Hilary Term 2022

Computational Complexity

Exercise class 3: more reductions, the class DP

1. The class DP is defined as follows. We say that a language \mathcal{L} belongs to DP if there exist languages $\mathcal{L}_1 \in \text{NP}$ and $\mathcal{L}_2 \in \text{co-NP}$ such that $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$.

Let G be an undirected graph and let k be an integer. G contains a clique of size k if there exists some subset $S \subseteq V(G)$ with |S| = k such that there exists an edge $\{x, y\}$ for every pair of distinct vertices $x, y \in S$. The language CLIQUE is then defined as follows:

 $CLIQUE = \{ \langle G, k \rangle : G \text{ an undirected graph containing a clique of size} \geq k \}$

We define the following languages:

UNIQUESAT = { ϕ : ϕ is a propositional formula with exactly one satisfying assignment} SAT = { ϕ : ϕ is a satisfiable propositional formula}

SAT-UNSAT = { $\langle \phi, \psi \rangle$: ϕ and ψ propositional formulas, ϕ satisfiable, ψ unsatisfiable} EXACTCLIQUE = { $\langle G, k \rangle$: The largest clique in G is of size exactly k}

Answer the following questions:

- (a) Show that $NP \cup co-NP \subseteq DP$.
- (b) Show that UNIQUESAT and EXACTCLIQUE are in DP.
- (c) Show that SAT-UNSAT is DP-complete.
- (d) Show that DP is contained in EXPTIME.
- (e) Suppose that we could find a polynomial time computable reduction from SAT-UNSAT to $\overline{\text{SAT}}$. Discuss the complexity-theoretic implications that such a finding would have.
- 2. Given two Boolean formulae ϕ and ψ , we say that ϕ is *equivalent* to ψ if ϕ and ψ have the same set of variables, and for any truth assignment β to those variables, β makes ϕ true if and only if it makes ψ true. We say that a Boolean formula ϕ is *minimal* if there is no shorter formula ψ such that ϕ is equivalent to ψ .

The language MF is the language of minimal Boolean formulae, i.e.:

 $MF = \{ \langle \phi \rangle : \phi \text{ is a minimal Boolean formula} \}.$

- (a) Show that $MF \in PSPACE$.
- (b) Explain the fallacy in the following argument: If $\phi \notin MF$, then there exists a smaller equivalent formula. An NTM can verify that $\phi \in \overline{MF}$ by guessing a smaller formula ψ and checking if ϕ is equivalent to ψ . Therefore, MF \in co-NP.

3. Recall that in lectures we introduced the notion of an oracle-based complexity class A^B, where A and B are complexity classes. A detailed definition is below.

What relationships can you identify between DP, P^{NP} , and P^{co-NP} ?

Definition. An oracle Turing Machine (OTM) is a Turing Machine M that has a special read-write tape (the machine's oracle tape) and three special states: q_{query} , q_{yes} , q_{no} . To execute M, we specify in addition a language $\mathcal{O} \subseteq \{0,1\}^*$ that is used as the oracle for M. Whenever during the execution M enters the state q_{query} , the machine moves to the state q_{yes} if $w \in \mathcal{O}$ and q_{no} if $w \notin \mathcal{O}$, where w denotes the contents of the special oracle tape. Regardless of the choice of \mathcal{O} , a membership query to \mathcal{O} counts only as a single computation step. For every $\mathcal{O} \in \{0,1\}^*$, $P^{\mathcal{O}}$ is the class of problems that can be decided by a polynomial-time deterministic TM with oracle access to \mathcal{O} . The corresponding class of problems based on non-deterministic Turing machines is denoted as NP^{\mathcal{O}}.