
Computational Complexity; slides 10, HT 2022
Polynomial hierarchy, LOGSPACE

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg Polynomial hierarchy 1 / 20

The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

“intermediate” problems:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn ϕ

Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn ϕ

Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn ϕ

etc.

 yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5

Paul Goldberg Polynomial hierarchy 2 / 20

The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

“intermediate” problems:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn ϕ

Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn ϕ

Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn ϕ

etc.

 yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5

Paul Goldberg Polynomial hierarchy 2 / 20

The polynomial-time hierarchy

There are multiple equivalent definitions of the classes of the
polynomial hierarchy. — Wikipedia

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn ϕ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...

Paul Goldberg Polynomial hierarchy 3 / 20

The polynomial-time hierarchy

There are multiple equivalent definitions of the classes of the
polynomial hierarchy. — Wikipedia

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn ϕ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...

Paul Goldberg Polynomial hierarchy 3 / 20

The polynomial-time hierarchy

diagram taken from Wikipedia

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

∆P
i+1 := PΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!

Paul Goldberg Polynomial hierarchy 4 / 20

The polynomial-time hierarchy

diagram taken from Wikipedia

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

∆P
i+1 := PΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!

Paul Goldberg Polynomial hierarchy 4 / 20

Examples

Many diverse problems are complete for low levels of PH
http://ovid.cs.depaul.edu/documents/phcom.pdf

Example of a ΣP
2 -complete problem: MIN-DNF: consists of a DNF

formula ϕ and integer k.
Question: is there a DNF formula ψ for which ψ ≡ ϕ and ψ has
size at most k?

Containment in ΣP
2 : note that the problem is of the form

∃ (bit-string describing ψ) ∀ (valuations β of boolean variables)
ϕ and ψ agree on β

Hardness requires ∃x∀y(formula over variables x , y) to be
efficiently encoded as (ϕ, k), instance of MIN-DNF...

Paul Goldberg Polynomial hierarchy 5 / 20

http://ovid.cs.depaul.edu/documents/phcom.pdf

The polynomial-time hierarchy

PH denotes the union of class in the hierarchy

Some key facts:

PH lies below PSPACE; if any problem is complete for PH, it
must belong to the k-th level of the hierarchy, and PH would
“collapse” to that level

Classes in PH are characterised by restricted alternating TMs

If P is equal to NP, then PH would collapse to P (next slide)

If NP is equal to co-NP, then PH collapses to NP. (hints that
NP 6= co-NP.)

If the graph isomorphism problem is NP-complete, then the PH
collapses to the second level (Schöning 1987)
...evidence that the problem is not in fact NP-complete.

Paul Goldberg Polynomial hierarchy 6 / 20

The polynomial-time hierarchy

Theorem: If P is equal to NP, then PH would collapse to P

Proof: If P is equal to NP, it’s also the same as co-NP

Recall the expressions

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

∆P
i+1 := PΣP

i

and proceed by induction on i

i.e. ΣP
2 = NPΣP

1 = NPNP (by def, ΣP
1 = NP)

= PP (by assumption of the theorem)
= P
etc.

Paul Goldberg Polynomial hierarchy 7 / 20

PH is “structure between NP and PSPACE”: a sequence of classes
that “seem” to all be different.

Next: Logarithmic space: structure within P

Paul Goldberg Polynomial hierarchy 8 / 20

Logarithmic Space

Polynomial space: seems more powerful than NP.

Linear space: we noted is similar to polynomial space

Sub-linear space?
To be meaningful, we consider Turing machines with separate
input tape and only count working space.

LOGSPACE (or, L) Problems solvable by logarithmic space
bounded TM

NLOGSPACE (or, NL) Problems solvable by logarithmic space
bounded NTM

Not hard to show that L⊆NL⊆P

(Sipser Chapter 8.4, Arora/Barak, p.80)

Paul Goldberg Polynomial hierarchy 9 / 20

Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

a fixed number of counters (up to length of input)

a fixed number of pointers to positions in the input string.

Hence,

LOGSPACE contains all problems requiring only a constant
number of counters/pointers for solving.

NLOGSPACE contains all problems requiring only a constant
number of counters/pointers for verifying solutions.

Paul Goldberg Polynomial hierarchy 10 / 20

Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

a fixed number of counters (up to length of input)

a fixed number of pointers to positions in the input string.

Hence,

LOGSPACE contains all problems requiring only a constant
number of counters/pointers for solving.

NLOGSPACE contains all problems requiring only a constant
number of counters/pointers for verifying solutions.

Paul Goldberg Polynomial hierarchy 10 / 20

Examples: Problems in L

Example. The language {0n1n : n ≥ 0}

Algorithm.

Check that no 1 is ever followed by a 0
Requires no working space. (only movements of the read head)

Count the number of 0’s and 1’s.

Compare the two counters.

Example. Palindromes ∈ LOGSPACE
(words that read the same forward and backward)

Algorithm.

Use two pointers, one to the beginning and one to the end of
the input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards.

Paul Goldberg Polynomial hierarchy 11 / 20

Examples: Problems in L

Example. The language {0n1n : n ≥ 0}

Algorithm.

Check that no 1 is ever followed by a 0
Requires no working space. (only movements of the read head)

Count the number of 0’s and 1’s.

Compare the two counters.

Example. Palindromes ∈ LOGSPACE
(words that read the same forward and backward)

Algorithm.

Use two pointers, one to the beginning and one to the end of
the input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards.

Paul Goldberg Polynomial hierarchy 11 / 20

Example: A Problem in NL

Example. The following problem is in NL:

Reachability a.k.a. Path
Input: Directed graph G , vertices s, t ∈ V (G)

Problem: Does G contain a path from s to t?

Algorithm.
Set counter c := |V (G)|
Let pointer p point to s

while c 6= 0 do

if p = t then halt and accept

else

nondeterministically select a successor p′ of p

set p := p′

c := c − 1

reject.

Paul Goldberg Polynomial hierarchy 12 / 20

LOGSPACE Reductions

Polynomial-time reductions are too “coarse” to compare poly-time
vs. log-space computability.

Definition. A LOGSPACE-transducer M is a TM with

a read-only input tape

a write only, write once output tape

a memory tape of size O(log(n))

M computes a function f : Σ∗ → Σ∗, where f (w) is the content of
the output tape of M running on input w when M halts.

f is called a logarithmic space computable function.

Definition.
A LOGSPACE reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log space
computable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′

Paul Goldberg Polynomial hierarchy 13 / 20

LOGSPACE Reductions

Polynomial-time reductions are too “coarse” to compare poly-time
vs. log-space computability.

Definition. A LOGSPACE-transducer M is a TM with

a read-only input tape

a write only, write once output tape

a memory tape of size O(log(n))

M computes a function f : Σ∗ → Σ∗, where f (w) is the content of
the output tape of M running on input w when M halts.

f is called a logarithmic space computable function.

Definition.
A LOGSPACE reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log space
computable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′

Paul Goldberg Polynomial hierarchy 13 / 20

LOGSPACE Reductions

Polynomial-time reductions are too “coarse” to compare poly-time
vs. log-space computability.

Definition. A LOGSPACE-transducer M is a TM with

a read-only input tape

a write only, write once output tape

a memory tape of size O(log(n))

M computes a function f : Σ∗ → Σ∗, where f (w) is the content of
the output tape of M running on input w when M halts.

f is called a logarithmic space computable function.

Definition.
A LOGSPACE reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log space
computable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′
Paul Goldberg Polynomial hierarchy 13 / 20

NLOGSPACE (or, NL)-Completeness

NL-completeness.
A problem L ∈ NL is complete for NL, if every other language in
NL is log space reducible to L.

Theorem. Reachability (or, Path) is NL-complete.

Proof idea. (details to follow)
Let M be a non-deterministic LOGSPACE TM deciding L.

On input w :

1 construct a graph whose nodes are configurations of M and
edges represent possible computational steps of M on w

2 Find a path from the start configuration to an accepting
configuration.

Paul Goldberg Polynomial hierarchy 14 / 20

NL-Completeness of Path

some more details.

Construct 〈G , s, t〉 from M and w using a LOGSPACE-transducer:

1 A configuration (q,w2, (p1, p2)) of M can be described in
c log n space for some constant c and n = |w |.

2 List the nodes of G by going through all strings of length
c log n and outputting those that correspond to legal
configurations.

3 List the edges of G by going through all pairs of strings
(C1,C2) of length c log n and outputting those pairs where
C1 `M C2.

4 s is the starting configuration of G .

5 Assume w.l.o.g. that M has a single accepting configuration t.

w ∈ L iff 〈G , s, t〉 ∈ Reachability

(see Sipser Thm. 8.25)

Paul Goldberg Polynomial hierarchy 15 / 20

co-NLOGSPACE

As for time, we consider complement classes for space.

Recall
If C is a complexity class, we define

co-C := {L : L ∈ C}.

From Savitch’s theorem:

PSPACE = NPSPACE and hence co-NPSPACE = PSPACE

Paul Goldberg Polynomial hierarchy 16 / 20

NLOGSPACE = co-NLOGSPACE

However, from Savitch’s theorem we only know

NLOGSPACE ⊆ DSPACE(log2 n).

Theorem. (Immerman and Szelepcsényi ’87-8)

NLOGSPACE = co-NLOGSPACE

Proof idea.

Show that Reachability is in NL.

Paul Goldberg Polynomial hierarchy 17 / 20

NLOGSPACE = co-NLOGSPACE

Proof sketch. On input 〈G , s, t〉, let m = |V (G)|.
Define ci to be number of nodes reachable from s in ≤ i steps;
compute ci for increasing i = 1, 2, . . . ,m

1 Only node s is reachable in 0 steps, so c0 = 1
2 For each i = 1, . . . ,m, set ci = 1, remember ci−1, and for

each v 6= s in G
1 d := 0
2 For each node u in G

1 guess if reachable from s in ≤ i − 1 steps, if so do (2,3):
2 Verify each “yes” guess by guessing an at most i − 1 step path

from s to u; if so, d := d + 1; reject if no such path found
3 If we guessed that u is reachable, and (u, v) ∈ E(G), then

increment ci and continue with next v

3 If total number d of u guessed is not equal to ci−1, then reject

Continued...

Paul Goldberg Polynomial hierarchy 18 / 20

NLOGSPACE = co-NLOGSPACE

Proof sketch (continued). On input 〈G , s, t〉
(at this stage we have cm)

Then try to guess cm nodes reachable from s and not equal to t:

1 For each node u in G , guess if reachable from s in m steps

2 Verify each “yes” guess by guessing a ≤ m step path from s
to u; reject if no such path found

3 If we guessed that u is reachable, and u = t, then reject

4 If total number d of u guessed not equal to cm, then reject

5 Otherwise accept

Algorithm stores (at one time) only 6 counters (u, v , ci−1, ci , d
and i) and a pointer to the head of a path; hence runs in logspace.

(more details in Sipser Theorem 8.27)

Paul Goldberg Polynomial hierarchy 19 / 20

To summarise

It’s unknown where L is equal to NL, or if NL is equal to P.

L ⊆ NL = co-NL ⊆ P

Still, we have that NL is closed under complement — contrast
with NP

By space hierarchy theorem, L (PSPACE
Indeed (from s.h.t. and Savitch’s theorem) NL (PSPACE

Next: more structure within P

Paul Goldberg Polynomial hierarchy 20 / 20

