
Computational Complexity; slides 15, HT 2022
Search problems, and total search problems

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg NP search problems 1 / 18

Overview

We noted that NP problems have “search” counterparts that are of
equal difficulty.

(recall Fsat: find a satisfying assigment)

For search problems having guaranteed solutions, we’ll see that a
novel classification is needed...

Paul Goldberg NP search problems 2 / 18

Search versus decision

For NP-complete problems, e.g. Sat, suppose we want to
compute a satisfying assignment, not just test for satisfiability.
This is at least as challenging as Sat...

If we had a Sat-oracle, proceed as follows.
For ϕ over variables x1, . . . , xn, check if ϕ is satisfiable, if so, try ϕ
with x1 7→ 0 alternatively x1 7→ 1, then proceed to x2 etc.

Conclude that in a sense, computing a s.a. is no harder than Sat.

Complexity class FNP: functions checkable in poly-time.

FSAT is FNP-complete (via Cook-Levin)

So are function versions of other NP-complete problems

Paul Goldberg NP search problems 3 / 18

Search versus decision

For NP-complete problems, e.g. Sat, suppose we want to
compute a satisfying assignment, not just test for satisfiability.
This is at least as challenging as Sat...

If we had a Sat-oracle, proceed as follows.
For ϕ over variables x1, . . . , xn, check if ϕ is satisfiable, if so, try ϕ
with x1 7→ 0 alternatively x1 7→ 1, then proceed to x2 etc.

Conclude that in a sense, computing a s.a. is no harder than Sat.

Complexity class FNP: functions checkable in poly-time.

FSAT is FNP-complete (via Cook-Levin)

So are function versions of other NP-complete problems

Paul Goldberg NP search problems 3 / 18

Search versus decision

For NP-complete problems, e.g. Sat, suppose we want to
compute a satisfying assignment, not just test for satisfiability.
This is at least as challenging as Sat...

If we had a Sat-oracle, proceed as follows.
For ϕ over variables x1, . . . , xn, check if ϕ is satisfiable, if so, try ϕ
with x1 7→ 0 alternatively x1 7→ 1, then proceed to x2 etc.

Conclude that in a sense, computing a s.a. is no harder than Sat.

Complexity class FNP: functions checkable in poly-time.

FSAT is FNP-complete (via Cook-Levin)

So are function versions of other NP-complete problems

Paul Goldberg NP search problems 3 / 18

Some apparently-hard total search problems in FNP

many problems of local optimisation, e.g. Local-max-cut
of a weighted graph.

Factoring

Nash: the problem of computing a Nash equilibrium of a
game (comes in many versions depending on the structure of
the game)

Pigeonhole Circuit:
Input: a boolean circuit with n input gates and n output gates
Output: either input vector x mapping to 0 or vectors x , x ′

mapping to the same output

many other problems associated with “non-constructive”
existence results

Paul Goldberg NP search problems 4 / 18

Search problems as poly-time checkable relations

NP search problem is modelled as a relation R(·, ·) where

R(x , y) is checkable in time polynomial in |x |, |y |
input x , find y with R(x , y) (y as certificate)

total search problem: ∀x∃y (|y | = poly(|x |),R(x , y))

SAT: x is boolean formula, y is satisfying bit vector.
Decision version of SAT is polynomial-time equivalent to search for y .

Factoring: input (the “x” in R(x , y)) is number N, output (the
“y”) is prime factorisation of N. No decision problem!

contrast with “promise problems”

Paul Goldberg NP search problems 5 / 18

Reducibility among search problems

FP, FNP: search (or, function computation) problems where
output of function is computable (resp., checkable) in poly time.

Any NP problem has FNP version “find a certificate”.

Definition

Let R and S be search problems in FNP. We say that R
(many-one) reduces to S , if there exist polynomial-time
computable functions f , g such that

(f (x), y) ∈ S =⇒ (x , g(x , y)) ∈ R.

Observation: If S is polynomial-time solvable, then so is R. We say
that two problems R and S are (polynomial-time) equivalent, if R
reduces to S and S reduces to R.

Theorem: FSAT, the problem of finding a s.a. of a boolean
formula, is FNP-complete.

Paul Goldberg NP search problems 6 / 18

Example

(To help motivate/understand that definition of reducibility)

Consider 2 versions of Factoring: one using base-10 numbers,
and the other version using base-2 numbers. Intuitively, these two
problems have the same difficulty: there is a fast algorithm to
factor in base 2, if and only if there is a fast algorithm to factor in
base 10.

In trying to make that intuition mathematically precise, we get the
definition of the previous slide.

Paul Goldberg NP search problems 7 / 18

TFNP

TFNP: “Total” function computation problems in NP

As we shall see, it looks like we really do need to introduce a new
complexity class, in fact a collection of complexity classes...

Contrast with “promise problems”, e.g. Promise SAT:
SAT-instances where you’ve been promised there is a satisfying
assignment. But such a promise isn’t directly checkable.

Paul Goldberg NP search problems 8 / 18

Some total search problems seem hard. (F)NP-hard?

Theorem

There is an FNP-complete problem in TFNP if and only if
NP=co-NP.

Proof: “if”: if NP=co-NP, then any FNP-complete problem is in
TFNP (which is F(NP∩co-NP)).
“only if”: Suppose X∈TFNP is FNP-complete, and R is the binary
relation for X.
Consider problem FSAT (given formula ϕ, find a satisfying
assignment.) We have FSAT≤pX.
Any unsatisfiable ϕ would get a certificate of unsatisfiability,
namely the string y with (f (ϕ), y) ∈ R and g(y) =“no” (or
generally, anything other than a satisfying assignment).

N. Megiddo and C.H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2)
pp. 317–324 (1991).

Paul Goldberg NP search problems 9 / 18

So what can we say about the hardness of Factoring,
and others?

Factoring (for example) cannot be NP-hard unless NP = co-NP.
Unlikely! So Factoring is in strong sense “NP-intermediate”.

 task of classifying “hard” NP total search problems.
Factoring and Pigeonhole Circuit are important in
cryptography; other important problems include local optimisation

OK can we have, say, Factoring is TFNP-complete?
Good question! TFNP-completeness is as much as we can hope
for, hardness-wise

TFNP doesn’t (seem to) have complete problems (which needs
syntactic description of “fully general” TFNP problem). (Similarly,
RP, BPP, NP∩co-NP don’t have complete problems)
Try to describe “generic” problem/language X in NP∩co-NP as pair of NTMs

that accept X and X : what goes wrong?

Paul Goldberg NP search problems 10 / 18

So what can we say about the hardness of Factoring,
and others?

Factoring (for example) cannot be NP-hard unless NP = co-NP.
Unlikely! So Factoring is in strong sense “NP-intermediate”.

 task of classifying “hard” NP total search problems.
Factoring and Pigeonhole Circuit are important in
cryptography; other important problems include local optimisation

OK can we have, say, Factoring is TFNP-complete?

Good question! TFNP-completeness is as much as we can hope
for, hardness-wise

TFNP doesn’t (seem to) have complete problems (which needs
syntactic description of “fully general” TFNP problem). (Similarly,
RP, BPP, NP∩co-NP don’t have complete problems)
Try to describe “generic” problem/language X in NP∩co-NP as pair of NTMs

that accept X and X : what goes wrong?

Paul Goldberg NP search problems 10 / 18

So what can we say about the hardness of Factoring,
and others?

Factoring (for example) cannot be NP-hard unless NP = co-NP.
Unlikely! So Factoring is in strong sense “NP-intermediate”.

 task of classifying “hard” NP total search problems.
Factoring and Pigeonhole Circuit are important in
cryptography; other important problems include local optimisation

OK can we have, say, Factoring is TFNP-complete?
Good question! TFNP-completeness is as much as we can hope
for, hardness-wise

TFNP doesn’t (seem to) have complete problems (which needs
syntactic description of “fully general” TFNP problem). (Similarly,
RP, BPP, NP∩co-NP don’t have complete problems)
Try to describe “generic” problem/language X in NP∩co-NP as pair of NTMs

that accept X and X : what goes wrong?

Paul Goldberg NP search problems 10 / 18

Factoring, Nash, and the others, as “NP-intermediate”

Advantage of (problems arising in) Ladner’s theorem: you just have
to believe P6=NP, to have NP-intermediate. For us, we have to
believe that Factoring (say) is not in FP, also that NP 6=co-NP.

Disadvantage of Ladner’s theorem: the NP-intermediate problems
are unnatural (did not arise independently of Ladner’s thm;
problem definitions involve TMs/circuits)

Next: subclasses of TFNP that have complete problems

General idea: define classes in terms of “non-constructive”
existence principles

Paul Goldberg NP search problems 11 / 18

Some syntactic classes

FP

PLS

PPAD

PPP

PPA

TFNP

FNP

Johnson, Papadimitriou, and Yannakakis. How easy is local search? JCSS, 1988.
C.H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. JCSS, 1994.

Paul Goldberg NP search problems 12 / 18

PPAD

PPAD “given a source in a digraph having in/outdegree at most
1, there’s another degree-1 vertex”

The End-of-Line problem

given Boolean circuits S ,P with n input bits and n output bits and
such that P(0) = 0 6= S(0), find x such that P(S(x)) 6= x or
S(P(x)) 6= x 6= 0.

Paul Goldberg NP search problems 13 / 18

PPAD

A problem X belongs to PPAD if X ≤P End-of-Line.

X is PPAD-complete if in addition, End-of-Line≤P X

Work by myself and others: Nash equilibrium computation is
PPAD-complete

...which is taken to indicate it’s a hard problem! Let’s see why we
believe “PPAD is hard”

Paul Goldberg NP search problems 14 / 18

PPA, PPP

PPA: Like PPAD, but the “implicit” graph is undirected.

The Leaf problem

given boolean circuit C with n inputs, 2n outputs. regard input as
one of 2n vertices, output as 2 neighbouring vertices.
If 0 has degree 1, find some other degree-1 vertex.

PPP (“polynomial pigeonhole principle”): defined in terms of:

The Pigeonhole circuit problem

given boolean circuit C with n inputs, n outputs.
Find either a bit-string that is mapped to 0, or two bitstrings that
are mapped to the same bit-string

We have

End-of-line ≤p Leaf (hence PPAD⊆PPA)

End-of-line ≤p Pigeonhole Circuit

Paul Goldberg NP search problems 15 / 18

PPAD is a subset of PPP

End-of-line reduces to Pigeonhole circuit:

Given S ,P, circuits representing an End of line instance, build a
circuit CPPP that does the following:

CPPP uses S ,P to identify any neighbours of a vertex v in the
End-of-line graph, then

If v has no outgoing edge in the End-of-line graph, CPPP

maps v to itself.
(so all isolated vertices are mapped to themselves)

Otherwise, let (v ,w) be a directed edge in the End-of-line
graph.
CPPP maps v to w

Paul Goldberg NP search problems 16 / 18

Evidence of hardness

• Failure to find poly-time algorithms for most of these problems,
indeed even sub-exponential algorithms.
• cryptographic hardness

• Separation oracles
Circuits viewed as proxies for unrestricted boolean functions: the
search problems stay total even if the circuits in the defs are
allowed to be any functions (not necessarily having small circuits)

Warm-up: in the context of End of line/PPAD, if the circuits S
and P were replaced with unrestricted boolean functions allowing
“black-box access”, the problem becomes impossible.
Call this “oracle PPAD”

Now define a “PPAD machine” to be a notional machine that,
given black-box access to S and P, identifies a solution...
Such a machine can’t used to solve oracle PPA!
Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, Toniann
Pitassi: The Relative Complexity of NP Search Problems. JCSS (1998)

Paul Goldberg NP search problems 17 / 18

Conclusion

This is ongoing work! The hardness of some of these complexity
classes has been derived from various cryptographic assumptions
(that are stronger than P 6=NP).

Further question include: do we “need” any other as-yet undefined
classes of TFNP problems?
Can we base the hardness of (say) PPAD on weaker assumptions,
ideally P 6=NP?

Thanks!

Paul Goldberg NP search problems 18 / 18

Conclusion

This is ongoing work! The hardness of some of these complexity
classes has been derived from various cryptographic assumptions
(that are stronger than P 6=NP).

Further question include: do we “need” any other as-yet undefined
classes of TFNP problems?
Can we base the hardness of (say) PPAD on weaker assumptions,
ideally P 6=NP?

Thanks!

Paul Goldberg NP search problems 18 / 18

