
Computational Complexity; slides 8, HT 2019
A Brief Introduction to randomisation

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2019

Paul Goldberg Introduction to Randomisation 1 / 18

Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to

produce the wrong result, but only with small probability.

take more than polynomially many steps, but not too often

 expected running time is polynomial.

Paul Goldberg Introduction to Randomisation 2 / 18

Some randomised classes

ZPPRP co-RP

BPP

PP

ZPP: “Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance→“no”, yes-instance→“yes” with
probability≥ p (for some constant p > 0)
PP: “majority-P”, contains NP, within PSPACE
BPP: allow error either way (constant < 1

2)

Paul Goldberg Introduction to Randomisation 3 / 18

Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, stats/ML, or sampling for probability from probability
distributions of interest

search for approximate average via sampling

Find median element of list {a1, . . . , an}: To find k-th highest
element, randomly select “pivot” element and find k ′-th highest
element of sublist (for suitable k ′)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)

given prime number as input, says “prime”

Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4)k .

Paul Goldberg Introduction to Randomisation 4 / 18

Language recognition problem where randomisation seems
to help

Polynomial identity testing:

E.g. (x2 + y)(x2 − y) ≡ x4 − y2

where ≡ means equality holds for x , y ∈ N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x , y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(x1, . . . , xn) ≡ 0
for circuit with n inputs, 1 output, gates are +,−,×.

Paul Goldberg Introduction to Randomisation 5 / 18

Randomised Complexity Classes

RP⊆NP: accepting computation of an RP machine is a certificate
of yes-instance.

It’s unknown whether BPP⊆NP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > 1

2 ; no-instance with prob. ≤ 1
2 .

PP contains BPP (almost follows directly from the definitions)

It also contains NP: we can make a PP algorithm that solves
SAT.

PP is a subset of PSPACE.

Paul Goldberg Introduction to Randomisation 6 / 18

Probability amplification

BPP: problems that can be solved by a randomised algorithm

with polynomial worst-case running time

which has an error probability of ε < 1
2 .

RP: one-sided error; no-instance→“no”, yes-instance→“yes” with
probability≥ p (for some constant p > 0)

Useful? (even if, say, p = 10−6 for some RP problem, or error
probability is 1

2 − 10−6 for some BPP problem?)

For problem X with RP algorithm having p = 10−6, run the
algorithm 106 times, finally output “yes” iff we see at least one
“yes” output. Error probability goes down to < 1

2 !

co-RP algorithm: similar trick, output “no” iff we see at least one
“no”

Paul Goldberg Introduction to Randomisation 7 / 18

Probability amplification

BPP: problems that can be solved by a randomised algorithm

with polynomial worst-case running time

which has an error probability of ε < 1
2 .

RP: one-sided error; no-instance→“no”, yes-instance→“yes” with
probability≥ p (for some constant p > 0)

Useful? (even if, say, p = 10−6 for some RP problem, or error
probability is 1

2 − 10−6 for some BPP problem?)

For problem X with RP algorithm having p = 10−6, run the
algorithm 106 times, finally output “yes” iff we see at least one
“yes” output. Error probability goes down to < 1

2 !

co-RP algorithm: similar trick, output “no” iff we see at least one
“no”

Paul Goldberg Introduction to Randomisation 7 / 18

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p′(n)
(p′ a polynomial), and no-instances always give answer “no”. Then
X ∈RP.

Warm-up for BPP: BPP algorithm with error prob 1
2 − ε:

suppose we run it 3 times and take majority vote.

Pr[error] = (1
2
− ε)3 + 3(1

2
− ε)2(1

2
+ ε)

= (1
2
− ε)2(1

2
− ε+ 3

2
+ 3ε) = (1

4
− ε+ ε2)(2 + 2ε) = 1

2
− 3

2
ε+ 2ε3

Lemma. If a problem can be solved by a BPP algorithm A
with polynomial worst-case running time

which has an error probability of 0 < ε < 1
2 .

then it can also be solved by a poly-time randomised algorithm

with error probability 2−p(n) for any fixed polynomial p(n).

Paul Goldberg Introduction to Randomisation 8 / 18

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p′(n)
(p′ a polynomial), and no-instances always give answer “no”. Then
X ∈RP.

Warm-up for BPP: BPP algorithm with error prob 1
2 − ε:

suppose we run it 3 times and take majority vote.

Pr[error] = (1
2
− ε)3 + 3(1

2
− ε)2(1

2
+ ε)

= (1
2
− ε)2(1

2
− ε+ 3

2
+ 3ε) = (1

4
− ε+ ε2)(2 + 2ε) = 1

2
− 3

2
ε+ 2ε3

Lemma. If a problem can be solved by a BPP algorithm A
with polynomial worst-case running time

which has an error probability of 0 < ε < 1
2 .

then it can also be solved by a poly-time randomised algorithm

with error probability 2−p(n) for any fixed polynomial p(n).

Paul Goldberg Introduction to Randomisation 8 / 18

Probability Amplification

Proof.
Algorithm B: On input w of length n,

1 Calculate number k (details to follow)

2 Run 2k independent simulations of A on input w

3 accept if more calls to the algorithm accept than reject.

Paul Goldberg Introduction to Randomisation 9 / 18

Probability Amplification

S := a1, . . . , a2k : sequence of results obtained by running A 2k times.

Suppose c of these are correct and i = 2k − c are incorrect.

S is a bad sequence if c ≤ i so that B gives the wrong answer.

The probability pS for any bad sequence S to occur is

pS ≤ εi (1− ε)c ≤ εk(1− ε)k

Hence: Pr[B gives wrong result on input w] =∑
S bad

pS ≤ 22k · εk(1− ε)k = (4ε(1− ε))k

As ε < 1
2 we get 4ε(1− ε) < 1. Hence, to obtain probability 2−p(n)

we let

α = − log2(4ε(1− ε)) and choose k ≥ p(n)/α.

Paul Goldberg Introduction to Randomisation 10 / 18

Probability Amplification

S := a1, . . . , a2k : sequence of results obtained by running A 2k times.

Suppose c of these are correct and i = 2k − c are incorrect.

S is a bad sequence if c ≤ i so that B gives the wrong answer.

The probability pS for any bad sequence S to occur is

pS ≤ εi (1− ε)c ≤ εk(1− ε)k

Hence: Pr[B gives wrong result on input w] =∑
S bad

pS ≤ 22k · εk(1− ε)k = (4ε(1− ε))k

As ε < 1
2 we get 4ε(1− ε) < 1. Hence, to obtain probability 2−p(n)

we let

α = − log2(4ε(1− ε)) and choose k ≥ p(n)/α.

Paul Goldberg Introduction to Randomisation 10 / 18

General note

So, every problem that can be solved with error probability ε < 1
2

can be solved with error probability < 2−p(n).

But still. Is this useful?

To design algorithms that may go wrong any sense?

Possible answers. One might argue that

the probability that an algorithm with error probability of
2−100 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

hardware failures,
random bit mutations in the memory
...

Also, it is certainly better to have an efficient algorithm that goes
wrong every 2100 times than to have no algorithm.

Paul Goldberg Introduction to Randomisation 11 / 18

General note

So, every problem that can be solved with error probability ε < 1
2

can be solved with error probability < 2−p(n).

But still. Is this useful?

To design algorithms that may go wrong any sense?

Possible answers. One might argue that

the probability that an algorithm with error probability of
2−100 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

hardware failures,
random bit mutations in the memory
...

Also, it is certainly better to have an efficient algorithm that goes
wrong every 2100 times than to have no algorithm.

Paul Goldberg Introduction to Randomisation 11 / 18

Non-Determinism as Randomisation

Definition. Let RP
(
f (n)

)
be the class of problems that can be

solved by a randomised algorithm

with polynomial worst-case running time such that

every input that should be rejected is rejected with certainty
and

every input of length n that should be accepted is rejected
with probability ≤ f (n).

Here, f (n) is a function with 0 ≤ f (n) < 1 for all n.

Definition. A problem belongs to the class RP∗ if it belongs to
RP
(
f (n)

)
for some function f (n).

Lemma. NP = RP∗.

but this would use inverse-exponential f (n), e.g. f (n) = 2−n.

Paul Goldberg Introduction to Randomisation 12 / 18

Non-Determinism as Randomisation

Definition. Let RP
(
f (n)

)
be the class of problems that can be

solved by a randomised algorithm

with polynomial worst-case running time such that

every input that should be rejected is rejected with certainty
and

every input of length n that should be accepted is rejected
with probability ≤ f (n).

Here, f (n) is a function with 0 ≤ f (n) < 1 for all n.

Definition. A problem belongs to the class RP∗ if it belongs to
RP
(
f (n)

)
for some function f (n).

Lemma. NP = RP∗.

but this would use inverse-exponential f (n), e.g. f (n) = 2−n.

Paul Goldberg Introduction to Randomisation 12 / 18

Non-Determinism as Randomisation

Definition. Let RP
(
f (n)

)
be the class of problems that can be

solved by a randomised algorithm

with polynomial worst-case running time such that

every input that should be rejected is rejected with certainty
and

every input of length n that should be accepted is rejected
with probability ≤ f (n).

Here, f (n) is a function with 0 ≤ f (n) < 1 for all n.

Definition. A problem belongs to the class RP∗ if it belongs to
RP
(
f (n)

)
for some function f (n).

Lemma. NP = RP∗.

but this would use inverse-exponential f (n), e.g. f (n) = 2−n.

Paul Goldberg Introduction to Randomisation 12 / 18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ϕ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“exponential time hypothesis” asserts that you need time
proportional to 2n.
But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

Paul Goldberg Introduction to Randomisation 13 / 18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ϕ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“exponential time hypothesis” asserts that you need time
proportional to 2n.
But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

Paul Goldberg Introduction to Randomisation 13 / 18

Reducing SAT to USAT with the aid of randomness

USAT: given a formula ϕ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)
We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“exponential time hypothesis” asserts that you need time
proportional to 2n.
But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

Paul Goldberg Introduction to Randomisation 13 / 18

Reducing SAT to USAT

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.
Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.
Extension of the idea: ψ1 := ϕ ∧ ρ1, ... ,ψk := ϕ ∧ ρk ; look for
satisfying assignment of any of these...

Problem: Think of ϕ as having been chosen by an opponent.
Given a choice of ρ1, . . . , ρk , he can pick a ϕ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, . . . , xn be the variables of ϕ.
Let π := ⊕x∈R(x)⊕ b where each xi is added to R with prob. 1

2 ,
and b is chosen to be true/false with equal probability 1

2 .

Think of R as standing for “relevant attributes”

Paul Goldberg Introduction to Randomisation 14 / 18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Introduction to Randomisation 15 / 18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Introduction to Randomisation 15 / 18

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Introduction to Randomisation 15 / 18

Pairwise independence of random p.f’s:

Given x 6= x ′ ∈ S , and a random parity function π, we have:

Pr[x satisfies π] = 1
2 Pr[x ′ satisfies π] = 1

2

In addition:
Pr[x satisfies π|x ′ satisfies π] = 1

2

Proof:
For any x , π(x) = v .x where v is characteristic vector of relevant
attributes R of π.
(v .x denotes sum (XOR) of entries of x where corresponding entry
of v is 1)
Let i be a bit position where x ′i = 1 and xi = 0. i gets added to R
with probability 1

2 , so value of π(x ′) gets flipped with probability 1
2 .

Paul Goldberg Introduction to Randomisation 16 / 18

Reducing SAT to USAT

For some k, we have 2k−2 ≤ |S | ≤ 2k−1.
Lemma: Pr[there is unique x ∈ S satisfying ϕ ∧ ρk] ≥ 1

8
(probability is w.r.t. random choice of ρk).

Proof: Let p = 2−k be the probability that x ∈ S satisfies ρk .
Let N be the random variable consisting the number of s.a.’s of ϕ ∧ ρk .
E[N] = |S |p ∈ [1

4
, 1
2
].

Pr[N ≥ 1] ≥
∑
x∈S

Pr[x |= ρk]−
∑

x<x′∈S

Pr[x |= ρk ∧ x ′ |= ρk] = |S |p −

(
|S |
2

)
p2

By pairwise independence and union bound, we have Pr[N ≥ 2] ≤
(|S|

2

)
p2. So

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S |p − 2

(
|S |
2

)
p2 ≥ |S |p − |S |2p2 ≥ 1

8
.

(where the last inequality uses 1
4
≤ |S |p ≤ 1

2
.)

Paul Goldberg Introduction to Randomisation 17 / 18

Notes on BPP

BPP⊆ ΣP
2 ∩ ΠP

2 (Sipser-Gács theorem)

Class of problems having “useful” algorithms

Not a “syntactic” complexity class: no obvious way to define
a complete problem for BPP. (Similar point for RP: these are
said to be “semantic” as opposed to “syntactic” classes.) P,
NP, PSPACE, are syntactic. PP?

Next: TFNP (also not a syntactic class)

Paul Goldberg Introduction to Randomisation 18 / 18

