Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2019

Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to
@ produce the wrong result, but only with small probability.

@ take more than polynomially many steps, but not too often

~> expected running time is polynomial.

Paul Goldberg Introduction to Randomisation

2/18

Some randomised classes

PP

ZPP: "Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance— “no"”, yes-instance— “yes" with
probability> p (for some constant p > 0)

PP: “majority-P", contains NP, within PSPACE

BPP: allow error either way (constant < 3)

Paul Goldberg Introduction to Randomisation 3/18

Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, stats/ML, or sampling for probability from probability
distributions of interest

search for approximate average via sampling

Find median element of list {a1,...,a,}: To find k-th highest
element, randomly select “pivot” element and find k’-th highest
element of sublist (for suitable k)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)
@ given prime number as input, says “prime”
e Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4).

Paul Goldberg Introduction to Randomisation 4/18

Language recognition problem where randomisation seems
to help

Polynomial identity testing:

Eg (+y)(*—y)=x*—y?
where = means equality holds for x, y € N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x, y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(xi,...,xn) =0
for circuit with n inputs, 1 output, gates are +, —, X.

Paul Goldberg Introduction to Randomisation 5/18

Randomised Complexity Classes

RPCNP: accepting computation of an RP machine is a certificate
of yes-instance.

It's unknown whether BPPCNP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > %; no-instance with prob. < %

e PP contains BPP (almost follows directly from the definitions)

@ It also contains NP: we can make a PP algorithm that solves
SAT.

@ PP is a subset of PSPACE.

Paul Goldberg Introduction to Randomisation 6/18

Probability amplification

BPP: problems that can be solved by a randomised algorithm
@ with polynomial worst-case running time

@ which has an error probability of ¢ < %

RP: one-sided error; no-instance— “no”, yes-instance— "“yes” with
probability> p (for some constant p > 0)

Useful? (even if, say, p = 107° for some RP problem, or error
probability is % —107° for some BPP problem?)

Paul Goldberg Introduction to Randomisation

7/18

Probability amplification

BPP: problems that can be solved by a randomised algorithm
@ with polynomial worst-case running time

@ which has an error probability of ¢ < %

RP: one-sided error; no-instance— “no”, yes-instance— "“yes” with
probability> p (for some constant p > 0)

Useful? (even if, say, p = 107° for some RP problem, or error
probability is % —107° for some BPP problem?)

For problem X with RP algorithm having p = 107°, run the
algorithm 10° times, finally output “yes” iff we see at least one
“yes" output. Error probability goes down to < %!

co-RP algorithm: similar trick, output “no” iff we see at least one

" 1]

no

Paul Goldberg Introduction to Randomisation 7/18

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X eRP.

Paul Goldberg Introduction to Randomisation 8/18

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X eRP.

Warm-up for BPP: BPP algorithm with error prob % —e&:
suppose we run it 3 times and take majority vote.

Prlerror] = (3 —€)° +3(5 — €)°(5 +¢)
=3 -G -c+2+3)=(L-c+H)2+2)=1-3c+2¢

Lemma. If a problem can be solved by a BPP algorithm A
@ with polynomial worst-case running time
@ which has an error probability of 0 < ¢ < %

then it can also be solved by a poly-time randomised algorithm
with error probability 27P(") for any fixed polynomial p(n).

Paul Goldberg Introduction to Randomisation

8/18

Probability Amplification

Proof.
Algorithm B: On input w of length n,

© Calculate number k (details to follow)
@ Run 2k independent simulations of A on input w

© accept if more calls to the algorithm accept than reject.

Paul Goldberg Introduction to Randomisation 9/18

Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ </ so that B gives the wrong answer.
The probability ps for any bad sequence S to occur is

ps <el(l—e) < ek1—e)k

Paul Goldberg Introduction to Randomisation 10/18

Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ </ so that B gives the wrong answer.
The probability ps for any bad sequence S to occur is
ps <el(l—e) < ek1—e)k

Hence: Pr[B gives wrong result on input w | =

S ps < PEK1oof = (4(1-2)F
S bad

As e < 3 we get 4¢(1 —¢) < 1. Hence, to obtain probability 2—p(n)
we let

a = —log,(4e(1 — €)) and choose k > p(n)/c. O

Paul Goldberg Introduction to Randomisation 10/18

General note

So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 27P(")

But still. Is this useful?

To design algorithms that may go wrong any sense?

Paul Goldberg Introduction to Randomisation 11/18

General note

So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 27P(")

But still. Is this useful?

To design algorithms that may go wrong any sense?

Possible answers. One might argue that

@ the probability that an algorithm with error probability of
27190 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

e hardware failures,

e random bit mutations in the memory

o ...
Also, it is certainly better to have an efficient algorithm that goes
wrong every 2190 times than to have no algorithm.

Paul Goldberg Introduction to Randomisation 11/18

Non-Determinism as Randomisation

Definition. Let RP(f(n)) be the class of problems that can be
solved by a randomised algorithm

@ with polynomial worst-case running time such that

@ every input that should be rejected is rejected with certainty
and

@ every input of length n that should be accepted is rejected
with probability < f(n).

Here, f(n) is a function with 0 < f(n) < 1 for all n.

Paul Goldberg Introduction to Randomisation 12/18

Non-Determinism as Randomisation

Definition. Let RP(f(n)) be the class of problems that can be
solved by a randomised algorithm

@ with polynomial worst-case running time such that

@ every input that should be rejected is rejected with certainty
and

@ every input of length n that should be accepted is rejected
with probability < f(n).

Here, f(n) is a function with 0 < f(n) < 1 for all n.

Definition. A problem belongs to the class RP* if it belongs to
RP(f(n)) for some function f(n).

Paul Goldberg Introduction to Randomisation 12/18

Non-Determinism as Randomisation

Definition. Let RP(f(n)) be the class of problems that can be
solved by a randomised algorithm

@ with polynomial worst-case running time such that

@ every input that should be rejected is rejected with certainty
and

@ every input of length n that should be accepted is rejected
with probability < f(n).

Here, f(n) is a function with 0 < f(n) < 1 for all n.

Definition. A problem belongs to the class RP* if it belongs to
RP(f(n)) for some function f(n).

Lemma. NP = RP*.

but this would use inverse-exponential f(n), e.g. f(n) =2"".

Paul Goldberg Introduction to Randomisation 12/18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ¢ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“exponential time hypothesis” asserts that you need time
proportional to 2",

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Paul Goldberg Introduction to Randomisation 13/18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ¢ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“exponential time hypothesis” asserts that you need time
proportional to 2",

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Paul Goldberg Introduction to Randomisation 13/18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ¢ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“exponential time hypothesis” asserts that you need time
proportional to 2",

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := v A p, where p is some other formula over the same
variables.

Paul Goldberg Introduction to Randomisation 13/18

Reducing SAT to USAT

Challenge: Given ¢, construct 1 such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := ¢ A p, where p is some other formula over the same
variables.

Extension of the idea: ¢1 := p A p1, ... Yk := © A pk; look for
satisfying assignment of any of these...

Problem: Think of ¢ as having been chosen by an opponent.
Given a choice of p1, ..., pk, he can pick a ¢ that fails for your
choice. This is where randomness helps!

(random) parity functions: let xi, ..., x, be the variables of .
Let 7 := @xer(x) ® b where each x; is added to R with prob. 2,
and b is chosen to be TRUE/FALSE with equal probability %

Think of R as standing for “relevant attributes”

Paul Goldberg Introduction to Randomisation 14 /18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
7, the expected number of satisfying assighments of ¢ A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Paul Goldberg Introduction to Randomisation 15/18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
7, the expected number of satisfying assighments of ¢ A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets

eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

Paul Goldberg Introduction to Randomisation 15/18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
7, the expected number of satisfying assighments of ¢ A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

This suggests the following approach:
@ Generate pj as above, foreach k=1,2,... ., n+ 1.
@ Search for a satisfying assignment to ¢ A p.

Need to argue that for k = log, |S|, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Introduction to Randomisation 15/18

Pairwise independence of random p.f's:

Given x # x’ € S, and a random parity function 7, we have:

Pr[x satisfies 7] = 3 Pr[x’ satisfies 7] = 3

In addition:
Pr[x satisfies 7|x’ satisfies] = 3

Proof:

For any x, m(x) = v.x where v is characteristic vector of relevant
attributes R of .

(v.x denotes sum (XOR) of entries of x where corresponding entry
of vis 1)

Let i be a bit position where x/ =1 and x; = 0. i gets added to R
with probability % so value of m(x’) gets flipped with probability %

Paul Goldberg Introduction to Randomisation 16 /18

Reducing SAT to USAT

For some k, we have 2k=2 < |§| < 2k-1,
Lemma: Pr[there is unique x € S satisfying ¢ A px] > %
(probability is w.r.t. random choice of p).

Proof: Let p=27% be the probability that x € S satisfies px.

Let N be the random variable consisting the number of s.a.'s of p A px
EIN =|Slp € 13,3

x€ES x<x'€S

S
Pr[N > 1] > ZPr[x E k] — Z Prix = px A X' |= pi] = |Slp — <|2|>p2
By pairwise independence and union bound, we have Pr[N > 2] < (I3!)p?. So

Pr[N = 1] = Pr[N > 1] — Pr[N > 2] > |S|p — 2<| |>p > |S|p— |SPp é

(where the last inequality uses + < [S|p < 1.)

Paul Goldberg Introduction to Randomisation

17/18

Notes on BPP

e BPPC ¥ nN¥ (Sipser-Gacs theorem)
@ Class of problems having “useful” algorithms

@ Not a “syntactic” complexity class: no obvious way to define
a complete problem for BPP. (Similar point for RP: these are
said to be “semantic” as opposed to “syntactic” classes.) P,
NP, PSPACE, are syntactic. PP?

Next: TFNP (also not a syntactic class)

Paul Goldberg Introduction to Randomisation 18/18

