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Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to

@ produce the wrong result, but only with small probability.

@ take more than polynomially many steps, but “not too often’

~> expected running time is polynomial.
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Some randomised classes

PP

ZPP: "Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance— “no", yes-instance— “yes” with
probability> p (for some constant p > 0)

PP: “majority-P", contains NP, within PSPACE

BPP: allow error either way (constant probability < %)
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Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, crypto, stats/ML, or sampling for probability from
probability distributions of interest

search for approximate average via sampling

Find median element of list {a1,...,a,}: To find k-th highest
element, randomly select “pivot” element and find k’-th highest
element of sublist (for suitable k’)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)
@ given prime number as input, says “prime”
e Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4).
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Language recognition problem where randomisation seems
to help

Polynomial identity testing:

Eg (C+y)(*—y)=x*—y?
where = means equality holds for x, y € N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x, y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(xi,...,xp) =0
for circuit with n inputs, 1 output, gates are +, —, X.
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Randomised Complexity Classes

RPCNP: accepting computation of an RP machine is a certificate
of yes-instance.

It's unknown whether BPPCNP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > %; no-instance with prob. < %

@ PP contains BPP (almost follows directly from the definitions)

@ It also contains NP: we can make a PP algorithm that solves
SAT. (consider X V ¢ where ¢ is a SAT-instance)

@ PP is a subset of PSPACE.
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Probability amplification

BPP: problems that can be solved by a randomised algorithm
@ with polynomial worst-case running time

@ which has an error probability of ¢ < %

For RP, easy to see how we can improve error probability of
algorithm (and evaluate the improvement):

RP: one-sided error; no-instance— “no”, yes-instance— “yes” with
probability> p (for some constant p > 0)

For problem X with RP algorithm having (say) p = 107, run the
algorithm 10° times, finally output “yes” iff we see at least one
“yes" output. Error probability goes down to < %!

co-RP algorithm: similar trick, output “no” iff we see at least one

" "

no
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Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X €RP.
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Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X €RP.

Warm-up for BPP: BPP algorithm with error prob % -0
suppose we run it 3 times and take majority vote.

Prlerror] = (5 — 6)° +3(3 — 6)*(3 +6)
=3 -0PGE-0+32+30)=(3—-6+6)(2+29)

1-35+25°
Theorem. If a problem can be solved by a BPP algorithm A
@ with polynomial worst-case running time
@ which has an error probability of 0 < ¢ < %

then it can also be solved by a poly-time randomised algorithm
with error probability 27P(") for any fixed polynomial p(n).
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Probability Amplification

Proof.
Algorithm B: On input w of length n,

@ Calculate number k (to be determined; details to follow)
@ Run 2k independent simulations of A on input w

© accept if more calls to the algorithm accept than reject.
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Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ < i so that B3 gives the wrong answer.
The probability ps for any individual bad sequence S to occur is

ps <el(l—e) < ef1—e)k

Paul Goldberg Introduction to Randomisation 10/14



Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ < i so that B3 gives the wrong answer.
The probability ps for any individual bad sequence S to occur is
ps <el(l—e) < ef1—e)k

Hence: Pr[B gives wrong result on input w | =

d ps < 2K 1-e)k = (4e(1-2))*
S bad

As e < 3 we get 4¢(1 —¢) < 1. Hence, to obtain probability 2—p(n)
we let

a = —log,(4e(1 — €)) and choose k > p(n)/c. O
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So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 27P(")

...practically useful?



General note

So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 2P("),

...practically useful?

Arguably yes:

@ the probability that an algorithm with error probability of
2719 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

e hardware failures,
e random bit mutations in the memory
o ...
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Hoeffding's inequality

Consider a (biased) coin that comes up heads with probability p.
So, if we toss it n times, should get p.n heads on average. Letting
random variable H(n) be number of heads seen after n coin tosses,
it turns out that

Pr{H(n) < (p — &)n] < exp(—2¢%n)

and similarly,
Pr[H(n) > (p + £)n] < exp(—2¢2n)

Probability that we're off by a constant factor, is
inverse-exponential in n. Often useful in analysing randomised
algorithms!
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Relationships to other complexity classes

Recall we noted that RPCNP.
(convert a randomised algorithm to a non-deterministic one by
replacing coin flips with non-deterministic guesses.)

Doesn't work for BPP.

We do have BPPC Y5 N M5 (Sipser-Gacs-Lautemann theorem)
Consequently, if P=NP, it would follow that P=BPP since if
P=NP, the polynomial hierarchy collapses to P.

We also know: BPPCP/poly (Adleman’s theorem).
“Any BPP language has polynomial-size circuits.”
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Next: A randomised algorithms for reducing a (satisfiable) SAT
instance to one having a unique solution

Then, a quick look at probabilistically checkable proofs
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