w
A configuration C in \mathcal{T} is eventually accepting if

- C is an accepting stop configuration, i.e. an accepting leaf of \mathcal{T}
- $C=(q, p, w)$ with $q \in Q_{\exists}$ and there is at least one eventually accepting successor configuration in \mathcal{T}
- $C=(q, p, w)$ with $q \in Q_{\forall}$ and all successor configurations of C in \mathcal{T} are eventually accepting
\mathcal{M} accepts w if the start configuration on w is eventually accepting.

Example: Alternating Algorithm for GEOGRAPHY

Input: Directed graph $G \quad s \in V(G)$ start node.
Set Visited $:=\{s\} \quad$ Mark s as current node.
repeat
existential move: choose successor $v \notin$ Visited of current node s
if not possible then reject.
Visited $:=$ Visited $\cup\{v\}$
set current node $s:=v$
universal move: choose successor $v \notin$ Visited of current node s
if not possible then accept.
Visited $:=$ Visited $\cup\{v\}$
set current node $s:=v$
Note. This algorithm runs in alternating polynomial time.

Alternation as Model for Parallelism

Alternation can be seen as a form of parallelism:
universal move: choose successor $v \notin$ VISITED of current node s
parallel computation:
in parallel, try for all successors $v \notin$ Visited of current node s
Universal moves are one possible way of modelling parallel computation.

Basic definitions of alternating time/space complexity

$\mathcal{L}(\mathcal{M})$ denotes words (in Σ^{*}) accepted by \mathcal{M}.
For function $T: \mathbb{N} \rightarrow \mathbb{N}$, an alternating TM is T time-bounded if every computation of \mathcal{M} on input w of length n halts after $\leq T(n)$ steps.

Analogously for T space-bounded.

Basic definitions of alternating time/space complexity

$\mathcal{L}(\mathcal{M})$ denotes words (in Σ^{*}) accepted by \mathcal{M}.
For function $T: \mathbb{N} \rightarrow \mathbb{N}$, an alternating TM is T time-bounded if every computation of \mathcal{M} on input w of length n halts after $\leq T(n)$ steps.
Analogously for T space-bounded.

For $T: \mathbb{N} \rightarrow \mathbb{N}$ a monotone growing function, define
(1) $\operatorname{ATIME}(T)$ as the class of languages \mathcal{L} for which there is a T-time bounded k-tape alternating Turing accepter deciding $\mathcal{L}, k \geq 1$.
(2) $\operatorname{ASPACE}(T)$ as the class of languages \mathcal{L} for which there is a T-space bounded alternating k-tape Turing accepter deciding $\mathcal{L}, k \geq 1$.

Alternating Complexity Classes:

Time classes:

- APTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(n^{d}\right)$
- AEXPTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(2^{n^{d}}\right) \quad$ alternating exp. time
- 2-AEXPTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(2^{2^{n^{d}}}\right)$

Space classes:

- ALOGSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}(d \log n)$
- APSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}\left(n^{d}\right)$
- AEXPSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}\left(2^{n^{d}}\right)$

Examples.
Geography \in APTIME.
Monotone CVP (coming up next) \in ALOGSPACE.
Similar alg.: CVP \in ALOGSPACE.

Example: Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex of in-degree 0 .

The vertices are labelled by:

Example.

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

- v is a leaf labelled by 1
- v is a node labelled by V and one successor evaluates to 1
- v is a node labelled by \neg and its successor evaluates to 0
- v is a node labelled by \wedge and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1 .

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

- v is a leaf labelled by 1
- v is a node labelled by \vee and one successor evaluates to 1
- v is a node labelled by \neg and its successor evaluates to 0
- v is a node labelled by \wedge and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1 .
Circuit Value Problem.
CVP
Input: Circuit C
Problem: Does C evaluate to 1 ?

Monotone Circuit Value Problem.
Monotone CVP
Input: Monotone circuit C without negation \neg.
Problem: Does C evaluate to 1 ?

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.
Set Current :=s.
while Current is not a leaf do
if current node v is a V-node then existential move: choose successor v^{\prime} of v
else if current node v is a \wedge-node then universal move: choose successor v^{\prime} of v
end if
set current node Current $:=v^{\prime}$
if Current is labelled by 1 then accept else reject.

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.
Set Current :=s.
while Current is not a leaf do
if current node v is a V-node then existential move: choose successor v^{\prime} of v
else if current node v is a \wedge-node then universal move: choose successor v^{\prime} of v
end if
set current node Current $:=v^{\prime}$
if Current is labelled by 1 then accept else reject.
Note. This algorithm runs in alternating logarithmic space.

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Reductions. If $\mathcal{L} \in \operatorname{ATIME}(T)$ and $\mathcal{L}^{\prime} \leq_{p} \mathcal{L}$ then $\mathcal{L}^{\prime} \in \operatorname{ATIME}(T)$. Hence: PSPACE \subseteq APTIME
(As Geography \in APTIME.)

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Reductions. If $\mathcal{L} \in \operatorname{ATIME}(T)$ and $\mathcal{L}^{\prime} \leq_{p} \mathcal{L}$ then $\mathcal{L}^{\prime} \in \operatorname{ATIME}(T)$. Hence: PSPACE \subseteq APTIME

$$
\text { (As GEOGRAPHY } \in \text { APTIME.) }
$$

Complementation. Alternating Turing accepters are easily "negated".

Let \mathcal{M} be an alternating TM accepting language \mathcal{L}
Let \mathcal{M}^{\prime} be obtained from \mathcal{M} by swapping

- the accepting and rejecting state
- swapping existential and universal states.

Then $\mathcal{L}\left(\mathcal{M}^{\prime}\right)=\overline{\mathcal{L}(\mathcal{M})}$

Example

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:
Algorithm 1:
existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$. universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.

Example

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:

Algorithm 1:

existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.
Its complement is defined as:
Algorithm 2:
universal move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
existential move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then reject else accept.

Example

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:
Algorithm 1:
existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.
Its complement is defined as:
Algorithm 2:
universal move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
existential move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then reject else accept.
Note: Algorithm 1 accepts φ iff Algorithm 2 rejects φ

Alternating vs. Sequential Time and Space

Alternating vs. Sequential Time and Space

Theorem

APTIME $=$ PSPACE

Proof.

(1) We have already seen that GEOGraphy \in APTIME. As Geography is PSPACE-complete, PSPACE \subseteq APTIME.

Alternating vs. Sequential Time and Space

Theorem

APTIME $=$ PSPACE

Proof.

(1) We have already seen that GEOGRAPHY \in APTIME. As Geography is PSPACE-complete, PSPACE \subseteq APTIME.
(2) APTIME \subseteq PSPACE follows from the following more general result.

Lemma. For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))
$$

(explore config. tree of ATM of depth $f(n)$)

Alternating vs. Sequential Time and Space

Theorem.
(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$
(see Sipser Thm. 10.21)

Deterministic Space vs. Alternating Time

Lemma. For $f(n) \geq n$ we have $\operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)$.
Proof. Let \mathcal{L} be in $\operatorname{DSPACE}(f(n))$ and \mathcal{M} be an $f(n)$ space-bounded TM deciding \mathcal{L}.

On input w, \mathcal{M} makes at most $2^{\mathcal{O}(f(n))}$ computation steps.
Alternating Algorithm. Reach $\left(C_{1}, C_{2}, t\right)$
Returns 1 if C_{2} is reachable from C_{1} in $\leq 2^{t}$ steps.

```
\(\operatorname{Reach}\left(C_{1}, C_{2}, t\right)\)
if \(t=0\) do
    if \(C_{1}=C_{2}\) or \(C_{1} \vdash C_{2}\) do return 1 else return 0 od
    else
        existential step. choose configuration \(C\) with \(|C| \leq \mathcal{O}(f(n))\)
        universal step. choose \(\left(D_{1}, D_{2}\right)=\left(C_{1}, C\right)\) or \(\left(D_{1}, D_{2}\right)=\left(C, C_{2}\right)\)
        return \(\operatorname{Reach}\left(D_{1}, D_{2}, t-1\right)\).
fi
```


Alternating vs. Sequential Time and Space

Theorem.
(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$
(see Sipser Thm. 10.21)

Alternating vs. Sequential Time and Space

Theorem.
(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$
(see Sipser Thm. 10.21)

Corollaries.

- ALOGSPACE $=$ PTIME
- $\operatorname{APTIME}=$ PSPACE
- APSPACE = EXPTIME
- NP: given an existentially-quantified QBF, is it true?
- co-NP: given a universally-quantified QBF, is it true?
- PSPACE: given an unrestricted QBF, is it true?

The polynomial-time hierarchy

- NP: given an existentially-quantified QBF, is it true?
- co-NP: given a universally-quantified QBF, is it true?
- PSPACE: given an unrestricted QBF, is it true?

Intermediate between NP/co-NP and PSPACE:

- Evaluate formula of the form $\exists x_{1}, \ldots, x_{n} \forall y_{1}, \ldots, y_{n} \varphi$
- Evaluate formula of the form $\forall x_{1}, \ldots, x_{n} \exists y_{1}, \ldots, y_{n} \varphi$
- Evaluate formula of the form $\exists x_{1}, \ldots, x_{n} \forall y_{1}, \ldots, y_{n} \exists z_{1}, \ldots, z_{n} \varphi$
- etc.
\rightsquigarrow yet more complexity classes! (seemingly)
Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5

The polynomial-time hierarchy

Model of computation for (say) $\exists x_{1}, \ldots, x_{n} \forall y_{1}, \ldots, y_{n} \varphi$?

The polynomial-time hierarchy

Model of computation for (say) $\exists x_{1}, \ldots, x_{n} \forall y_{1}, \ldots, y_{n} \varphi$?
-Yes, poly-time alternating TM where \exists states must precede \forall states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM can be converted to equivalent $\exists \ldots \forall$-formula.
—Another answer: in terms of oracle machines...

$$
\begin{aligned}
\Delta_{i+1}^{\mathrm{P}} & :=\mathrm{P}^{\Sigma_{i}^{\mathrm{P}}} \\
\Sigma_{i+1}^{\mathrm{P}} & :=\mathrm{NP}^{\Sigma_{i}^{\mathrm{P}}} \\
\Pi_{i+1}^{\mathrm{P}} & :=\mathrm{co}-\mathrm{NP}^{\Sigma_{i}^{\mathrm{P}}}
\end{aligned}
$$

A^{B} : problems solved by A-machine with oracle for B-complete problem

Warm-up: consider $\mathrm{P}^{\mathrm{P}}, \mathrm{NP}^{\mathrm{P}}, \mathrm{P}^{\mathrm{NP}}, \ldots$
diagram taken from Wikipedia

diagram taken from Wikipedia

$$
\begin{aligned}
& \Delta_{i+1}^{\mathrm{P}}:=\mathrm{P}^{\Sigma_{i}^{\mathrm{P}}} \\
& \sum_{i+1}^{\mathrm{P}}:=\mathrm{NP}^{\Sigma_{i}^{\mathrm{P}}} \\
& \Pi_{i+1}^{\mathrm{P}}:=\mathrm{co}-\mathrm{NP}^{\Sigma_{i}^{\mathrm{P}}}
\end{aligned}
$$

A^{B} : problems solved by A-machine with oracle for B-complete problem

Warm-up: consider $\mathrm{P}^{\mathrm{P}}, \mathrm{NP}^{\mathrm{P}}, \mathrm{P}^{\mathrm{NP}}, \ldots$
$P^{N P}$ seems to be more than just NP; indeed there are classes of interest intermediate between NP and $P^{N P}$!

The polynomial-time hierarchy

Some key facts:

- PH lies below PSPACE; if any problem is complete for PH , it must belong to the k-th level of the hierarchy, and PH would "collapse" to that level
- If P is equal to NP, then PH would collapse to P
- If NP is equal to co-NP, then PH collapses to that level. (hints that NP \neq co-NP.)
(some proof details on board)

