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Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to

produce the wrong result, but only with small probability.

take more than polynomially many steps, but “not too often”

 expected running time is polynomial.
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Some randomised classes

ZPPRP co-RP

BPP

PP

ZPP: “Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance 7→“no”, yes-instance7→“yes” with
probability≥ p (for some constant p > 0)
PP: “majority-P”, contains NP, within PSPACE
BPP: allow error either way (constant probability < 1

2)
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Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, crypto, stats/ML, or sampling for probability from
probability distributions of interest

search for approximate average via sampling

Find median element of list {a1, . . . , an}: To find k-th highest
element, randomly select “pivot” element and find k ′-th highest
element of sublist (for suitable k ′)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)

given prime number as input, says “prime”

Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4)k .
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Language recognition problem where randomisation seems
to help

Polynomial identity testing:

E.g. (x2 + y)(x2 − y) ≡ x4 − y2

where ≡ means equality holds for x , y ∈ N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x , y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(x1, . . . , xn) ≡ 0
for circuit with n inputs, 1 output, gates are +,−,×.
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Randomised Complexity Classes

RP⊆NP: accepting computation of an RP machine is a certificate
of yes-instance.

It’s unknown whether BPP⊆NP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > 1

2 ; no-instance with prob. ≤ 1
2 .

PP contains BPP (almost follows directly from the definitions)

It also contains NP: we can make a PP algorithm that solves
SAT. (consider X ∨ ϕ where ϕ is a SAT-instance)

PP is a subset of PSPACE.
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Probability amplification

BPP: problems that can be solved by a randomised algorithm

with polynomial worst-case running time

which has an error probability of ε < 1
2 .

For RP, easy to see how we can improve error probability of
algorithm (and evaluate the improvement):
RP: one-sided error; no-instance 7→“no”, yes-instance7→“yes” with
probability≥ p (for some constant p > 0)

For problem X with RP algorithm having (say) p = 10−6, run the
algorithm 106 times, finally output “yes” iff we see at least one
“yes” output. Error probability goes down to < 1

2 !

co-RP algorithm: similar trick, output “no” iff we see at least one
“no”
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Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p′(n)
(p′ a polynomial), and no-instances always give answer “no”. Then
X ∈RP.

Warm-up for BPP: BPP algorithm with error prob 1
2 − δ:

suppose we run it 3 times and take majority vote.

Pr[error ] = ( 1
2
− δ)3 + 3( 1

2
− δ)2( 1

2
+ δ)

= ( 1
2
− δ)2( 1

2
− δ + 3

2
+ 3δ) = ( 1

4
− δ + δ2)(2 + 2δ) = 1

2
− 3

2
δ + 2δ3

Theorem. If a problem can be solved by a BPP algorithm A
with polynomial worst-case running time

which has an error probability of 0 < ε < 1
2 .

then it can also be solved by a poly-time randomised algorithm

with error probability 2−p(n) for any fixed polynomial p(n).
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Probability Amplification

Proof.
Algorithm B: On input w of length n,

1 Calculate number k (to be determined; details to follow)

2 Run 2k independent simulations of A on input w

3 accept if more calls to the algorithm accept than reject.
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Probability Amplification

S := a1, . . . , a2k : sequence of results obtained by running A 2k times.

Suppose c of these are correct and i = 2k − c are incorrect.

S is a bad sequence if c ≤ i so that B gives the wrong answer.

The probability pS for any individual bad sequence S to occur is

pS ≤ εi (1− ε)c ≤ εk(1− ε)k

Hence: Pr[B gives wrong result on input w ] =∑
S bad

pS ≤ 22k · εk(1− ε)k = (4ε(1− ε))k

As ε < 1
2 we get 4ε(1− ε) < 1. Hence, to obtain probability 2−p(n)

we let

α = − log2(4ε(1− ε)) and choose k ≥ p(n)/α.
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General note

So, every problem that can be solved with error probability ε < 1
2

can be solved with error probability < 2−p(n).

...practically useful?

Arguably yes:

the probability that an algorithm with error probability of
2−100 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

hardware failures,
random bit mutations in the memory
...
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Hoeffding’s inequality

Consider a (biased) coin that comes up heads with probability p.
So, if we toss it n times, should get p.n heads on average. Letting
random variable H(n) be number of heads seen after n coin tosses,
it turns out that

Pr[H(n) ≤ (p − ε)n] ≤ exp(−2ε2n)

and similarly,

Pr[H(n) ≥ (p + ε)n] ≤ exp(−2ε2n)

Probability that we’re off by a constant factor, is
inverse-exponential in n. Often useful in analysing randomised
algorithms!
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Relationships to other complexity classes

Recall we noted that RP⊆NP.
(convert a randomised algorithm to a non-deterministic one by
replacing coin flips with non-deterministic guesses.)

Doesn’t work for BPP.

We do have BPP⊆ ΣP
2 ∩ ΠP

2 (Sipser-Gács-Lautemann theorem)
Consequently, if P=NP, it would follow that P=BPP since if
P=NP, the polynomial hierarchy collapses to P.

We also know: BPP⊆P/poly (Adleman’s theorem).
“Any BPP language has polynomial-size circuits.”

Paul Goldberg Introduction to Randomisation 13 / 14



Next: A randomised algorithms for reducing a (satisfiable) SAT
instance to one having a unique solution

Then, a quick look at probabilistically checkable proofs
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