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Logarithmic Space

Polynomial space: seems more powerful than NP.

Linear space: we noted is similar to polynomial space

Sub-linear space?
To be meaningful, we consider Turing machines with separate
input tape and only count working space.

LOGSPACE (or, L) Problems solvable by logarithmic space
bounded TM

NLOGSPACE (or, NL) Problems solvable by logarithmic space
bounded NTM

Not hard to show that L⊆NL⊆P

(Sipser Chapter 8.4, Arora/Barak, p.80)
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Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

a fixed number of counters (up to length of input)

a fixed number of pointers to positions in the input string.

Hence,

LOGSPACE contains all problems requiring only a constant
number of counters/pointers for solving.

NLOGSPACE contains all problems requiring only a constant
number of counters/pointers for verifying solutions.
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Examples: Problems in LOGSPACE

Example. The language {0n1n : n ≥ 0}

Algorithm.

Check that no 1 is ever followed by a 0
Requires no working space. (only movements of the read head)

Count the number of 0’s and 1’s.

Compare the two counters.

Example. Palindromes ∈ LOGSPACE
(words that read the same forward and backward)

Algorithm.

Use two pointers, one to the beginning and one to the end of
the input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards.
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Example: A Problem in NL

Example. The following problem is in NL:

Reachability a.k.a. Path
Input: Directed graph G , vertices s, t ∈ V (G )

Problem: Does G contain a path from s to t?

Algorithm.
Set counter c := |V (G )|
Let pointer p point to s

while c 6= 0 do

if p = t then halt and accept

else

nondeterministically select a successor p′ of p

set p := p′

c := c − 1

reject.
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LOGSPACE Reductions

To compare the difficulty of problems in PTIME or NLOGSPACE,
polynomial-time reductions no longer make sense...

Definition. A LOGSPACE-transducer M is a logarithmic space
bounded Turing accepter with a read-only input tape and a write
only, write once output tape.

M computes a function f : Σ∗ → Σ∗, where f (w) is the content
of the output tape of M running on input w when M halts.

f is called a logarithmic space computable function.

Definition.
A LOGSPACE reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log space
computable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′
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NLOGSPACE (or, NL)-Completeness

NL-completeness.
A problem L ∈ NL is complete for NL, if every other language in
NL is log space reducible to L.

Theorem. Reachability (or, Path) is NLOGSPACE-complete.

Proof idea.
Let M be a non-deterministic LOGSPACE TM deciding L.

On input w :

1 construct a graph whose nodes are configurations of M and
edges represent possible computational steps of M on w

2 Find a path from the start configuration to an accepting
configuration.
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NL-Completeness

Proof sketch.

We construct 〈G , s, t〉 from M and w using a
LOGSPACE-transducer:

1 A configuration (q,w2, (p1, p2)) of M can be described in
c log n space for some constant c and n = |w |.

2 List the nodes of G by going through all strings of length
c log n and outputting those that correspond to legal
configurations.

3 List the edges of G by going through all pairs of strings
(C1,C2) of length c log n and outputting those pairs where
C1 `M C2.

4 s is the starting configuration of G .
5 Assume w.l.o.g. that M has a single accepting configuration

t.

w ∈ L iff 〈G , s, t〉 ∈ Reachability

(see Sipser Thm. 8.25)
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co-NLOGSPACE

As for time, we consider complement classes for space.

Recall
If C is a complexity class, we define

co-C := {L : L ∈ C}.

Complement classes for space:

co-NLOGSPACE := {L : L ∈ NLOGSPACE}

co-NPSPACE := {L : L ∈ NPSPACE}

From Savitch’s theorem:

PSPACE = NPSPACE and hence co-NPSPACE = PSPACE
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NLOGSPACE = co-NLOGSPACE

However, from Savitch’s theorem we only know

NLOGSPACE ⊆ DSPACE(log2 n).

Theorem. (Immerman and Szelepcsényi ’87-’88)

NLOGSPACE = co-NLOGSPACE

Proof idea.

Show that Reachability is in NL.
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NLOGSPACE = co-NLOGSPACE

Proof sketch.

On input 〈G , s, t〉
First compute cm, the number of nodes reachable from s (in
m = |V (G )| steps):
Define ci to be number of nodes reachable in i steps; compute this
for increasing i ...

1 Only one node (s) is reachable in 0 steps, so c0 = 1
2 For each i = 1, . . . ,m, set ci = 1, remember ci−1, and for

each v 6= s in G
1 For each node u in G

1 guess if reachable from s in i − 1 steps
2 Verify each “yes” guess by guessing an at most i − 1 step

path from s to u; reject if no such path found
3 If we guessed that u is reachable, and 〈u, v〉 ∈ E(G), then

increment ci and continue with next v

2 If total number (d) of u guessed is not equal to cm−1, then
reject
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NLOGSPACE = co-NLOGSPACE

Proof sketch.

On input 〈G , s, t〉
Then try to guess cm nodes reachable from s and not equal to t:

1 For each node u in G , guess if reachable from s in m steps

2 Verify each “yes” guess by guessing an at most m step path
from s to u; reject if no such path found

3 If we guessed that u is reachable, and u = t, then reject

4 If total number (d) of u guessed not equal to cm, then reject

5 Otherwise accept

Algorithm stores (at one time) only 6 counters (u, v , ci−1, ci , d
and i) and a pointer to the head of a path; hence runs in logspace.

(See Sipser Theorem 8.27)
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Space and Time Hierarchies
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A Hierarchy of Complexity Classes

Recall: Relation between complexity classes covered so far:

L ⊆ NL ⊆ PTIME ⊆ NP ⊆

PSPACE = NPSPACE ⊆ EXPTIME ⊆
NEXPTIME ⊆

EXPSPACE = NEXPSPACE ⊆ . . .

Question. Which of these inclusions are strict?
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recall: Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXPTIME.

Proof used “time-bounded halting language” Hf and a

“diagonalising machine”

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}
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Space Hierarchy Theorem

Theorem. (Space Hierarchy Theorem)

Let S , s : N→ N be functions such that

1 S is space constructible, and

2 S(n) ≥ n,

3 s = o(S).

Then DSPACE(s) ( DSPACE(S).

Recall. f (n) = o
(
g(n)

)
if

lim
n→∞

f (n)

g(n)
= 0 that is lim

n→∞

s(n)

S(n)
= 0.
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Digression: Space-Constructible Functions

Definition.
A function f : N→ N is space constructible if f (n) ≥ log n and
f (n) can be computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in space O(f (n)).

Most standard functions are space-constructible:

All polynomial functions ( e.g. 3n3 − 5n2 + 1)

All exponential functions ( e.g. 2n)

For any space-constructible function f we can build a counter that
goes off after f (n) cells have been used on inputs of length n.

Consequence: As polynomials are space constructible:

We can enforce that in an nk -space bounded NTM M all
computations halt after using O(nk) space.

(Let M and a “counter” run in parallel. Stop if the counter
goes off.)
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Digression: Time-Constructible Functions

Definition.
A function f : N→ N is time constructible if f (n) ≥ n log n and
f (n) can be computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in time O(f (n)).

Most standard functions are time-constructible:

All polynomial functions ( e.g. 3n3 − 5n2 + 1)

All exponential functions ( e.g. 2n)

For any time-constructible function f we can build a timer that
goes off after f (n) steps on inputs of length n.

Consequence: As polynomials are time-constructible:

We can enforce in an nk -time bounded NTM M that all
computation paths are of length nk .

(Let M and a “timer” run in parallel. Stop if the timer goes
off.)
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Space Hierarchy Theorem

Theorem. (Space Hierarchy Theorem)

Let S , s : N→ N be functions such that

1 S is space constructible, and

2 S(n) ≥ n,

3 s = o(S).

Then DSPACE(s) ( DSPACE(S).

Recall. f (n) = o
(
g(n)

)
if

lim
n→∞

f (n)

g(n)
= 0 that is lim

n→∞

s(n)

S(n)
= 0.
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Proof of SH Theorem — Part I

Construct S-space bounded TM D as follows.

1 On input 〈M,w〉, let n = |〈M,w〉|.
2 If the input is not of the form 〈M,w〉, then reject.

3 Compute S(n) and mark off this much tape. If later stages
ever exceed this allowance, then reject.

4 Simulate M on input 〈M,w〉 while counting number of steps
used in simulation; if count ever exceeds 2S(n), then reject.

The simulation introduces only a constant factor c space
overhead.

5 If M accepts, then reject; otherwise accept.

L(D) = {〈M,w〉 : D accepts 〈M,w〉}.
By construction, L(D) ∈ DSPACE(S)
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Proof of SH Theorem — Part II

Claim. L(D) 6∈ DSPACE(s)

Towards a contradiction,

let B be a s space bounded TM with L(B) = L(D).

As s = o(S) there is n0 ∈ N such that S(n) ≥ c · s(n) for all
n ≥ n0.

Hence, for almost all inputs 〈B,w〉 (all 〈B,w〉 ≥ n0)

D completely simulates the run of B on 〈B,w〉

Hence, for almost all w ∈ {0, 1}∗

〈B,w〉 ∈ L(D) ⇐⇒ B does not accept 〈B,w〉 (Def of D)
〈B,w〉 ∈ L(B) ⇐⇒ B accepts 〈B,w〉. (Def of “L(B)”)
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A Hierarchy of Complexity Classes

Consequence:

LOGSPACE ( PSPACE ( EXPSPACE

PTIME ( EXPTIME

Recall: Relation between complexity classes covered so far:

L ⊆ NL ⊆ PTIME ⊆ NP ⊆
6= 6= 6= 6=

PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆

6= 6=
EXPSPACE = NEXPSPACE ⊆ . . .
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The Gap Theorem

Question. Given more resources, can we always solve more
problems?

How much more resources do we need to be able to solve more
problems? (Can we solve strictly more problems in time 22

g(n)
than

in g(n)?)

Theorem. (Gap theorem for time complexity)

For every total computable function f : N→ N with f (n) ≥ n
there is a total computable function g : N→ N such that

DTIME
(
g(n)

)
= DTIME

(
f (g(n))

)
Analogously for space complexity.
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The Gap Theorem

Question. Given more resources, can we always solve more
problems?

How much more resources do we need to be able to solve more
problems? (Can we solve strictly more problems in time 22

f (n)
than

in f (n)?)

Corollary. There are computable functions g such that

DTIME(g) = DTIME(2g )

DTIME(g) = DTIME(22
g
)

DTIME(g) = DTIME
(

22
..
2
}
g(n) times

)
However, the functions g are not time (space) constructible.
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NP-Intermediate Problems
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NP-Intermediate Problems

Question.

Do complexity classes only contain easy and hard problems?

Can we classify any problem in NP as polynomial or
NP-complete?

Which of the following diagrams corresponds to a true picture
of NP?
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Ladner’s theorem

Theorem. (Ladner 1975)

If P 6= NP then NP contains infinitely many (polynomial-time)
inequivalent problems.

Proof. Non-constructive argument (using diagonalisation). For
details see Papadimitriou Chapter 14.

Consequence. Unless P = NP, the class NP contains infinitely
many problems that are neither in P nor NP-complete.
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NP-Intermediate Problems

Ladner’s theorem. Unless P=NP, the class NP contains infinitely
many problems that are neither in P nor NP-complete.

Which problems are (possible candidates for) NP-intermediate?

Obviously, a proof that a problem is NP-intermediate separates P
and NP and hence will not be easy to obtain.

Garey and Johnson 1979. In their text book they highlight
three problems whose complexity was undecided:

Linear Programming

Primes/Composite

Graph Isomorphism
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Linear Programming

Linear Programming (LP)
Input: Integer valued (n ×m)-matrix M,

D ∈ Zm C ∈ Zn b ∈ Z
Problem: Is there a vector X ∈ Qn such that M ·X ≤

D and C · X ≥ b?

This is the problem to maximise a linear function subject to linear
constraints.

E.g., (Maximise:) C1 · X1 + . . . + Cn · Xn (≥ b)
Subject to: 0 ≤ M1,1 · X1 + . . . + M1,n · Xn ≤ D1

...
Subject to: 0 ≤ Mm,1 · X1 + . . . + Mm,n · Xn ≤ Dm
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Linear Programming

Linear Programming (LP)
Input: Integer valued (n ×m)-matrix M,

D ∈ Zm C ∈ Zn b ∈ Z
Problem: Is there a vector X ∈ Qn such that M ·X ≤

D and C · X ≥ b?

This is the problem to maximise a linear function subject to linear
constraints.
In 1979, Leonid Khachiyan proved that this problem is in P
(Fulkerson Prize).
LP-based algorithms (e.g. based on the (exponential) simplex
method) are among the popular approaches to solve algorithmic
problems.

Integer programming. As we saw, the problem is NP-complete if
X is required to be integer valued.

Paul Goldberg Logarithmic space 30 / 37



Linear Programming

Linear Programming (LP)
Input: Integer valued (n ×m)-matrix M,

D ∈ Zm C ∈ Zn b ∈ Z
Problem: Is there a vector X ∈ Qn such that M ·X ≤

D and C · X ≥ b?

This is the problem to maximise a linear function subject to linear
constraints.
In 1979, Leonid Khachiyan proved that this problem is in P
(Fulkerson Prize).
LP-based algorithms (e.g. based on the (exponential) simplex
method) are among the popular approaches to solve algorithmic
problems.

Integer programming. As we saw, the problem is NP-complete if
X is required to be integer valued.

Paul Goldberg Logarithmic space 30 / 37



Prime and Composite Numbers

Primes
Input: Positive integer n ∈ N

Problem: Is n prime?

For a long time, it was only known that this problem is in
NP∩co-NP.

In 2002, Primes was shown to be in P by Agrawal and two
undergraduate students, Kayal, Saxena with their AKS primality
test (Gödel Prize, Fulkerson Prize)
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Graph Isomorphism

Definition. An isomorphism between two graphs H and G is a
function f : V (H)→ V (G ) such that

1 f is a bijection between V (H) and V (G ) and

2 for all u, v ∈ V (H): {u, v} ∈ E (H) ⇐⇒
{f (v), f (u)} ∈ E (G ).

Graph Isomorphism (GI)
Input: Undirected graphs G and H

Problem: Is there an isomorphism between H and G?

every problem in NLOGSPACE is logspace reducible to GI.

GI also denotes class of problems poly-time reducible to it

Subgraph isomorphism. If we only require f to be injective, then
the problem becomes NP-complete.
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NP total search problems (more later)

Decision problem: one bit output (yes/no)
Search (or, function computation) problem: poly(n) bits of output

NP search problem: binary relation R(·, ·) checkable in polynomial
time; given x find y such that R(x , y). Finding yes/no answer to
an NP decision problem is polynomial-time equivalent to finding y
(certificate of input x)
NP total search problem: as above but we have:
∀x∃y |y | = poly(|x |),R(x , y)

Important example: Factoring.
Key fact: Problems like Factoring cannot be NP-hard unless
NP=co-NP.

Hence, Factoring is NP-intermediate in a strong sense (but not
in quite such a strong sense as problems from Ladner’s theorem).
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Conclusion

Paul Goldberg Logarithmic space 34 / 37



Conclusion: Complexity of Decision Problems

Decision problems:

Established a hierarchy of complexity classes for decision problems.

Tools to classify problems into the correct complexity class.

Examples for typical problems in various complexity classes.

Theoretical considerations:

Analysis based on the asymptotic worst-case behaviour.

NP-completeness: “There is no algorithm that on all inputs
computes the correct answer asymptotically in polynomial
time.”

Hierarchy:
L ⊆ NL ⊆ PTIME ⊆ NP ⊆
6= 6= 6= 6=

PSPACE = NPSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆
6= 6=

EXPSPACE = NEXPSPACE ⊆ . . .
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Worst-Case Analysis

NP-completeness: “There is no algorithm that on all inputs
computes the correct answer asymptotically in polynomial time.”

Possible relaxations:

Relax time constraint:

Average case complexity
Randomised algorithms

Relax correctness constraint:

Randomised algorithms with bounded error probability.
Heuristics (for optimisation problems)
Approximation (for optimisation problems)
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Practical Implications

In practice: From a practical point of view, classifying problems
into complexity classes is much less about “solvable” or not ...

Example: Satisfiability

Satisfiability is one of the most important NP-complete
problems.

However, current SAT-solvers can solve instances coming from
bounded model-checking with thousands and sometimes
millions of variables.

In practice: ... but about the type of algorithms that will probably
work.

P: explicit construction of solutions

NP: search for solutions, backtracking etc.

PSPACE: Algorithms from artificial intelligence for solving
games
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