
Computational Complexity; slides 3, HT 2022
Deterministic complexity classes

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg Deterministic complexity classes 1 / 22

Measuring Complexity

Our general interest: detailed classification of decidable languages.

Goal: Classify languages according to the amount of resources
needed to solve them.

Resources: In this lecture we will primarily consider

time – the running time of algorithms (steps on a Turing
machine)

space – the amount of additional memory needed

(cells on the Turing tapes)

Next: basic complexity classes, polynomial-time reductions

Paul Goldberg Deterministic complexity classes 2 / 22

Measuring Complexity

Definition.
Let M be a Turing acceptor and let S ,T : N→ N be functions.

1 M is T -time bounded if it halts on every input w ∈ Σ∗ after
≤ T (|w |) steps.

2 M is S-space bounded if it halts on every input w ∈ Σ∗ using
≤ S(|w |) cells on its tapes.

(Here we assume that the Turing machines have a separate
input tape that we do not count in measuring space
complexity.)

Paul Goldberg Deterministic complexity classes 3 / 22

Deterministic Complexity Classes

Definition.
Let T ,S : N→ N be monotone increasing functions. Define

1 DTIME(T) as the class of languages L for which there is a
T -time bounded k-tape Turing acceptor deciding L, for some
k ≥ 1.

2 DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:
Time classes:

P (or PTIME) :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2nd) exponential time

2-EXP :=
⋃

d∈N DTIME(22n
d

) double exp time

Space classes:
LOGSPACE :=

⋃
d∈N DSPACE(d log n)

PSPACE :=
⋃

d∈N DSPACE(nd)

EXPSPACE :=
⋃

d∈N DSPACE(2nd)

Paul Goldberg Deterministic complexity classes 4 / 22

Deterministic Complexity Classes

Definition.
Let T ,S : N→ N be monotone increasing functions. Define

1 DTIME(T) as the class of languages L for which there is a
T -time bounded k-tape Turing acceptor deciding L, for some
k ≥ 1.

2 DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:
Time classes:

P (or PTIME) :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2nd) exponential time

2-EXP :=
⋃

d∈N DTIME(22n
d

) double exp time

Space classes:
LOGSPACE :=

⋃
d∈N DSPACE(d log n)

PSPACE :=
⋃

d∈N DSPACE(nd)

EXPSPACE :=
⋃

d∈N DSPACE(2nd)

Paul Goldberg Deterministic complexity classes 4 / 22

But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T), DSPACE(S);
No for the others

Indeed, usually don’t need to refer explicitly to “Turing machine”.
But watch out for nondeterminism (details later)

Paul Goldberg Deterministic complexity classes 5 / 22

But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T), DSPACE(S);
No for the others

Indeed, usually don’t need to refer explicitly to “Turing machine”.
But watch out for nondeterminism (details later)

Paul Goldberg Deterministic complexity classes 5 / 22

Time Complexity Classes

Important Time Complexity Classes:

P :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2n
d
) exponential time

Not quite so important:

2-EXP :=
⋃

d∈N DTIME(22
nd

) double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

P ⊆ EXP ⊆ 2-EXP ⊆ · · · ⊆ i-EXP ⊆ . . .

Alternative definition/notation:

P := DTIME(nO(1))

Paul Goldberg Deterministic complexity classes 6 / 22

Time Complexity Classes

Important Time Complexity Classes:

P :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2n
d
) exponential time

Not quite so important:

2-EXP :=
⋃

d∈N DTIME(22
nd

) double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

P ⊆ EXP ⊆ 2-EXP ⊆ · · · ⊆ i-EXP ⊆ . . .

Alternative definition/notation:

P := DTIME(nO(1))

Paul Goldberg Deterministic complexity classes 6 / 22

Linear Speed-Up

Theorem. (Linear Speed-Up Theorem)

Let k > 1 and c > 0 T : N→ N L ⊆ Σ∗ be a
language.

If L can be decided by a T (n) time-bounded k-tape TM

M := (Q,Σ, Γ, q0, δ,F)

then L can be decided by a (1c · T (n) + n + 2) time-bounded
k-tape TM

M∗ := (Q ′,Σ, Γ′, q′0, δ
′,F ′).

Paul Goldberg Deterministic complexity classes 7 / 22

Linear Speed-Up

Proof idea. Let Γ′ := Σ ∪ Γs where s := 6c . To construct M∗:

Step 1: Compress M’s input.

Copy (in n + 2 steps) the input onto tape 2, compressing s symbols
into one (i.e., each symbol corresponds to an s-tuple from Γs)

Step 2: Simulate M’s computation, s steps at once.

1 Read (in 4 steps) symbols to the left, right and the current
position
and “store” (using |Q × {1, . . . , s}k × Γ3sk | extra states).

2 Simulate (in 2 steps) the next s steps of M (as M can only
modify the current position and one of its neighbours)

3 M∗ accepts (rejects) if M accepts (rejects)

(see Papadimitriou Thm 2.2, page 32)

Paul Goldberg Deterministic complexity classes 8 / 22

A Hierarchy of Complexity Classes?

Questions we will study:

Can we always solve more problems if we have more resources?

If not, how much more resources do we need to be able to
solve strictly more problems?

How do the complexity classes relate to each other?

How do we show that some problem is in one of these classes
but not in another?

Are there any other interesting models of computation?

Non-deterministic computation
Randomised algorithms

Next: robustness of P

Paul Goldberg Deterministic complexity classes 9 / 22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Deterministic complexity classes 10 / 22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Deterministic complexity classes 10 / 22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Deterministic complexity classes 10 / 22

Different Encodings

Observation.

1 For any n ∈ N, the length of the encoding of n in base b1 and
base b2 are related by a constant factor, for all b1, b2 ≥ 2.

2 For any graph G , the length of its encoding as an

adjacency matrix
list of edges
adjacency list
...

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) P is the same for
all these encoding (unlike linear time)

Paul Goldberg Deterministic complexity classes 11 / 22

Different Encodings

Observation.

1 For any n ∈ N, the length of the encoding of n in base b1 and
base b2 are related by a constant factor, for all b1, b2 ≥ 2.

2 For any graph G , the length of its encoding as an

adjacency matrix
list of edges
adjacency list
...

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) P is the same for
all these encoding (unlike linear time)

Paul Goldberg Deterministic complexity classes 11 / 22

Robustness of the definition of P

Strong Church-Turing Hypothesis

Any function which can be computed by any well-defined
procedure can be computed by a Turing machine with only
polynomial overhead.

(but doesn’t apply to quantum or randomised algorithms)

I also pointed out that “in P” corresponds well to existence of a
practical algorithm; problem is “tractable”

Paul Goldberg Deterministic complexity classes 12 / 22

Growth Rate of Functions (Garey/Johnson ’79)

Paul Goldberg Deterministic complexity classes 13 / 22

Proving a problem is in P

Good news: proofs of “in P” are often cleaner than detailed
runtime analysis;
“in P” less specific than, e.g. “in DTIME(n2)”; some technical
details are avoided

The most direct way to show that a problem is in P is to
exhibit a polynomial time algorithm that solves it.

Even a naive polynomial-time algorithm often provides a good
insight into how the problem can be solved efficiently.

Because of robustness, we do not generally need to specify all
the details of the machine model or the encoding.

 pseudo-code is sufficient.

Paul Goldberg Deterministic complexity classes 14 / 22

Example: Satisfiability

Some of the most important problems concern logical formulae

Recall propositional logic

Formulae of propositional logic are built up inductively

Variables: Xi i ∈ N
Boolean connectives:
If ϕ,ψ are propositional formulae then so are

(ψ ∨ ϕ)
(ψ ∧ ϕ)
¬ϕ

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

Paul Goldberg Deterministic complexity classes 15 / 22

Conjunctive Normal Form

Formula ϕ is in conjunctive normal form (CNF) if

ϕ := C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci := (Li1 ∨ · · · ∨ Lik)

A literal is a variable Xi or a negated variable ¬Xi

k-CNF: CNF ϕ with at most k literals per clause.

3-CNF example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4) ∧ (X2 ∨ X3 ∨ X4) ∧ X6

common CNF notation:
ϕ :=

{
{X1,X2,¬X5}, {¬X2,¬X4}, {X2,X3,X4}, {X6}

}

Paul Goldberg Deterministic complexity classes 16 / 22

Conjunctive Normal Form

Formula ϕ is in conjunctive normal form (CNF) if

ϕ := C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci := (Li1 ∨ · · · ∨ Lik)

A literal is a variable Xi or a negated variable ¬Xi

k-CNF: CNF ϕ with at most k literals per clause.

3-CNF example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4) ∧ (X2 ∨ X3 ∨ X4) ∧ X6

common CNF notation:
ϕ :=

{
{X1,X2,¬X5}, {¬X2,¬X4}, {X2,X3,X4}, {X6}

}
Paul Goldberg Deterministic complexity classes 16 / 22

Satisfiability

Definition. A formula ϕ is satisfiable if there is a satisfying
assignment (a.k.a. model) for ϕ.

In the case of formulae in CNF:
An assignment β assigning values 0 or 1 to the variables of ϕ so
that every clause contains at least

one variable to which β assigns 1 or

one negated variable to which β assigns 0.

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

Satisfying assignment:
X1 7→ 1 X2 7→ 0 X3 7→ 1 X4 7→ 0 X5 7→ 1

Paul Goldberg Deterministic complexity classes 17 / 22

The Satisfiability Problem

In association with propositional formulae, the following two
problems are the most important:

SAT
Input: Propositional formula ϕ in CNF

Problem: Is ϕ satisfiable?

k-SAT
Input: Propositional formula ϕ in k-CNF

Problem: Is ϕ satisfiable?

(Let us also note CIRCUIT SAT: given a circuit with n inputs, one
output, can we set input values to get output=TRUE?)

Paul Goldberg Deterministic complexity classes 18 / 22

2-SAT is in P

Proof. The following algorithm solves the problem in poly time.

Let ϕ be the input formula
Repeat

If ϕ contains clauses {X} and {¬X}, halt and output “no”;
If ϕ contains clauses {X} and {¬X ,Y }, add clause {Y };
If ϕ contains clauses {X ,Y } {¬X ,Z}, add clause {Y ,Z};
Any clause {X ,X} simplifies to {X}

Output “yes”.

Poly-time:

there are O(n2) iterations.

Each “if” test searches for O(n2) items in ϕ

Each search is linear in length of ϕ

above analysis is crude but does the job.

Paul Goldberg Deterministic complexity classes 19 / 22

2-SAT is in P

Proof. The following algorithm solves the problem in poly time.

Let ϕ be the input formula
Repeat

If ϕ contains clauses {X} and {¬X}, halt and output “no”;
If ϕ contains clauses {X} and {¬X ,Y }, add clause {Y };
If ϕ contains clauses {X ,Y } {¬X ,Z}, add clause {Y ,Z};
Any clause {X ,X} simplifies to {X}

Output “yes”.

Poly-time:

there are O(n2) iterations.

Each “if” test searches for O(n2) items in ϕ

Each search is linear in length of ϕ

above analysis is crude but does the job.

Paul Goldberg Deterministic complexity classes 19 / 22

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language L1 ⊆ Σ∗ is polynomially reducible to
L2 ⊆ Σ∗, denoted L1 ≤p L2, if there is a polynomial-time
computable function f such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f (w) ∈ L2.

Lemma. If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

Proof idea. The sum and composition of polynomials is a
polynomial.

Generally, members of P can be poly-time reduced to each other.

Paul Goldberg Deterministic complexity classes 20 / 22

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language L1 ⊆ Σ∗ is polynomially reducible to
L2 ⊆ Σ∗, denoted L1 ≤p L2, if there is a polynomial-time
computable function f such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f (w) ∈ L2.

Lemma. If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

Proof idea. The sum and composition of polynomials is a
polynomial.

Generally, members of P can be poly-time reduced to each other.

Paul Goldberg Deterministic complexity classes 20 / 22

Example: Colourability

Vertex Colouring:

A vertex colouring of G with k colours is a function

c : V (G) −→ {1, . . . , k}

such that adjacent nodes have different colours

i.e. {u, v} ∈ E (G) implies c(u) 6= c(v)

k-COLOURABILITY
Input: Graph G , k ∈ N

Problem: Does G have a vertex colouring
with k colours?

For k = 2 this is the same as Bipartite.

Paul Goldberg Deterministic complexity classes 21 / 22

A reduction to 3-Sat

Lemma. k-Colourability ≤p 3-Sat

Proof.
Introduce Xv ,c to represent “in a solution, v gets colour c”.

clauses impose constraints, e.g. Xvc ⇒ ¬Xvc ′ (or rather,
¬Xvc ∨ ¬Xvc ′)

Xvc ⇒ ¬Xv ′c for (v , v ′) any edge

Xv1 ∨ Xv2 ∨ . . . ∨ Xvk for each v

can replace e.g. Xv1 ∨ Xv2 ∨ Xv3 ∨ Xv4 with Xv1 ∨ Xv2 ∨ Xnew and
¬Xnew ∨ Xv3 ∨ Xv4

Reducible to 2-Sat ??

Paul Goldberg Deterministic complexity classes 22 / 22

