Schedule S1, (Computer Science, CS and Philosophy, Maths and CS) Schedule B, MSc in Advanced Computer Science

Hilary Term 2022

Computational Complexity

Exercise class 1: background (TMs, (un)decidability); polynomial-time computability

1. Arrange the following functions in increasing order of order-of-growth. (Do any of them have the same order of growth?)

(a.) n^{10} (b.) $(n^2)^{\log 2}$	ⁿ (c.) $(1.1)^n$	(d.) $(\log n)^{\log n}$
-------------------------------------	-----------------------------	--------------------------

- (e.) $n^{\log n}$ (f.) $100n^2$ (g.) $n!/(2^n)$
- 2. Consider boolean functions whose inputs are propositional variables x_1, \ldots, x_n , which map n boolean values to a single output value.

Prove that for any polynomial p(n), there exist functions that cannot be written down using a formula of size at most p(n). (A formula is built up from x_1, \ldots, x_n and the usual connectives \land, \lor, \neg .)

3. Let \mathcal{L} be a language and define a new language \mathcal{L}' as follows. For every word $w \in \mathcal{L}$, include $w0^{|w|^2}$ in \mathcal{L}' . That is, a word in \mathcal{L}' consists of a word in \mathcal{L} , extended with a sequence of 0's whose length is the square of the length of w.

Prove that \mathcal{L} is recognisable in polynomial time if and only if \mathcal{L}' is recognisable in polynomial time. (You may assume that 0 is not in the alphabet of \mathcal{L} .)

4. A *Turing machine with two-sided unbounded tapes* is a Turing acceptor where the tapes are unbounded to both sides. Show that such machines can be simulated by our standard model of Turing machines.

Note: You do not have to give the formal definition of the Turing machine. A precise description of what the machine does and how it simulates the original machine is sufficient.

5. Prove that if \mathcal{L} is recognisable in polynomial time, then so is \mathcal{L}^* , where

$$\mathcal{L}^* := \{ w \in \Sigma^* : w = w_1 w_2 w_3 \dots w_k, \quad w_i \in \mathcal{L} \text{ for all } 1 \le i \le k \}$$

- 6. (a) Prove that the following problem is undecidable: Given a (standard encoding of a) Turing machine, the question is: does it run in polynomial time?
 - (b) Suggest a definition of "polynomial-time Turing machine" having the property that such a machine is computationally easy to recognise, and such that every language in the class P is accepted by such a machine. Explain how your definition achieves this.
- 7. Suppose the decision version of the Clique problem

CLIQUEInput:Graph $G, k \in \mathbb{N}$ Problem:Does G have a clique of size $\geq k$?

can be solved in time T(n) for some function $T: \mathbb{N} \to \mathbb{N}$ with $T(n) \ge n$. Prove that the optimisation version

OPT-CL	IQUE
Input:	Graph G
Problem:	Compute a clique in G of maximum order

can be solved in time $O(n^c \cdot T(n))$, for some $c \in \mathbb{N}$.