
Computational Complexity; slides 11, HT 2022
Circuit complexity, NC, AC, P-completeness

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg Circuit complexity 1 / 24

Overview

We “dissect” the class P in more detail, eventually identifying a
non-trivial proper subset of it.

Paul Goldberg Circuit complexity 2 / 24

Boolean Circuits: another model of computation

A standard mathematical model of “digital circuit”

A Boolean circuit is a DAG:

Inputs : nodes without incoming edges labeled with 0 or 1.

Gates : nodes with (one or two) incoming edges and one
outgoing edge labeled and, or, or not.

A single node is labeled as output.

side-note: here we focus on and, or, or not (the “standard basis”);
circuit classes with other operations are of interest, e.g. xor with
multiple inputs (counting mod 2 the number of 1’s in inputs), and
versions for counting mod k , for other values of k

Paul Goldberg Circuit complexity 3 / 24

Boolean Circuits

Input-output behaviour described using Boolean functions

To each circuit C with n inputs is associated fC : {0, 1}n → {0, 1}
Example: parity function with 4 variables (returns 1 if and only if

the number of 1’s in the input is odd)

Paul Goldberg Circuit complexity 4 / 24

Minimal Circuits

Some basic definitions:
Circuit Size: number of gates contained in the circuit

Circuit depth: Length of the longest path from an input to the
output gate

Size-minimal circuits: no circuit with fewer gates computes the
same function.

Depth-minimal circuits: no circuit with smaller depth computes the
same function.

Minimisation (given a circuit, find a smallest equivalent one) is a
hard problem in practice

Not known to be in P or even in NP.

Problem of current research interest: Minimum Circuit Size
Problem (MCSP):

Input: boolean function f presented as truth table; number s
Question: is there a circuit of size s computing f ?

Paul Goldberg Circuit complexity 5 / 24

Families of Circuits

test membership in language L using circuits...

L may have strings of different lengths but circuits have fixed
inputs

Circuit family
An infinite list of circuits C = (C0,C1,C2, . . .) where Cn has n
inputs. Family C decides a binary language L if

w ∈ L if and only if Ck(w) = 1 (for every string w of length k)

Size (Depth) complexity of a circuit family C = (C0,C1, . . .)
Function f : N → N with f (n) size (depth) of Cn

Circuit-size (Circuit-depth) complexity of a language
Size (Depth) complexity of a circuit family for that language where
every component circuit Ci is size-minimal (depth-minimal).

Paul Goldberg Circuit complexity 6 / 24

Circuit Complexity vs Time Complexity

Small time complexity ⇒ small circuit complexity

Theorem. If L ∈ DTIME(t(n)) with t(n) ≥ n then L has
circuit-size complexity O(t2(n))

Proof idea

1 Take a TM M that decides L in t(n)

2 For each n construct Cn that simulates M on inputs of length
n

3 Gates of Cn are organised in t(n) rows (one per configuration)

4 Wire each to the previous one to calculate the new
configuration from the previous row’s configuration as in the
transition function.

Paul Goldberg Circuit complexity 7 / 24

Circuit Complexity vs. Time Complexity

Paul Goldberg Circuit complexity 8 / 24

Consequences

This theorem and its proof yield surprisingly deep consequences.

1 It sheds some light on the P versus NP issue:

If we can find a language in NP that has super-polynomial
circuit complexity then P 6= NP.

2 It allows us to identify a natural P-complete problem.

3 It provides an alternative proof for Cook-Levin theorem.

Yet another complexity class: P/poly — problems that can be
solved with polynomial-size circuit families

From the theorem, P⊆P/poly

Paul Goldberg Circuit complexity 9 / 24

P-completeness

Definition. A language L is P-complete (or PTIME-complete) if

it is in P and

every other language in P is LOGSPACE reducible to L.

Circuit Value Problem (CVP) is the problem of checking, given
a circuit C and concrete input values, whether C outputs 1.

(Called MonotoneCVP if C does not include negation.)

Theorem. CVP is P-complete.

Proof Idea

1 Take the previous construction and some L ∈ P.

2 Given x , construct a circuit that simulates a TM M for L on
inputs of length x .

3 The reduction has repetitive structure and is feasible in
logarithmic space.

Paul Goldberg Circuit complexity 10 / 24

NP-completeness via Circuits; Cook’s thm revisited

CIRCUIT-SAT is the problem of checking, given a circuit C ,
whether C outputs 1 for some setting of the inputs.

Theorem. CIRCUIT-SAT is NP-complete.

Proof idea Membership in NP is obvious so take any L ∈ NP.

1 There is a verifier VL(x , s) checking whether s is a solution
for x .
⇒ VL works in poly time in |x | and |s| is polynomial in |x |.

2 VL can be rendered as a circuit family C whose inputs encode
x , s.
⇒ C|x |+|s| returns 1 iff s is a solution for x .

3 To check x ∈ L, build C|x |+|s| leaving the bits for s unknown
⇒ the satisfying values for unknowns yield the solutions for

x .

Circuit-SAT and SAT are inter-reducible (poly-time equivalent)
⇒ Cook-Levin theorem follows!

Paul Goldberg Circuit complexity 11 / 24

The Power of Circuits

A key caveat of circuits. They are not a realistic model of
computation!

Theorem. There exist undecidable languages having polynomial size
circuits.

1 Consider any undecidable L ⊆ {0, 1}∗.
2 Let U = {1n : the binary expansion of n is in L }
3 U is undecidable: L reduces to it via an (exponential)

reduction.
4 U has a trivial family of polynomial circuits!

If 1n ∈ U then Cn consists of n − 1 and gates.
If 1n 6∈ U then Cn outputs 0.

Paul Goldberg Circuit complexity 12 / 24

Uniformity

The catch: Constructing the circuits involves solving an unsolvable
problem

Uniform circuit families
Given 1n as input, Cn can be constructed in LOGSPACE.
⇒ Circuits should be easy to construct!

With uniformity, circuits become a sensible model of computation.

Theorem. A language L is in P iff it has uniformly polynomial
circuits.

Proof

1 Assume L has uniformly polynomial circuits and let w ∈ L.

2 Construct C|w | in log. space (and hence in poly. time).

3 Evaluate the circuit (CVP is in P).

Paul Goldberg Circuit complexity 13 / 24

Circuits and Parallel Computation

Boolean circuits are genuinely parallel

computational activity can happen concurrently at same-level gates.

Parallel time complexity of a circuit related to the circuit’s depth.

Simultaneous size-depth complexity of a language
L has simultaneous size-depth complexity (f (n), g(n)) if a uniform
circuit family exists for L with

size complexity f (n) and

depth complexity g(n).

Paul Goldberg Circuit complexity 14 / 24

Parity

Parity is feasible in (O(n),O(log(n)))

XOR = 2-parity XOR = 2-parity

XOR = 2-parity

Paul Goldberg Circuit complexity 15 / 24

The class NC

Definition. NC (“Nick’s Class”, after Nick Pippinger)
For i ≥ 0, NCi consists of all languages solvable in
(O(nk),O(log i (n))) with k an integer. Then, NC =

⋃
i NCi .

“polylogarithmic” depth

Nice features of NC

Problems in NC are highly parallelisable with moderate
amount of processors.

Contains a wide range of relevant problems (e.g. standard
arithmetic and matrix operations)

Paul Goldberg Circuit complexity 16 / 24

NC vs. L (or, LOGSPACE)

Theorem. NC1 ⊆ L

Proof: Consider L ∈ NC1 and an input w of length n.

General trick: Can construct “on the fly” Cn (and specific gates)
from the uniform NC1 family C deciding L.

1 Evaluate Cn on w in a depth-first manner from the output
gate.

and gate: evaluate recursively the first predecessor; if false,
then we are done. Otherwise evaluate the second predecessor.
or gate: same principle.
not: evaluate the unique predecessor and return opposite
value.

2 Record only the path to current gate and intermediate results
Amount we need to remember is logarithmic since the
circuit has logarithmic depth!

Paul Goldberg Circuit complexity 17 / 24

NC vs. NL (or, NLOGSPACE)

Theorem. NL ⊆ NC2

Proof (incomplete, just some ideas): Consider w of length n and a
TM M for L ∈ NL.

1 Construct (in log. space) the graph Gn of all possible
configurations of M for an input of length n.

Nodes of Gn are the (polynomially many) configurations of M,
i.e.:

State
Contents of work tape
Input tape head position and work tape head position

Given nodes c1 and c2 with c1 input tape head position i

Add edge (c1, c2) labeled wi if c1 yields c2 when wi = 1
Add edge (c1, c2) labeled wi if c1 yields c2 when wi = 0
Add edge (c1, c2) unlabeled if c1 yields c2 regardless of wi .

2 Build circuit Cn computing reachability over Gn w.r.t. input w
Can be done in O(log2n) depth.

Paul Goldberg Circuit complexity 18 / 24

NC vs. P

Theorem. NC ⊆ P

Proof
Let L ∈ NC be decided by a uniform circuit family C .
On input w of length n proceed as follows:

1 Construct Cn (using logarithmic space)

2 Evaluate (in polynomial time) the circuit on input w

Cn has nk gates for some k
Circuits can be evaluated in time polynomial in the number of
gates

An interesting open question is whether P ⊆ NC

We believe that this is not the case
⇒ not all tractable problems seem highly parallelizable!

Paul Goldberg Circuit complexity 19 / 24

The Class AC0

So far we have restricted and and or gates to have 2 inputs.

Definition: The class ACi

analogous to NCi for circuits with arbitrary fan-in gates.

We have the following hierarchy:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . .

NC0: functions that depend on O(1) input bits (“juntas”) — very
limited!

But AC0 is interesting:

Arbitrary fan-in and and or gates

Polynomial number of gates

Constant depth

Paul Goldberg Circuit complexity 20 / 24

The power of AC0

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P

However, a great deal can be accomplished within AC0

Integer addition

Integer subtraction

Even the evaluation of a (fixed) Relational Algebra query.

Paul Goldberg Circuit complexity 21 / 24

Addition in AC0

Construct a circuit C (xn, . . . , x1, yn, . . . , y1)

Input are binary numbers xn, . . . , x1 and yn, . . . , y1

We have n + 1 outputs zn+1, zn, . . . , z1 (a minor relaxation)

Notation:

andi = xi ∧ yi

ori = xi ∨ yi

xori = (xi ∧ ¬yi) ∨ (¬xi ∧ yi)

Then, the “carried-over bit” ci and result zi are as follows (take
c0 = 0):

ci = andi ∨ (ori ∧ ci−1)

zi = (¬ori ∧ ci−1) ∨ (xori ∧ ¬ci−1) ∨ (andi ∧ ci−1)

Note that c1 = and1, z1 = xor1 and zn+1 = cn

Paul Goldberg Circuit complexity 22 / 24

Sum in AC0

Paul Goldberg Circuit complexity 23 / 24

The limits of AC0

Most interestingly, AC0 has provable limitations!

Theorem. Parity is not feasible in AC0

As a consequence AC0 ⊂ NC1

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P

Paul Goldberg Circuit complexity 24 / 24

