
Computational Complexity; slides 14, HT 2022
Space Hierarchy Theorem, Gap Theorem,

NP-intermediate problems

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg hierarchies 1 / 15

Overview of next 2 lectures

Recall: Relation between complexity classes covered so far:

L ⊆ NL ⊆ P ⊆ NP ⊆

PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆

EXPSPACE = NEXPSPACE ⊆ . . .

Next: a closer look at the space hierarchy theorem, and strict
containments it gives us.
Then: “NP-intermediate” problems – Ladner’s theorem; search
problems where solutions are guaranteed to exist

Paul Goldberg hierarchies 2 / 15

recall: Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXP.

Proof used “time-bounded halting language” Hf and a

“diagonalising machine”

Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

Paul Goldberg hierarchies 3 / 15

Space Hierarchy Theorem

Theorem. (Space Hierarchy Theorem)

Let S , s : N→ N be functions such that

1 S is “space constructible”, and

2 S(n) ≥ n,

3 s = o(S).

Then DSPACE(s) (DSPACE(S).

Reminder: item 3 means that limn→∞(s(n)/S(n)) = 0.

Paul Goldberg hierarchies 4 / 15

Space-constructible functions

Definition.
f : N→ N is space constructible if f (n) ≥ log n and f (n) can be
computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in space O(f (n)).

Most standard functions are space-constructible:

All polynomial functions (e.g. 3n3 − 5n2 + 1)

All exponential functions (e.g. 2n)

For any space-constructible function f we can build a counter that
goes off after f (n) cells have been used on inputs of length n.

Consequence: As polynomials are space constructible:

We can enforce that in an nk -space bounded NTM M all
computations halt after using O(nk) space.

(Let M and a “counter” run in parallel. Stop if the counter
goes off.)

Paul Goldberg hierarchies 5 / 15

Space-constructible functions

Definition.
f : N→ N is space constructible if f (n) ≥ log n and f (n) can be
computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in space O(f (n)).

Most standard functions are space-constructible:

All polynomial functions (e.g. 3n3 − 5n2 + 1)

All exponential functions (e.g. 2n)

For any space-constructible function f we can build a counter that
goes off after f (n) cells have been used on inputs of length n.

Consequence: As polynomials are space constructible:

We can enforce that in an nk -space bounded NTM M all
computations halt after using O(nk) space.

(Let M and a “counter” run in parallel. Stop if the counter
goes off.)

Paul Goldberg hierarchies 5 / 15

slight digression: contrast with time-constructible functions

Definition.
f : N→ N is time constructible if f (n) ≥ n log n and f (n) can be
computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in time O(f (n)).

Similar points apply for time constructible functions (as for space
constructible ones, previous slide).

Paul Goldberg hierarchies 6 / 15

Proof of Space Hierarchy Theorem — Part I

Construct S-space bounded TM D as follows.

1 On input 〈M,w〉, let n = |〈M,w〉|.
2 If the input is not of the form 〈M,w〉, then reject.

3 Compute S(n) and mark off this much tape. If later stages
ever exceed this allowance, then reject.

4 Simulate M on input 〈M,w〉 while counting number of steps
used in simulation; if count ever exceeds 2S(n), then reject.

The simulation introduces only a constant factor c space
overhead.

5 If M accepts, then reject; otherwise accept.

L(D) = {〈M,w〉 : D accepts 〈M,w〉}.
By construction, L(D) ∈ DSPACE(S)

Paul Goldberg hierarchies 7 / 15

Proof of Space Hierarchy Theorem — Part II

Claim. L(D) 6∈ DSPACE(s)

Towards a contradiction,

let B be a s space bounded TM with L(B) = L(D).

As s = o(S) there is n0 ∈ N such that S(n) ≥ c · s(n) for all
n ≥ n0.

Hence, for almost all inputs 〈B,w〉 (length of 〈B,w〉 ≥ n0)

D completely simulates the run of B on 〈B,w〉

Hence, for almost all w ∈ {0, 1}∗

〈B,w〉 ∈ L(D) ⇐⇒ B does not accept 〈B,w〉 (Def of D)
〈B,w〉 ∈ L(B) ⇐⇒ B accepts 〈B,w〉. (Def of “L(B)”)

Paul Goldberg hierarchies 8 / 15

A Hierarchy of Complexity Classes

Consequence of hierarchy theorems:

LOGSPACE (PSPACE (EXPSPACE

P (EXP

Relation between complexity classes covered so far:

L ⊆ NL ⊆ P ⊆ NP ⊆
6= 6= 6= 6=

PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆

6= 6=
EXPSPACE = NEXPSPACE ⊆ . . .

Paul Goldberg hierarchies 9 / 15

The Gap Theorem

Question. Given more resources, can we always solve more
problems?

How much more resources do we need to be able to solve more
problems? (Can we solve strictly more problems in time 22

g(n)
than

in g(n)?)

Theorem. (Gap theorem for time complexity)

For every total computable function g : N→ N with g(n) ≥ n
there is a total computable function f : N→ N such that

DTIME
(
f (n)

)
= DTIME

(
g(f (n))

)
Analogously for space
complexity.
contrast with Time hierarchy
theorem

For f (n) ≥ n a proper complexity function,
we have TIME(f (n)) is a proper subset of
TIME((f (2n + 1))3).

Paul Goldberg hierarchies 10 / 15

The Gap Theorem

Question. Given more resources, can we always solve more
problems?

How much more resources do we need to be able to solve more
problems? (Can we solve strictly more problems in time 22

g(n)
than

in g(n)?)

Theorem. (Gap theorem for time complexity)

For every total computable function g : N→ N with g(n) ≥ n
there is a total computable function f : N→ N such that

DTIME
(
f (n)

)
= DTIME

(
g(f (n))

)
Analogously for space
complexity.
contrast with Time hierarchy
theorem

For f (n) ≥ n a proper complexity function,
we have TIME(f (n)) is a proper subset of
TIME((f (2n + 1))3).

Paul Goldberg hierarchies 10 / 15

The Gap Theorem

Special case (Papadimitriou’s book, theorem 7.3): There is a
recursive function f : N→ N such that TIME(f (n))=TIME(2f (n)).
Proof works by constructing f such that no TM, on input of length
n, halts between f (n) and 2f (n) steps.

Corollaries of Gap theorem. There are computable functions f
such that

DTIME(f) = DTIME(2f)

DTIME(f) = DTIME(22
f
)

DTIME(f) = DTIME
(

22
..
2
}
f (n) times

)
However, the functions f are not time (space) constructible.

Paul Goldberg hierarchies 11 / 15

NP-Intermediate Problems

Question.

Can we classify any problem in NP as polynomial or
NP-complete?

Which of the following diagrams corresponds to a true picture
of NP?

P=NP

NP-complete

P

NPC

?

P

Paul Goldberg hierarchies 12 / 15

Ladner’s theorem

background

Cook/Levin (1971): SAT is NP-complete
Karp (1972): many other diverse NP problems of interest also
NP-complete

Ladner’s Theorem (1975)
If P 6= NP then there is a language in NP that is neither in P not
NP-complete.

Proof. Non-constructive argument (using diagonalisation). (details
in Papadimitriou Chapter 14; Arora/Barak Ch.3).

Paul Goldberg hierarchies 13 / 15

Proof idea

Diagonalisation; let Mi be i-th Turing machine...

For f : N −→ N let SATf = {ϕ1n
f (n)

: ϕ ∈ SAT and n = |ϕ|}
Q: How hard is SATf for f constant? f (n) = n?

Let f (n) be smallest i < log log n such that for every bit-string x
with |x | < log n, Mi on input x outputs SATf (x) within i |x |i steps;
if no such i , set f (n) = log log n.

f (n) can be computed from n in O(n3) time

Claim. SATf ∈ P iff f = O(1).

Then if SATf ∈ P, solved by some TM Mi — for n > 22
i
, f (n) ≤ i

— f never gets larger than a constant.

If SATf is NP-complete, consider reduction from SAT to SATf .
Reduction must map instances of SAT to instances of SATf only
polynomially larger...

Paul Goldberg hierarchies 14 / 15

Proof idea

Diagonalisation; let Mi be i-th Turing machine...

For f : N −→ N let SATf = {ϕ1n
f (n)

: ϕ ∈ SAT and n = |ϕ|}
Q: How hard is SATf for f constant? f (n) = n?

Let f (n) be smallest i < log log n such that for every bit-string x
with |x | < log n, Mi on input x outputs SATf (x) within i |x |i steps;
if no such i , set f (n) = log log n.

f (n) can be computed from n in O(n3) time

Claim. SATf ∈ P iff f = O(1).

Then if SATf ∈ P, solved by some TM Mi — for n > 22
i
, f (n) ≤ i

— f never gets larger than a constant.

If SATf is NP-complete, consider reduction from SAT to SATf .
Reduction must map instances of SAT to instances of SATf only
polynomially larger...

Paul Goldberg hierarchies 14 / 15

Proof idea

Diagonalisation; let Mi be i-th Turing machine...

For f : N −→ N let SATf = {ϕ1n
f (n)

: ϕ ∈ SAT and n = |ϕ|}
Q: How hard is SATf for f constant? f (n) = n?

Let f (n) be smallest i < log log n such that for every bit-string x
with |x | < log n, Mi on input x outputs SATf (x) within i |x |i steps;
if no such i , set f (n) = log log n.

f (n) can be computed from n in O(n3) time

Claim. SATf ∈ P iff f = O(1).

Then if SATf ∈ P, solved by some TM Mi — for n > 22
i
, f (n) ≤ i

— f never gets larger than a constant.

If SATf is NP-complete, consider reduction from SAT to SATf .
Reduction must map instances of SAT to instances of SATf only
polynomially larger...

Paul Goldberg hierarchies 14 / 15

NP-Intermediate Problems

Ladner’s theorem gives an artificial problem between P and NP.
Other candidates exist, however. Keep in mind, unconditional
NP-intermediateness is too much to hope for...
We can base this property on stronger assumptions than P 6=NP.

Garey and Johnson 1979.

In their text book they highlight three problems whose complexity
was undecided:

Linear Programming

Primes/Composite

Graph Isomorphism

The first 2 of these now known to belong to P.
Total search problems (Factoring, Nash equilibrium
computation, and others) are NP-intermediate assuming they’re
not in P, and NP6=co-NP.

Paul Goldberg hierarchies 15 / 15

