Computational Complexity; slides 7, HT 2019 Circuit complexity

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Overview

We "dissect" the class P in more detail, eventually identifying a non-trivial proper subset of it.

Boolean Circuits

Computers are built using digital circuits
Their theoretical counterpart, Boolean Circuits can be used as models of computation

Boolean Circuits.
A Boolean circuit is a DAG:

- Inputs : nodes without incoming edges labeled with 0 or 1.
- Gates : nodes with (one or two) incoming edges and one outgoing edge labeled AND, OR, or NOT.
- A single node is labeled as output.

Boolean Circuits

Input-output behaviour described using Boolean functions
To each circuit C with n inputs is associated $f_{C}:\{0,1\}^{n} \rightarrow\{0,1\}$
Example: parity function with 4 variables (returns 1 if and only if the number of 1 's in the input is odd)

Minimal Circuits

Some basic definitions:
Circuit Size: number of gates contained in the circuit
Circuit depth: Length of the longest path from an input to the output gate
Size-minimal circuits: no circuit with fewer gates computes the same function.

Depth-minimal circuits: no circuit with smaller depth computes the same function.

Minimisation (given a circuit, find a smallest equivalent one) is a hard problem in practice

Not known to be in P or even in NP.
Problem of current research interest: Minimum Circuit Size Problem (MCSP):
Input: boolean function f presented as truth table; number s Question: is there a circuit of size s computing f ?

Families of Circuits

test membership in language \mathcal{L} using circuits...
\mathcal{L} may have strings of different lengths but circuits have fixed inputs

Circuit family
An infinite list of circuits $C=\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ where C_{n} has n inputs. Family C decides a binary language \mathcal{L} if
$w \in \mathcal{L} \quad$ if and only if $\quad C_{k}(w)=1 \quad$ (for every string w of length k)

Size (Depth) complexity of a circuit family $C=\left(C_{0}, C_{1}, \ldots\right)$
Function $f: \mathcal{N} \rightarrow \mathcal{N}$ with $f(n)$ size (depth) of C_{n}
Circuit-size (Circuit-depth) complexity of a language
Size (Depth) complexity of a circuit family for that language where every component circuit C_{i} is size-minimal (depth-minimal).

Circuit Complexity vs Time Complexity

Small time complexity \Rightarrow small circuit complexity
Theorem. If $\mathcal{L} \in \operatorname{DTIME}(t(n))$ with $t(n) \geq n$ then \mathcal{L} has circuit-size complexity $O\left(t^{2}(n)\right)$

Proof idea
(1) Take a $\mathrm{TM} \mathcal{M}$ that decides \mathcal{L} in $t(n)$
(2) For each n construct C_{n} that simulates \mathcal{M} on inputs of length n
(3) Gates of C_{n} are organised in $t(n)$ rows (one per configuration)
(9) Wire each to the previous one to calculate the new configuration from the previous row's configuration as in the transition function.

Circuit Complexity vs. Time Complexity

Consequences

This theorem and its proof yield surprisingly deep consequences.
(1) It sheds some light on the P versus NP issue:

If we can find a language in NP that has super-polynomial circuit complexity then $P \neq N P$.
(2) It allows us to identify a natural P -complete problem.
(3) It provides an alternative proof for Cook-Levin theorem.

P-completeness

Definition. A language \mathcal{L} is P-complete (or PTIME-complete) if

- it is in P and
- every other language in P is LOGSPACE reducible to \mathcal{L}.

Circuit Value Problem (CVP) is the problem of checking, given a circuit C and concrete input values, whether C outputs 1 .
(Called MonotoneCVP if C does not include negation.)
Theorem. CVP is P-complete.
Proof Idea
(1) Take the previous construction and some $\mathcal{L} \in \mathrm{P}$.
(2) Given x, construct a circuit that simulates a $\operatorname{TM} \mathcal{M}$ for \mathcal{L} on inputs of length x.
(3) The reduction has repetitive structure and is feasible in logarithmic space.

NP-completeness via Circuits; Cook's thm revisited

CIRCUIT-SAT is the problem of checking, given a circuit C, whether C outputs 1 for some setting of the inputs.

Theorem. CIRCUIT-SAT is NP-complete.
Proof idea Membership in NP is obvious so take any $\mathcal{L} \in$ NP.
(1) There is a verifier $V_{\mathcal{L}}(x, s)$ checking whether s is a solution for x.
$\Rightarrow V_{\mathcal{L}}$ works in poly time in $|x|$ and $|s|$ is polynomial in $|x|$.
(2) $V_{\mathcal{L}}$ can be rendered as a circuit family C whose inputs encode x, s.
$\Rightarrow C_{|x|+|s|}$ returns 1 iff s is a solution for x.
(3) To check $x \in \mathcal{L}$, build $C_{|x|+|s|}$ leaving the bits for s unknown \Rightarrow the satisfying values for unknowns yield the solutions for x.

Circuit-SAT and SAT are in direct correspondence
\Rightarrow Cook-Levin theorem follows!

The Power of Circuits

A key caveat of circuits. They are not a realistic model of computation!

Theorem. Any undecidable language has polynomial size circuits.
(1) Consider any undecidable $\mathcal{L} \subseteq\{0,1\}^{*}$.
(2) Let $U=\left\{1^{n}\right.$: the binary expansion of n is in $\left.\mathcal{L}\right\}$
(3) U is undecidable: \mathcal{L} reduces to it via an (exponential) reduction.
(1) U has a trivial family of polynomial circuits!

- If $1^{n} \in U$ then C_{n} consists of $n-1$ and gates.
- If $1^{n} \notin U$ then C_{n} outputs 0 .

Uniformity

The catch Constructing the circuits involves solving an unsolvable problem

Uniform circuit families
Given 1^{n} as input, C_{n} can be constructed in LOGSPACE.
\Rightarrow Circuits should be easy to construct!
With uniformity, circuits become a sensible model of computation.
Theorem. A language \mathcal{L} is in P iff it has uniformly polynomial circuits.
Proof
(1) Assume \mathcal{L} has uniformly polynomial circuits and let $w \in \mathcal{L}$.
(2) Construct $C_{|w|}$ in log. space (and hence in poly. time).
(3) Evaluate the circuit (CVP is in P).

Circuit Complexity: Looking inside PTIME

Circuits and Parallel Computation

Boolean circuits are genuinly parallel no "program" counter computational activity can happen concurrently at same-level gates.

Parallel time complexity of a circuit related to the circuit's depth.
Simultaneous size-depth complexity of a language
\mathcal{L} has simultaneous size-depth complexity $(f(n), g(n))$ if a uniform circuit family exists for \mathcal{L} with

- size complexity $f(n)$ and
- depth complexity $g(n)$.

Parity

Parity is feasible in $(O(n), O(\log (n)))$

Definition. NC ("Nick's Class", after Nick Pippinger)
For $i \geq 0, \mathrm{NC}^{i}$ consists of all languages solvable in $\left(O\left(n^{k}\right), O\left(\log ^{i}(n)\right)\right)$ with k an integer. Then, $N C=\bigcup_{i} N C^{i}$.
"polylogarithmic" depth
Nice features of $N C$

- Problems in NC are highly parallelisable with moderate amount of processors.
- Contains a wide range of relevant problems (e.g. standard arithmetic and matrix operations)

NC vs. L (or, LOGSPACE)

Theorem. $\mathrm{NC}^{1} \subseteq \mathrm{~L}$
Proof Consider $\mathcal{L} \in \mathrm{NC}^{1}$ and an input w of length n.
(1) Construct "on the fly" C_{n} from the uniform family C deciding \mathcal{L}.
(2) Evaluate C_{n} on w in a depth-first manner from the output gate.

- AND gate: evaluate recursively the first predecessor; if false, then we are done. Otherwise evaluate the second predecessor.
- OR gate: same principle.
- NOT: evaluate the unique predecessor and return opposite value.
(3) Record only the path to current gate and intermediate results \Rightarrow The circuit is logarithmic depth!

NC vs. NL (or, NLOGSPACE)

Theorem. $\mathrm{NL} \subseteq \mathrm{NC}^{2}$
Proof Consider w of length n and a TM \mathcal{M} for $\mathcal{L} \in$ NL.
(1) Construct (in log. space) the graph G_{n} of all possible configurations of \mathcal{M} for an input of length n.

- Nodes of G_{n} are the (polynomially many) configurations of \mathcal{M}, i.e.:
- State
- Contents of work tape
- Input tape head position and work tape head position
- Given nodes c_{1} and c_{2} with c_{1} input tape head position i
- Add edge $\left(c_{1}, c_{2}\right)$ labeled w_{i} if c_{1} yields c_{2} when $w_{i}=1$
- Add edge (c_{1}, c_{2}) labeled $\overline{w_{i}}$ if c_{1} yields c_{2} when $w_{i}=0$
- Add edge (c_{1}, c_{2}) unlabeled if c_{1} yields c_{2} regardless of w_{i}.
(2) Build a circuit C_{n} computing reachability over G_{n} w.r.t. input W
\Rightarrow feasible in $O\left(\log ^{2} n\right)$ depth.

NC vs. P

Theorem. NC $\subseteq P$

Proof

Let $\mathcal{L} \in N C$ be decided by a uniform circuit family C.
On input w of length n proceed as follows:
(1) Construct C_{n} (using logarithmic space)
(2) Evaluate (in polynomial time) the circuit on input w

- C_{n} has n^{k} gates for some k
- Circuits can be evaluated in time polynomial in the number of gates

An interesting open question is whether $\mathrm{P} \subseteq \mathrm{NC}$
We believe that this is not the case
\Rightarrow not all tractable problems seem highly parallelizable!

So far we have restricted AND and OR gates to have 2 inputs.
Definition: The class $A C^{i}$
analogous to NC^{i} for circuits with arbitrary fan-in gates.
Clearly (?), we have the following:

$$
N C^{0} \subseteq A C^{0} \subseteq \mathrm{NC}^{1} \subseteq A C^{1} \subseteq \ldots
$$

A class of special relevance is $A C^{0}$

- Arbitrary fan-in AND and OR gates
- Polynomial number of gates
- Constant depth

The power of $A C^{0}$

$$
\mathrm{AC}^{0} \subseteq N C^{1} \subseteq L \subseteq N L \subseteq N C^{2} \subseteq P
$$

However, a great deal can be accomplished within AC^{0}

- Integer addition
- Integer subtraction
- Even the evaluation of a (fixed) Relational Algebra query!!

Addition in AC^{0}

Construct a circuit $C\left(x_{n}, \ldots, x_{1}, y_{n}, \ldots, y_{1}\right)$

- Input are binary numbers x_{n}, \ldots, x_{1} and y_{n}, \ldots, y_{1}
- We have $n+1$ outputs $z_{n+1}, z_{n}, \ldots, z_{1}$ (a minor relaxation)

Notation:

$$
\begin{aligned}
\mathrm{AND}_{i} & =x_{i} \wedge y_{i} \\
\mathrm{OR}_{i} & =x_{i} \vee y_{i} \\
\mathrm{XOR}_{i} & =\left(x_{i} \wedge \neg y_{i}\right) \vee\left(\neg x_{i} \wedge y_{i}\right)
\end{aligned}
$$

Then, the "carried-over bit" c_{i} and result z_{i} are as follows (take $c_{0}=0$):

$$
\begin{aligned}
& c_{i}=\mathrm{AND}_{i} \vee\left(\mathrm{OR}_{i} \wedge c_{i-1}\right) \\
& z_{i}=\left(\neg \mathrm{OR}_{i} \wedge c_{i-1}\right) \vee\left(\mathrm{XOR}_{i} \wedge \neg c_{i-1}\right) \vee\left(\mathrm{AND}_{i} \wedge c_{i-1}\right)
\end{aligned}
$$

Note that $c_{1}=\mathrm{AND}_{1}, z_{1}=\mathrm{XOR}_{1}$ and $z_{n+1}=c_{n}$

The limits of $A C^{0}$

Most interestingly, AC^{0} has provable limitations!
Theorem. Parity is not feasible in AC^{0}
As a consequence $A C^{0} \subset N C^{1}$

$$
\mathrm{AC}^{0} \subset \mathrm{NC}^{1} \subseteq \mathrm{~L} \subseteq \mathrm{NL} \subseteq \mathrm{NC}^{2} \subseteq P
$$

