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Administrative notes

It is nice to return to teaching in-person!

www.cs.ox.ac.uk/people/paul.goldberg/CC/index.html

Slides, exercise sheets, often updated

www.cs.ox.ac.uk/teaching/courses/2021-2022/complexity/

General info

Problem sheets: classes planned for weeks 3 – 8
Available on web page by Monday of previous week
check hand-in deadlines
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Aims

(from the web page)

Introduce the most important complexity classes

Give you tools to classify problems into appropriate complexity
classes

Enable you to reduce one problem to another

Above terminology to be made precise

We will see there are major gaps in our understanding of
computation!

here, mostly focus on time/space requirements; there is also “communication
complexity”, “query complexity”, ...

note usage of word “complexity”
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Background, other courses

Hopefully you know about algorithms, big-O notation, “problem”,
TM, propositional logic. See e.g. chapter 7.1 in Sipser’s textbook
Part A courses:

Models of Computation:

Introduce Turing machines as a universal computing device
Classification of problems into decidable/undecidable
further classification of undecidable problems

Logic and Proof:

SAT, CNF, etc

Algorithms (part A)

address “intractability” studied here

Design and Analysis of Algorithms (prelims)

design of efficient algorithms.
asymptotic complexity analysis of runtime.
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Polynomial-time computation, the class P

problems solvable in time O(n), O(n log n), O(n10), ...

Given a novel problem, usual Q1: is it in P?

Why do we like this concept?

nice closure/composition properties
composition of 2 poly-time algorithms is poly-time

P works surprisingly well as a model of “efficiently
computable”, “fast algorithm”
If a problem is solvable in time O(n100), usually it has a
genuinely efficient algorithm

We can ignore details of model of computation; “clean”
analysis

poly-time algorithms highlight structure of a problem they
solve (quote on next slide)
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“poly-time” not just about computational efficiency

Poly-time algorithm tells you about the structure of a problem.
Contrast with “brute-force” algorithm

A relevant quote (context: looking for “equilibrium prices” in
markets)

What do we learn by proving that an equilibrium computation
problem is “difficult” in a complexity-theoretic sense? First,
assuming widely believed mathematical conjectures, it implies that
there will never be a fast, general-purpose computational method
for solving the problem. Second, it rules out many structural
results, such as convexity or duality, that are often used to
understand and justify economic models.

Tim Roughgarden: Computing equilibria: a computational complexity
perspective Economic Theory (2010)
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Some problems don’t seem to have efficient algorithms
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Road map (roughly)

1 [2 lectures] introduction, Turing machines, (un)decidability,
reductions

move swiftly from qualitative to quantitative considerations:

2 [1 lecture] Deterministic Complexity Classes. DTIME[t].
Linear Speed-up Theorem. PTime. Polynomial reducibility.

3 [3 lectures] NP, co-NP, (co-)NP-completeness.
Non-deterministic Turing machines. NTIME[t]. Polynomial
time verification. NP-completeness. Cook-Levin Theorem.

4 [3 lectures] Space complexity and hierarchy theorems.
DSPACE[s]. Linear Space Compression Theorem. PSPACE,
NPSPACE. PSPACE = NPSPACE. PSPACE-completeness.
Quantified Boolean Formula problem is PSPACE-complete. L,
NL and NL-completeness. NL = coNL. Hierarchy theorems.
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Road map

5 [2 lectures] Randomized Complexity. The classes BPP,
RP, ZPP. Interactive proof systems: IP = PSPACE.

6 Advanced topics. Randomised complexity, Circuit
complexity, total search
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Reading List

Primary:

S. Arora and B. Barak, Computational Complexity: A Modern
Approach, Cambridge University Press

M. Sipser, Introduction to the Theory of Computation, 2005

Further:

C.H. Papadimitriou, Computational Complexity, 1994.

I. Wegener, Complexity Theory, Springer, 2005.

O. Goldreich, Complexity Theory, CUP, 2008.

M.R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, 1979.

T.H. Cormen, S. Clifford, C.E. Leiserson and R. L. Rivest,
Introduction to Algorithms, 2001.
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Example: shortest path problem

SHORTEST PATH

Given a weighted graph and two vertices s, t, find a shortest path
between s and t.

Can be solved efficiently (for instance with Dijkstra’s algorithm)
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related example: longest path

LONGEST PATH

Given a weighted graph and two vertices s, t, find a longest simple
(cycle-free) path between s and t.

No efficient solution known (and conjectured not to exist)
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Problem: X−Y disjoint paths

X−Y -DISJOINT PATHS

Given a graph, two sets X ,Y of vertices and k ∈ N, find k disjoint
paths between vertices in X and Y .

Can be solved efficiently using network flow techniques
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Problem: disjoint paths

DISJOINT PATHS

Given a graph, two tuples X := (s1, . . . , sk),Y := (t1, . . . , tk) of
vertices, find disjoint paths linking si , ti , for all i .

No efficient solution known (and conjectured not to exist)
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Problem: Length Constrained Disjoint Paths

LENGTH CONSTRAINED DISJOINT PATHS

Given a graph, two vertices s, t and c , k ∈ N, find k disjoint paths
between s and t of length ≤ c .

No efficient solution known (and conjectured not to exist)
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Problem: Solving Linear Equations

INTEGER PROGRAMMING
Input: a system of linear equations

Problem: check whether it has an integer solution.

Example:

x + y = 2

y − 3z = 5

No efficient solution known (and conjectured not to exist)
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Problem: solving polynomial equations over integers

DIOPHANTINE EQUATIONS
Input: a system of Diophantine equations

Problem: check whether it has an integer solution.

Example:

xyz − y3 + z2 = 2

y − 3z = 5

Undecidable — no algorithmic solution!

https://en.wikipedia.org/wiki/Diophantine_equation

https://en.wikipedia.org/wiki/Hilbert’s_tenth_problem
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Motivation

Questions.

Why are some problems so much harder to solve than other –
seemingly very similar – problems?

Are they really harder to solve?

Or have we just not found the right method to do so?

Computational Complexity:
classify problems according to the amount of resources (runtime,
space, communication, etc) needed for their computation.

Classify problems into classes of problems which are of the
same “difficulty”.

Provide methods to establish the complexity of a problem.
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Graph Problems: CLIQUE

Clique: A clique in a graph G is a complete subgraph of G .

MAX CLIQUE
Input: Graph G

Problem: Find largest clique C ⊆ G

That’s an optimisation problem. Corresponding decision problem
would specify a number k and ask for a “k-clique”.

https://en.wikipedia.org/wiki/Clique_problem

...another notoriously hard problem; has an obvious brute-force
algorithm.
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CLIQUE

Can search for a k-clique of an n-vertex graph in time O(nk .k2),
poly(n) if k is constant.

Follow-up question:
Can we search for a k-clique in time f (k).p(n), where p(·) is a
polynomial?
Unlikely — CLIQUE is “fixed parameter intractable”.
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General observations

Classification of problems relies on various mathematical
conjectures of which the most famous is the “P6=NP” belief.

There are other, mostly stronger, ones, e.g. the “exponential time
hypothesis”, which has been used to prove that k-CLIQUE cannot
be solved in time no(k).

Lower bounds on runtime requirements are hard to show! Needs
details of model of computation. More progress is often possible
for lower bounds on query complexity and communication
complexity of various problems.
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