Computational Complexity; slides 8, HT 2019 A Brief Introduction to randomisation

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2019

Randomised Algorithms

Randomised algorithms have access to a stream of random bits.
The running time and even the outcome may depend on random choices.

We may allow randomised algorithms to

- produce the wrong result, but only with small probability.
- take more than polynomially many steps, but not too often \rightsquigarrow expected running time is polynomial.

Some randomised classes

ZPP: "Las Vegas algorithms"; contains P. Poly expected time RP: one-sided error; no-instance \rightarrow "no", yes-instance \rightarrow "yes" with probability $\geq p$ (for some constant $p>0$) PP: "majority-P", contains NP, within PSPACE BPP: allow error either way (constant $<\frac{1}{2}$)

Usage of randomised algorithms

In practice, not so much for language recognition, more for simulation, stats/ML, or sampling for probability from probability distributions of interest
search for approximate average via sampling
Find median element of list $\left\{a_{1}, \ldots, a_{n}\right\}$: To find k-th highest element, randomly select "pivot" element and find k^{\prime}-th highest element of sublist (for suitable k^{\prime})

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)

- given prime number as input, says "prime"
- Given composite number as input, with prob. $1 / 4$ says "prime" (correct with prob. 3/4).
One-sided error; co-RP. Run it k times, say "composite" if we ever get that result, else "prime". Error prob is only $(1 / 4)^{k}$.

Language recognition problem where randomisation seems to help

Polynomial identity testing:
E.g. $\left(x^{2}+y\right)\left(x^{2}-y\right) \equiv x^{4}-y^{2}$
where \equiv means equality holds for $x, y \in \mathbb{N}$.
In general, if we have many variables, no known deterministic and efficient algorithm, but notice you can try plugging in random x, y and checking for equality: if we find answer is "no" we are done; moreover it turns out that for all no-instances you have good chance of verifying that.
works for arithmetic circuits; consider question $p\left(x_{1}, \ldots, x_{n}\right) \equiv 0$ for circuit with n inputs, 1 output, gates are,,$+- \times$.

Randomised Complexity Classes

$R P \subseteq N P$: accepting computation of an RP machine is a certificate of yes-instance.

It's unknown whether $\mathrm{BPP} \subseteq \mathrm{NP}$, but we argue that BPP represents problems that are in a sense solvable in practice (we expect NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances are accepted with prob. $>\frac{1}{2}$; no-instance with prob. $\leq \frac{1}{2}$.

- PP contains BPP (almost follows directly from the definitions)
- It also contains NP: we can make a PP algorithm that solves SAT.
- PP is a subset of PSPACE.

Probability amplification

BPP: problems that can be solved by a randomised algorithm

- with polynomial worst-case running time
- which has an error probability of $\varepsilon<\frac{1}{2}$.

RP: one-sided error; no-instance \rightarrow "no", yes-instance \rightarrow "yes" with probability $\geq p$ (for some constant $p>0$)

Useful? (even if, say, $p=10^{-6}$ for some RP problem, or error probability is $\frac{1}{2}-10^{-6}$ for some BPP problem?)

Probability amplification

BPP: problems that can be solved by a randomised algorithm

- with polynomial worst-case running time
- which has an error probability of $\varepsilon<\frac{1}{2}$.

RP: one-sided error; no-instance \rightarrow "no", yes-instance \rightarrow "yes" with probability $\geq p$ (for some constant $p>0$)

Useful? (even if, say, $p=10^{-6}$ for some RP problem, or error probability is $\frac{1}{2}-10^{-6}$ for some BPP problem?)

For problem X with RP algorithm having $p=10^{-6}$, run the algorithm 10^{6} times, finally output "yes" iff we see at least one "yes" output. Error probability goes down to $<\frac{1}{2}$!
co-RP algorithm: similar trick, output "no" iff we see at least one "no"

Probability Amplification

Corollary for RP algorithms:
Suppose \mathcal{A} solves problem X in polynomial time $p(n)$ and the probability that a yes-instance gives answer "yes" is only $1 / p^{\prime}(n)$ (p^{\prime} a polynomial), and no-instances always give answer "no". Then $X \in \mathrm{RP}$.

Probability Amplification

Corollary for RP algorithms:
Suppose \mathcal{A} solves problem X in polynomial time $p(n)$ and the probability that a yes-instance gives answer "yes" is only $1 / p^{\prime}(n)$
(p^{\prime} a polynomial), and no-instances always give answer "no". Then $X \in \mathrm{RP}$.

Warm-up for BPP: BPP algorithm with error prob $\frac{1}{2}-\varepsilon$: suppose we run it 3 times and take majority vote.

$$
\begin{aligned}
& \operatorname{Pr}[\text { error }]=\left(\frac{1}{2}-\varepsilon\right)^{3}+3\left(\frac{1}{2}-\varepsilon\right)^{2}\left(\frac{1}{2}+\varepsilon\right) \\
& =\left(\frac{1}{2}-\varepsilon\right)^{2}\left(\frac{1}{2}-\varepsilon+\frac{3}{2}+3 \varepsilon\right)=\left(\frac{1}{4}-\varepsilon+\varepsilon^{2}\right)(2+2 \varepsilon)=\frac{1}{2}-\frac{3}{2} \varepsilon+2 \varepsilon^{3}
\end{aligned}
$$

Lemma. If a problem can be solved by a BPP algorithm \mathcal{A}

- with polynomial worst-case running time
- which has an error probability of $0<\varepsilon<\frac{1}{2}$. then it can also be solved by a poly-time randomised algorithm with error probability $2^{-p(n)}$ for any fixed polynomial $p(n)$.

Probability Amplification

Proof.
Algorithm \mathcal{B} : On input w of length n,
(1) Calculate number k (details to follow)
(2) Run $2 k$ independent simulations of \mathcal{A} on input w
(3) accept if more calls to the algorithm accept than reject.

Probability Amplification

$S:=a_{1}, \ldots, a_{2 k}$: sequence of results obtained by running $\mathcal{A} 2 k$ times.
Suppose c of these are correct and $i=2 k-c$ are incorrect.
S is a bad sequence if $c \leq i$ so that \mathcal{B} gives the wrong answer.
The probability p_{S} for any bad sequence S to occur is

$$
p_{S} \leq \varepsilon^{i}(1-\varepsilon)^{c} \quad \leq \quad \varepsilon^{k}(1-\varepsilon)^{k}
$$

Probability Amplification

$S:=a_{1}, \ldots, a_{2 k}$: sequence of results obtained by running $\mathcal{A} 2 k$ times.
Suppose c of these are correct and $i=2 k-c$ are incorrect.
S is a bad sequence if $c \leq i$ so that \mathcal{B} gives the wrong answer.
The probability p_{S} for any bad sequence S to occur is

$$
p_{S} \leq \varepsilon^{i}(1-\varepsilon)^{c} \quad \leq \quad \varepsilon^{k}(1-\varepsilon)^{k}
$$

Hence: $\operatorname{Pr}[\mathcal{B}$ gives wrong result on input $w]=$

$$
\sum_{S \text { bad }} p_{S} \leq 2^{2 k} \cdot \varepsilon^{k}(1-\varepsilon)^{k}=(4 \varepsilon(1-\varepsilon))^{k}
$$

As $\varepsilon<\frac{1}{2}$ we get $4 \varepsilon(1-\varepsilon)<1$. Hence, to obtain probability $2^{-p(n)}$ we let

$$
\alpha=-\log _{2}(4 \varepsilon(1-\varepsilon)) \text { and choose } k \geq p(n) / \alpha
$$

General note

So, every problem that can be solved with error probability $\varepsilon<\frac{1}{2}$ can be solved with error probability $<2^{-p(n)}$.

But still. Is this useful?
To design algorithms that may go wrong any sense?

General note

So, every problem that can be solved with error probability $\varepsilon<\frac{1}{2}$ can be solved with error probability $<2^{-p(n)}$.

But still. Is this useful?
To design algorithms that may go wrong any sense?
Possible answers. One might argue that

- the probability that an algorithm with error probability of 2^{-100} has bad luck with the coin tosses is much smaller than the chance that any algorithm fails due to
- hardware failures,
- random bit mutations in the memory
- ...

Also, it is certainly better to have an efficient algorithm that goes wrong every 2^{100} times than to have no algorithm.

Non-Determinism as Randomisation

Definition. Let $\operatorname{RP}(f(n))$ be the class of problems that can be solved by a randomised algorithm

- with polynomial worst-case running time such that
- every input that should be rejected is rejected with certainty and
- every input of length n that should be accepted is rejected with probability $\leq f(n)$.

Here, $f(n)$ is a function with $0 \leq f(n)<1$ for all n.

Non-Determinism as Randomisation

Definition. Let $\operatorname{RP}(f(n))$ be the class of problems that can be solved by a randomised algorithm

- with polynomial worst-case running time such that
- every input that should be rejected is rejected with certainty and
- every input of length n that should be accepted is rejected with probability $\leq f(n)$.

Here, $f(n)$ is a function with $0 \leq f(n)<1$ for all n.

Definition. A problem belongs to the class RP* if it belongs to $\operatorname{RP}(f(n))$ for some function $f(n)$.

Non-Determinism as Randomisation

Definition. Let $\operatorname{RP}(f(n))$ be the class of problems that can be solved by a randomised algorithm

- with polynomial worst-case running time such that
- every input that should be rejected is rejected with certainty and
- every input of length n that should be accepted is rejected with probability $\leq f(n)$.

Here, $f(n)$ is a function with $0 \leq f(n)<1$ for all n.
Definition. A problem belongs to the class RP* if it belongs to $\operatorname{RP}(f(n))$ for some function $f(n)$.

Lemma. NP $=$ RP *.
but this would use inverse-exponential $f(n)$, e.g. $f(n)=2^{-n}$.

Reducing SAT to USAT with the aid of randomness

USAT: given a formula φ with at most 1 satisfying assignment, determine whether it is satisfiable. (U stands for "unique") We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly $(n) 2^{n}$. The "exponential time hypothesis" asserts that you need time proportional to 2^{n}.
But: note Grover's algorithm, a quantum algorithm solving USAT in time poly $(n) 2^{n / 2}$. Reducing SAT to USAT means that on a quantum machine, SAT is also solved in time poly $(n) 2^{n / 2}$!

Reducing SAT to USAT with the aid of randomness

USAT: given a formula φ with at most 1 satisfying assignment, determine whether it is satisfiable. (U stands for "unique") We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly $(n) 2^{n}$. The "exponential time hypothesis" asserts that you need time proportional to 2^{n}.
But: note Grover's algorithm, a quantum algorithm solving USAT in time poly $(n) 2^{n / 2}$. Reducing SAT to USAT means that on a quantum machine, SAT is also solved in time poly $(n) 2^{n / 2}$!

Challenge: Given φ, construct ψ such that ψ has a unique satisfying assignment iff φ is satisfiable.

Reducing SAT to USAT with the aid of randomness

USAT: given a formula φ with at most 1 satisfying assignment, determine whether it is satisfiable. (U stands for "unique") We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly $(n) 2^{n}$. The "exponential time hypothesis" asserts that you need time proportional to 2^{n}.
But: note Grover's algorithm, a quantum algorithm solving USAT in time poly $(n) 2^{n / 2}$. Reducing SAT to USAT means that on a quantum machine, SAT is also solved in time poly $(n) 2^{n / 2}$!

Challenge: Given φ, construct ψ such that ψ has a unique satisfying assignment iff φ is satisfiable.

Idea: $\psi:=\varphi \wedge \rho$, where ρ is some other formula over the same variables.

Reducing SAT to USAT

Challenge: Given φ, construct ψ such that ψ has a unique satisfying assignment iff φ is satisfiable.
Idea: $\psi:=\varphi \wedge \rho$, where ρ is some other formula over the same variables.
Extension of the idea: $\psi_{1}:=\varphi \wedge \rho_{1}, \ldots, \psi_{k}:=\varphi \wedge \rho_{k}$; look for satisfying assignment of any of these...

Problem: Think of φ as having been chosen by an opponent. Given a choice of $\rho_{1}, \ldots, \rho_{k}$, he can pick a φ that fails for your choice. This is where randomness helps!
(random) parity functions: let x_{1}, \ldots, x_{n} be the variables of φ. Let $\pi:=\oplus_{x \in R}(x) \oplus b$ where each x_{i} is added to R with prob. $\frac{1}{2}$, and b is chosen to be TRUE/FALSE with equal probability $\frac{1}{2}$.

Think of R as standing for "relevant attributes"

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider φ with set S of satisfying assignments. For random p.f. π, the expected number of satisfying assignments of $\varphi \wedge \pi$ is $\frac{1}{2}|S|$.
To see this, note that any satisfying assignment of φ gets eliminated with probability $\frac{1}{2}$.

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider φ with set S of satisfying assignments. For random p.f. π, the expected number of satisfying assignments of $\varphi \wedge \pi$ is $\frac{1}{2}|S|$.
To see this, note that any satisfying assignment of φ gets eliminated with probability $\frac{1}{2}$.

Corollary: letting $\rho_{k}:=\pi_{1} \wedge \ldots \wedge \pi_{k}$ for independently randomly-chosen π_{i}, the expected number of satisfying assignments to $\varphi \wedge \rho_{k}$ is $|S| / 2^{k}$.

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider φ with set S of satisfying assignments. For random p.f. π, the expected number of satisfying assignments of $\varphi \wedge \pi$ is $\frac{1}{2}|S|$.
To see this, note that any satisfying assignment of φ gets eliminated with probability $\frac{1}{2}$.

Corollary: letting $\rho_{k}:=\pi_{1} \wedge \ldots \wedge \pi_{k}$ for independently randomly-chosen π_{i}, the expected number of satisfying assignments to $\varphi \wedge \rho_{k}$ is $|S| / 2^{k}$.

This suggests the following approach:

- Generate ρ_{k} as above, for each $k=1,2, \ldots, n+1$.
- Search for a satisfying assignment to $\varphi \wedge \rho_{k}$.

Need to argue that for $k \approx \log _{2}|S|$, we have reasonable chance of producing a formula with a unique s.a.

Pairwise independence of random p.f's:

Given $x \neq x^{\prime} \in S$, and a random parity function π, we have:

$$
\operatorname{Pr}[x \text { satisfies } \pi]=\frac{1}{2} \quad \operatorname{Pr}\left[x^{\prime} \text { satisfies } \pi\right]=\frac{1}{2}
$$

In addition:
$\operatorname{Pr}\left[x\right.$ satisfies $\pi \mid x^{\prime}$ satisfies $\left.\pi\right]=\frac{1}{2}$

Proof:

For any $x, \pi(x)=v . x$ where v is characteristic vector of relevant attributes R of π.
($v . x$ denotes sum (XOR) of entries of x where corresponding entry of v is 1)
Let i be a bit position where $x_{i}^{\prime}=1$ and $x_{i}=0$. i gets added to R with probability $\frac{1}{2}$, so value of $\pi\left(x^{\prime}\right)$ gets flipped with probability $\frac{1}{2}$.

Reducing SAT to USAT

For some k, we have $2^{k-2} \leq|S| \leq 2^{k-1}$.
Lemma: $\operatorname{Pr}\left[\right.$ there is unique $x \in S$ satisfying $\left.\varphi \wedge \rho_{k}\right] \geq \frac{1}{8}$
(probability is w.r.t. random choice of ρ_{k}).
Proof: Let $p=2^{-k}$ be the probability that $x \in S$ satisfies ρ_{k}.
Let N be the random variable consisting the number of s.a.'s of $\varphi \wedge \rho_{k}$. $\mathrm{E}[N]=|S| p \in\left[\frac{1}{4}, \frac{1}{2}\right]$.

$$
\operatorname{Pr}[N \geq 1] \geq \sum_{x \in S} \operatorname{Pr}\left[x \models \rho_{k}\right]-\sum_{x<x^{\prime} \in S} \operatorname{Pr}\left[x \mid=\rho_{k} \wedge x^{\prime} \models \rho_{k}\right]=|S| p-\binom{|S|}{2} p^{2}
$$

By pairwise independence and union bound, we have $\operatorname{Pr}[N \geq 2] \leq\binom{|S|}{2} p^{2}$. So

$$
\operatorname{Pr}[N=1]=\operatorname{Pr}[N \geq 1]-\operatorname{Pr}[N \geq 2] \geq|S| p-2\binom{|S|}{2} p^{2} \geq|S| p-|S|^{2} p^{2} \geq \frac{1}{8}
$$

(where the last inequality uses $\frac{1}{4} \leq|S| p \leq \frac{1}{2}$.)

Notes on BPP

- $\mathrm{BPP} \subseteq \Sigma_{2}^{P} \cap \Pi_{2}^{P}$ (Sipser-Gács theorem)
- Class of problems having "useful" algorithms
- Not a "syntactic" complexity class: no obvious way to define a complete problem for BPP. (Similar point for RP: these are said to be "semantic" as opposed to "syntactic" classes.) P, NP, PSPACE, are syntactic. PP?

Next: TFNP (also not a syntactic class)

