Computational Complexity; slides 7, HT 2019 Circuit complexity

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

We "dissect" the class ${\sf P}$ in more detail, eventually identifying a non-trivial proper subset of it.

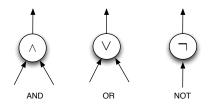
Boolean Circuits

Computers are built using *digital circuits*

Their theoretical counterpart, *Boolean Circuits* can be used as models of computation

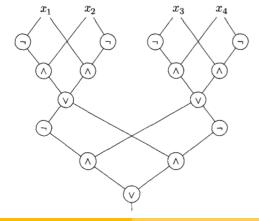
Boolean Circuits.

- A Boolean circuit is a DAG:
 - *Inputs* : nodes without incoming edges labeled with 0 or 1.
 - Gates : nodes with (one or two) incoming edges and one outgoing edge labeled AND, OR, or NOT.
 - A single node is labeled as *output*.



Boolean Circuits

Input-output behaviour described using *Boolean functions* To each circuit *C* with *n* inputs is associated $f_C : \{0,1\}^n \rightarrow \{0,1\}$ *Example:* parity function with 4 variables (returns 1 if and only if the number of 1's in the input is odd)



Minimal Circuits

Some basic definitions:

Circuit Size: number of gates contained in the circuit

Circuit depth: Length of the longest path from an input to the output gate

Size-minimal circuits: no circuit with fewer gates computes the same function.

Depth-minimal circuits: no circuit with smaller depth computes the same function.

Minimisation (given a circuit, find a smallest equivalent one) is a hard problem in practice

Not known to be in P or even in NP.

Problem of current research interest: *Minimum Circuit Size Problem* (MCSP):

Input: boolean function f presented as truth table; number s**Question**: is there a circuit of size s computing f? test membership in language ${\boldsymbol{\mathcal{L}}}$ using circuits...

 $\boldsymbol{\mathcal{L}}$ may have strings of different lengths but circuits have fixed inputs

Circuit family

An infinite list of circuits $C = (C_0, C_1, C_2, ...)$ where C_n has n inputs. Family C decides a binary language \mathcal{L} if

 $w \in \mathcal{L}$ if and only if $C_k(w) = 1$ (for every string w of length k)

Size (Depth) complexity of a circuit family $C = (C_0, C_1, ...)$ Function $f : \mathcal{N} \to \mathcal{N}$ with f(n) size (depth) of C_n

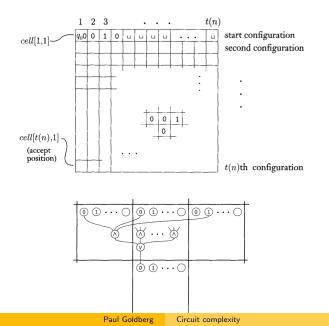
Circuit-size (Circuit-depth) complexity of a language Size (Depth) complexity of a circuit family for that language where every component circuit C_i is size-minimal (depth-minimal). Small time complexity \Rightarrow small circuit complexity

Theorem. If $\mathcal{L} \in \mathsf{DTIME}(t(n))$ with $t(n) \ge n$ then \mathcal{L} has circuit-size complexity $O(t^2(n))$

Proof idea

- **①** Take a TM \mathcal{M} that decides \mathcal{L} in t(n)
- For each *n* construct C_n that simulates \mathcal{M} on inputs of length *n*
- Gates of C_n are organised in t(n) rows (one per configuration)
- Wire each to the previous one to calculate the new configuration from the previous row's configuration as in the transition function.

Circuit Complexity vs. Time Complexity



This theorem and its proof yield surprisingly deep consequences.

- It sheds some light on the P versus NP issue: If we can find a language in NP that has super-polynomial circuit complexity then P ≠ NP.
- **2** It allows us to identify a natural P-complete problem.
- **③** It provides an alternative proof for Cook-Levin theorem.

Definition. A language \mathcal{L} is P-complete (or PTIME-complete) if

- it is in P and
- \bullet every other language in P is LOGSPACE reducible to $\mathcal{L}.$

Circuit Value Problem (CVP) is the problem of checking, given
a circuit C and concrete input values, whether C outputs 1.
(Called MonotoneCVP if C does not include negation.)

Theorem. CVP is P-complete.

Proof Idea

- ${\rm \bullet \ Take \ the \ previous \ construction \ and \ some \ } {\cal L} \in {\sf P}.$
- Given x, construct a circuit that simulates a TM M for L on inputs of length x.
- The reduction has repetitive structure and is feasible in logarithmic space.

NP-completeness via Circuits; Cook's thm revisited

CIRCUIT-SAT is the problem of checking, given a circuit C, whether C outputs 1 for *some* setting of the inputs.

Theorem. CIRCUIT-SAT is NP-complete.

 $\textit{Proof idea} \text{ Membership in NP is obvious so take any } \mathcal{L} \in \mathsf{NP}.$

There is a verifier V_L(x, s) checking whether s is a solution for x.

⇒ V_L works in poly time in |x| and |s| is polynomial in |x|.
 Q V_L can be rendered as a circuit family C whose inputs encode x, s.

 $\Rightarrow C_{|x|+|s|}$ returns 1 iff s is a solution for x.

 To check x ∈ L, build C_{|x|+|s|} leaving the bits for s unknown ⇒ the satisfying values for unknowns yield the solutions for x.

Circuit-SAT and SAT are in direct correspondence

 \Rightarrow Cook-Levin theorem follows!

A key caveat of circuits. They are not a realistic model of computation!

Theorem. Any undecidable language has polynomial size circuits.

- $\label{eq:consider} \textbf{O} \mbox{ Consider any undecidable } \mathcal{L} \subseteq \{0,1\}^*.$
- 2 Let $U = \{1^n : \text{ the binary expansion of n is in } \mathcal{L} \}$
- U is undecidable: L reduces to it via an (exponential) reduction.
- U has a trivial family of polynomial circuits!
 - If $1^n \in U$ then C_n consists of n-1 AND gates.
 - If $1^n \notin U$ then C_n outputs 0.

The catch Constructing the circuits involves solving an unsolvable problem

Uniform circuit families

Given 1^n as input, C_n can be constructed in LOGSPACE. \Rightarrow Circuits should be easy to construct!

With uniformity, circuits become a sensible model of computation.

Theorem. A language \mathcal{L} is in P iff it has uniformly polynomial circuits.

Proof

- Assume \mathcal{L} has uniformly polynomial circuits and let $w \in \mathcal{L}$.
- **②** Construct $C_{|w|}$ in log. space (and hence in poly. time).
- Sevaluate the circuit (CVP is in P).

Circuit Complexity: Looking inside PTIME

Boolean circuits are genuinly *parallel* no "program" counter computational activity can happen concurrently at same-level gates.

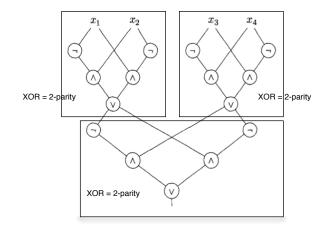
Parallel time complexity of a circuit related to the circuit's *depth*.

Simultaneous size-depth complexity of a language

 \mathcal{L} has simultaneous size-depth complexity (f(n), g(n)) if a uniform circuit family exists for \mathcal{L} with

- size complexity f(n) and
- depth complexity g(n).

Parity is feasible in (O(n), O(log(n)))



Definition. NC ("Nick's Class", after Nick Pippinger) For $i \ge 0$, NCⁱ consists of all languages solvable in $(O(n^k), O(\log^i(n)))$ with k an integer. Then, NC = $\bigcup_i NC^i$.

"polylogarithmic" depth

Nice features of NC

- Problems in NC are highly parallelisable with moderate amount of processors.
- Contains a wide range of relevant problems (e.g. standard arithmetic and matrix operations)

Theorem. $NC^1 \subseteq L$

Proof Consider $\mathcal{L} \in \mathsf{NC}^1$ and an input w of length n.

- Construct "on the fly" C_n from the uniform family C deciding \mathcal{L} .
- Solution Evaluate C_n on w in a depth-first manner from the output gate.
 - AND gate: evaluate recursively the first predecessor; if false, then we are done. Otherwise evaluate the second predecessor.
 - OR gate: same principle.
 - NOT: evaluate the unique predecessor and return opposite value.
- Is Record only the path to current gate and intermediate results
 ⇒ The circuit is logarithmic depth!

Theorem. $NL \subseteq NC^2$

Proof Consider w of length n and a TM \mathcal{M} for $\mathcal{L} \in \mathsf{NL}$.

- Construct (in log. space) the graph G_n of all possible configurations of \mathcal{M} for an input of length n.
 - Nodes of *G_n* are the (polynomially many) configurations of *M*, i.e.:
 - State
 - Contents of work tape
 - $\bullet\,$ Input tape head position and work tape head position
 - Given nodes c_1 and c_2 with c_1 input tape head position *i*
 - Add edge (c_1, c_2) labeled w_i if c_1 yields c_2 when $w_i = 1$
 - Add edge (c_1, c_2) labeled $\overline{w_i}$ if c_1 yields c_2 when $w_i = 0$
 - Add edge (c_1, c_2) unlabeled if c_1 yields c_2 regardless of w_i .
- Solution Build a circuit C_n computing reachability over G_n w.r.t. input w

 \Rightarrow feasible in $O(log^2n)$ depth.

Theorem. $\mathsf{NC} \subseteq \mathsf{P}$

Proof

Let $\mathcal{L} \in \mathsf{NC}$ be decided by a uniform circuit family C. On input w of length n proceed as follows:

- Construct C_n (using logarithmic space)
- 2 Evaluate (in polynomial time) the circuit on input w
 - C_n has n^k gates for some k
 - Circuits can be evaluated in time polynomial in the number of gates

An interesting open question is whether $\mathsf{P}\subseteq\mathsf{NC}$

We believe that this is not the case

 \Rightarrow not all tractable problems seem highly parallelizable!

So far we have restricted $\ensuremath{\operatorname{AND}}$ and $\ensuremath{\operatorname{OR}}$ gates to have 2 inputs.

Definition: The class AC^{*i*} analogous to NC^{*i*} for circuits with arbitrary fan-in gates.

Clearly (?), we have the following:

$$\mathsf{NC}^0 \subseteq \mathsf{AC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{AC}^1 \subseteq \dots$$

A class of special relevance is AC⁰

- Arbitrary fan-in AND and OR gates
- Polynomial number of gates
- Constant depth

$\mathsf{AC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathit{L} \subseteq \mathit{NL} \subseteq \mathsf{NC}^2 \subseteq \mathit{P}$

However, a great deal can be accomplished within AC⁰

- Integer addition
- Integer subtraction
- Even the evaluation of a (fixed) Relational Algebra query!!

Addition in AC⁰

Construct a circuit $C(x_n, \ldots, x_1, y_n, \ldots, y_1)$

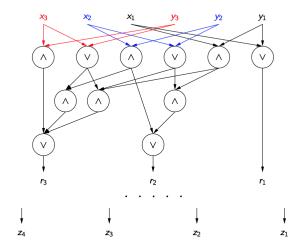
- Input are binary numbers x_n, \ldots, x_1 and y_n, \ldots, y_1
- We have n + 1 outputs $z_{n+1}, z_n, \ldots, z_1$ (a minor relaxation)

Notation:

Then, the "carried-over bit" c_i and result z_i are as follows (take $c_0 = 0$):

$$\begin{array}{lll} c_i &=& \operatorname{AND}_i \lor \left(\operatorname{OR}_i \land c_{i-1} \right) \\ z_i &=& \left(\neg \operatorname{OR}_i \land c_{i-1} \right) \lor \left(\operatorname{XOR}_i \land \neg c_{i-1} \right) \lor \left(\operatorname{AND}_i \land c_{i-1} \right) \end{array}$$

Note that $c_1 = AND_1$, $z_1 = XOR_1$ and $z_{n+1} = c_n$



Most interestingly, AC⁰ has provable limitations!

Theorem. Parity is not feasible in AC^0

As a consequence $\mathsf{AC}^0 \subset \mathsf{NC}^1$

$$\mathsf{AC}^0 \subset \mathsf{NC}^1 \subseteq \mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{NC}^2 \subseteq \mathsf{P}$$