Computational Complexity; slides 3, HT 2022 Deterministic complexity classes

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

Our general interest: detailed classification of decidable languages. *Goal:* Classify languages according to the amount of resources needed to solve them.

Resources: In this lecture we will primarily consider

- **time** the running time of algorithms (steps on a Turing machine)
- **space** the amount of additional memory needed (cells on the Turing tapes)

Next: basic complexity classes, polynomial-time reductions

Definition.

Let *M* be a Turing acceptor and let $S, T : \mathbb{N} \to \mathbb{N}$ be functions.

- *M* is *T*-time bounded if it halts on every input $w \in \Sigma^*$ after $\leq T(|w|)$ steps.
- *M* is *S*-space bounded if it halts on every input $w \in \Sigma^*$ using $\leq S(|w|)$ cells on its tapes.

(Here we assume that the Turing machines have a separate input tape that we do not count in measuring space complexity.)

Deterministic Complexity Classes

Definition.

Let $T, S : \mathbb{N} \to \mathbb{N}$ be monotone increasing functions. Define

- DTIME(T) as the class of languages L for which there is a T-time bounded k-tape Turing acceptor deciding L, for some k ≥ 1.
- OSPACE(S) as the class of languages L for which there is a S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Deterministic Complexity Classes

Definition.

Let $T, S : \mathbb{N} \to \mathbb{N}$ be monotone increasing functions. Define

- DTIME(T) as the class of languages L for which there is a T-time bounded k-tape Turing acceptor deciding L, for some k ≥ 1.
- OSPACE(S) as the class of languages L for which there is a S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:

- Time classes:
 - **P** (or PTIME) := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$ polynomial time
 - exponential time
 - 2-EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$ double exp time

• Space classes:

- LOGSPACE := $\bigcup_{d \in \mathbb{N}} \mathsf{DSPACE}(d \log n)$
- PSPACE := $\bigcup_{d \in \mathbb{N}} DSPACE(n^d)$

• EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$

• EXPSPACE := $\bigcup_{d \in \mathbb{N}} \mathsf{DSPACE}(2^{n^d})$

Do these classes depend on exact def of "Turing machine"?

Do these classes depend on exact def of "Turing machine"?

Yes, for DTIME(T), DSPACE(S); No for the others

Indeed, usually don't need to refer explicitly to "Turing machine". But watch out for nondeterminism (details later)

Important Time Complexity Classes:

- $\mathbf{P} := \bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$
- EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$

Not quite so important:

polynomial time exponential time

• 2-EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$ double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

$$\mathbf{P} \subseteq \mathsf{EXP} \subseteq 2\text{-}\mathsf{EXP} \subseteq \cdots \subseteq i\text{-}\mathsf{EXP} \subseteq \ldots$$

Important Time Complexity Classes:

- $\mathbf{P} := \bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(n^d)$
- EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{n^d})$

Not quite so important:

polynomial time

exponential time

• 2-EXP := $\bigcup_{d \in \mathbb{N}} \mathsf{DTIME}(2^{2^{n^d}})$ double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

$$\mathbf{P} \subseteq \mathsf{EXP} \subseteq 2\text{-}\mathsf{EXP} \subseteq \cdots \subseteq i\text{-}\mathsf{EXP} \subseteq \ldots$$

Alternative definition/notation:

$$\mathbf{P} := \mathsf{DTIME}(n^{O(1)})$$

Theorem. (Linear Speed-Up Theorem)

 $\begin{array}{ll} \text{Let } k>1 \text{ and } c>0 & \mathcal{T}:\mathbb{N}\to\mathbb{N} & \mathcal{L}\subseteq\Sigma^* \text{ be a}\\ \text{language.} \end{array}$

If \mathcal{L} can be decided by a T(n) time-bounded k-tape TM $M := (Q, \Sigma, \Gamma, q_0, \delta, F)$

then \mathcal{L} can be decided by a $(\frac{1}{c} \cdot T(n) + n + 2)$ time-bounded *k*-tape TM

 $M^* := (Q', \Sigma, \Gamma', q'_0, \delta', F').$

Linear Speed-Up

Proof idea. Let $\Gamma' := \Sigma \cup \Gamma^s$ where s := 6c. To construct M^* : Step 1: Compress M's input.

Copy (in n+2 steps) the input onto tape 2, compressing *s* symbols into one (i.e., each symbol corresponds to an *s*-tuple from Γ^s)

Step 2: Simulate M's computation, s steps at once.

- Read (in 4 steps) symbols to the left, right and the current position and "store" (using |Q × {1,...,s}^k × Γ^{3sk}| extra states).
- Simulate (in 2 steps) the next s steps of M (as M can only modify the current position and one of its neighbours)
- M* accepts (rejects) if M accepts (rejects)

(see Papadimitriou Thm 2.2, page 32)

Questions we will study:

- Can we always solve more problems if we have more resources?
- If not, how much more resources do we need to be able to solve strictly more problems?
- How do the complexity classes relate to each other?
- How do we show that some problem is in one of these classes but not in another?
- Are there any other interesting models of computation?
 - Non-deterministic computation
 - Randomised algorithms

Next: robustness of ${\bf P}$

Robustness of the definition of **P**

If ${\bf P}$ is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Robustness of the definition of ${\bf P}$

If ${\bf P}$ is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Different Models of Computation:

- We can simulate t steps of a k-tape Turing machine with an equivalent 1-tape TM in t² steps.
- We can simulate t steps of a two-way infinite k-tape Turing machine with an equivalent standard k-tape TM in O(t) steps.
- We can simulate t steps of a RAM-machine with a 3-tape TM in $O(t^3)$ steps. Vice-versa in O(t) steps.

Robustness of the definition of ${\bf P}$

If ${\bf P}$ is to be the mathematical model of efficient computation, it should not depend on

- the exact computation-model we are using,
- or how we encode the input (within reason).

Different Models of Computation:

- We can simulate t steps of a k-tape Turing machine with an equivalent 1-tape TM in t² steps.
- We can simulate t steps of a two-way infinite k-tape Turing machine with an equivalent standard k-tape TM in O(t) steps.
- We can simulate t steps of a RAM-machine with a 3-tape TM in $O(t^3)$ steps. Vice-versa in O(t) steps.

Consequence: **P** is the same for all these models (unlike linear time)

Observation.

- For any $n \in \mathbb{N}$, the length of the encoding of n in base b_1 and base b_2 are related by a constant factor, for all $b_1, b_2 \ge 2$.
- **2** For any graph G, the length of its encoding as an
 - adjacency matrix
 - list of edges
 - adjacency list
 - ...

are all related by a polynomial factor.

Observation.

- For any $n \in \mathbb{N}$, the length of the encoding of n in base b_1 and base b_2 are related by a constant factor, for all $b_1, b_2 \ge 2$.
- **2** For any graph G, the length of its encoding as an
 - adjacency matrix
 - list of edges
 - adjacency list
 - ...

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) **P** is the same for all these encoding (unlike linear time)

Strong Church-Turing Hypothesis

Any function which can be computed by any well-defined procedure can be computed by a Turing machine with only polynomial overhead.

(but doesn't apply to quantum or randomised algorithms)

I also pointed out that "in **P**" corresponds well to existence of a practical algorithm; problem is "tractable"

Growth Rate of Functions (Garey/Johnson '79)

Size n						
Time complexity function	10	20	30	40	50	60
n	.00001	.00002	.00003	.00004	.00005	.00006
	second	second	second	second	second	second
n ²	.0001	.0004	.0009	.0016	.0025	.0036
	second	second	second	second	second	second
n ³	.001	.008	.027	.064	.125	.216
	second	second	second	second	second	second
n ⁵	.1	3.2	24.3	1.7	5.2	13.0
	second	seconds	seconds	minutes	minutes	minutes
2"	.001	1.0	17.9	12.7	35.7	366
	second	second	minutes	days	years	centuries
3″	.059	58	6.5	3855	2×10 ⁸	1.3×10 ¹³
	second	minutes	years	centuries	centuries	centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity functions Paul Goldberg Deterministic complexity classes 13/22 Good news: proofs of "in \mathbf{P} " are often cleaner than detailed runtime analysis;

"in **P**" less specific than, e.g. "in $DTIME(n^2)$ "; some technical details are avoided

- The most direct way to show that a problem is in **P** is to exhibit a polynomial time algorithm that solves it.
- Even a naive polynomial-time algorithm often provides a good insight into how the problem can be solved efficiently.
- Because of robustness, we do not generally need to specify all the details of the machine model or the encoding.

 \rightsquigarrow pseudo-code is sufficient.

Example: Satisfiability

Some of the most important problems concern logical formulae

Recall propositional logic

Formulae of propositional logic are built up inductively

- Variables: X_i $i \in \mathbb{N}$
- Boolean connectives:
 - If φ,ψ are propositional formulae then so are
 - ($\psi \lor \varphi$)
 - $(\psi \land \varphi)$
 - $\neg \varphi$

Example:

 $(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$

Conjunctive Normal Form

Formula φ is in conjunctive normal form (CNF) if

$$\varphi := C_1 \wedge \cdots \wedge C_m$$

where each C_i is a clause, that is, a disjunction of literals

$$C_i := (L_{i1} \vee \cdots \vee L_{ik})$$

A literal is a variable X_i or a negated variable $\neg X_i$

k-CNF: CNF φ with at most *k* literals per clause.

 Formula φ is in conjunctive normal form (CNF) if

$$\varphi := C_1 \wedge \cdots \wedge C_m$$

where each C_i is a clause, that is, a disjunction of literals

$$C_i := (L_{i1} \vee \cdots \vee L_{ik})$$

A literal is a variable X_i or a negated variable $\neg X_i$

k-CNF: CNF φ with at most *k* literals per clause.

$\begin{array}{l} \textbf{3-CNF example:} \\ (X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4) \land (X_2 \lor X_3 \lor X_4) \land X_6 \end{array}$

common CNF notation: $\varphi := \{ \{X_1, X_2, \neg X_5\}, \{\neg X_2, \neg X_4\}, \{X_2, X_3, X_4\}, \{X_6\} \}$ **Definition.** A formula φ is satisfiable if there is a satisfying assignment (a.k.a. model) for φ .

In the case of formulae in CNF: An assignment β assigning values 0 or 1 to the variables of φ so that every clause contains at least

- one variable to which β assigns 1 or
- one negated variable to which β assigns 0.

Example:

$$(X_1 \lor X_2 \lor \neg X_5) \land (\neg X_2 \lor \neg X_4 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4)$$

Satisfying assignment:

 $X_1\mapsto 1$ $X_2\mapsto 0$ $X_3\mapsto 1$ $X_4\mapsto 0$ $X_5\mapsto 1$

The Satisfiability Problem

In association with propositional formulae, the following two problems are the most important:

SAT					
Input:	Propositional formula $arphi$ in CNF				
Problem:	ls $arphi$ satisfiable?				

k-SAT	
Input:	Propositional formula $arphi$ in $k ext{-CNF}$
Problem:	ls $arphi$ satisfiable?

(Let us also note CIRCUIT SAT: given a circuit with n inputs, one output, can we set input values to get output=TRUE?)

Proof. The following algorithm solves the problem in poly time.

Let φ be the input formula Repeat

If φ contains clauses $\{X\}$ and $\{\neg X\}$, halt and output "no"; If φ contains clauses $\{X\}$ and $\{\neg X, Y\}$, add clause $\{Y\}$; If φ contains clauses $\{X, Y\}$ $\{\neg X, Z\}$, add clause $\{Y, Z\}$; Any clause $\{X, X\}$ simplifies to $\{X\}$ Output "yes". *Proof.* The following algorithm solves the problem in poly time.

Let φ be the input formula Repeat

If φ contains clauses $\{X\}$ and $\{\neg X\}$, halt and output "no"; If φ contains clauses $\{X\}$ and $\{\neg X, Y\}$, add clause $\{Y\}$; If φ contains clauses $\{X, Y\}$ $\{\neg X, Z\}$, add clause $\{Y, Z\}$; Any clause $\{X, X\}$ simplifies to $\{X\}$ Output "yes".

Poly-time:

- there are $O(n^2)$ iterations.
- Each "if" test searches for $O(n^2)$ items in φ
- $\bullet\,$ Each search is linear in length of φ

above analysis is crude but does the job.

As for decidability we can use many-one reductions to show membership in **P**.

Definition. A language $\mathcal{L}_1 \subseteq \Sigma^*$ is polynomially reducible to $\mathcal{L}_2 \subseteq \Sigma^*$, denoted $\mathcal{L}_1 \leq_p \mathcal{L}_2$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

$$w \in \mathcal{L}_1 \qquad \Longleftrightarrow \qquad f(w) \in \mathcal{L}_2.$$

As for decidability we can use many-one reductions to show membership in \mathbf{P} .

Definition. A language $\mathcal{L}_1 \subseteq \Sigma^*$ is polynomially reducible to $\mathcal{L}_2 \subseteq \Sigma^*$, denoted $\mathcal{L}_1 \leq_p \mathcal{L}_2$, if there is a polynomial-time computable function f such that for all $w \in \Sigma^*$

$$w \in \mathcal{L}_1 \qquad \Longleftrightarrow \qquad f(w) \in \mathcal{L}_2.$$

Lemma. If $\mathcal{L}_1 \leq_p \mathcal{L}_2$ and $\mathcal{L}_2 \in \mathbf{P}$ then $\mathcal{L}_1 \in \mathbf{P}$.

Proof idea. The sum and composition of polynomials is a polynomial.

Generally, members of ${\bf P}$ can be poly-time reduced to each other.

Vertex Colouring:

A vertex colouring of G with k colours is a function

 $c: V(G) \longrightarrow \{1, \ldots, k\}$

such that adjacent nodes have different colours

i.e. $\{u, v\} \in E(G)$ implies $c(u) \neq c(v)$

k-COLOURABILITY

Input:Graph G, $k \in \mathbb{N}$ Problem:Does G have a vertex colouring
with k colours?

For k = 2 this is the same as BIPARTITE.

A reduction to 3-SAT

Lemma. k-COLOURABILITY $\leq_p 3$ -SAT

Proof.

Introduce $X_{v,c}$ to represent "in a solution, v gets colour c".

clauses impose constraints, e.g. $X_{vc} \Rightarrow \neg X_{vc'}$ (or rather, $\neg X_{vc} \lor \neg X_{vc'}$)

 $X_{vc} \Rightarrow \neg X_{v'c}$ for (v, v') any edge

 $X_{v1} \lor X_{v2} \lor \ldots \lor X_{vk}$ for each v

can replace e.g. $X_{v1} \lor X_{v2} \lor X_{v3} \lor X_{v4}$ with $X_{v1} \lor X_{v2} \lor X_{new}$ and $\neg X_{new} \lor X_{v3} \lor X_{v4}$

Reducible to 2-SAT ??