Computational Complexity; slides 5, HT 2022 Reductions, NP-hardness

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

NP-Completeness Proofs

To prove that a problem \mathcal{X} is NP-complete, we now just have to perform two steps:
(1) Show that $\mathcal{X} \in \mathrm{NP}$ usually easy
(2) Find a known NP-complete problem \mathcal{X}^{\prime} and reduce $\mathcal{X}^{\prime} \leq_{p} \mathcal{X}$. the FUN part
Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

A relevant quote
Proving NP-completeness results is an important ingredient of our methodology for studying computational problems. It is also something of an art form.
start of chapter 9 of Papadimitriou's textbook

NP-Completeness Proofs

Coming up next: some examples.
CNF-SAT $\leq{ }_{p} 3$-SAT (BTW, goes back to Cook's paper)
$\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \mapsto\left\{X_{1}, X_{2}, X_{n e w}\right\},\left\{\neg X_{\text {new }}, X_{3}, \ldots, X_{n}\right\}$ repeat until clause lengths ≤ 3

3-SAT is a more convenient starting-point of reductions than unrestricted SAT.

3-SAT $\leq{ }_{p}$ INTEGER PROGRAMMING (simple but important)
3 -SAT \leq_{p} IND SET \leq_{p} CLIQUE
$3-$ SAT \leq_{p} DIRECTED HAMILTONIAN PATH
3 -SAT \leq_{p} SUBSET SUM \leq_{p} KNAPSACK

NP-Completeness of INTEGER PROGRAMMING

IP: Input: a set of linear constraints, Question: can we satisfy them with integer values?
$3-\mathrm{SAT} \leq_{p} \mathrm{IP}$
X_{i} in 3-SAT instance $\mapsto x_{i}$ in IP instance.
$\forall i$, include constraints $0 \leq x_{i} \leq 1$
(idea: 0 means F, 1 means T)
$\left\{X_{i}, X_{j}, X_{k}\right\} \mapsto x_{i}+x_{j}+x_{k} \geq 1$
$\left\{X_{i}, \neg X_{j}, X_{k}\right\} \mapsto x_{i}+\left(1-x_{j}\right)+x_{k} \geq 1$
and similarly for more than one negated literal

Example

$\left\{\left\{X_{1}, X_{2}, X_{3}\right\},\left\{\neg X_{1}, \neg X_{2}, X_{4}\right\}\right\}$
is reduced to the following IP:
$0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1$
$x_{1}+x_{2}+x_{3} \geq 1,\left(1-x_{1}\right)+\left(1-x_{2}\right)+x_{4} \geq 1$

NP-Completeness of CLIQUE

Clique: Given G, k, does G contain a clique of order $\geq k$?

Theorem

Clique is NP-complete.
It's convenient to reduce from 3-SAT to IND SET and from there to Clique.

3-SAT \leq_{p} IND SET: each clause of a 3-SAT instance becomes a triangle in the graph. Label vertices with the literals.
If the formula had m clauses, the graph now has $3 m$ vertices. Is there an independent set of size m ?
(idea: choice of vertex in each triangle corresponds to choice of literal that gets satisfied)

Add new edges between any pair of vertices labelled by a variable X_{i} and its negation $\neg X_{i}$.
Any n-independent set corresponds to a satisfying assignment.

NP-Completeness of Directed Hamiltonian Path

> Directed Hamiltonian Path Input: $G:$ directed graph. Problem: $\begin{aligned} & \text { Is there a directed path in } G \text { containing every } \\ & \\ & \\ & \text { vertex exactly once? }\end{aligned}$.

Theorem
Directed Hamiltonian Path is NP-complete

NP-Completeness of Directed Hamiltonian Path

> Directed Hamiltonian Path Input: $G:$ directed graph. Problem: Is there a directed path in G containing every vextly once?

Theorem

Directed Hamiltonian Path is NP-complete

Proof.

(1) Directed Hamiltonian Path $\in \mathrm{NP}$.

Take the path to be the certificate.

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G: directed graph.
Problem: Is there a directed path in G containing every vertex exactly once?

Theorem

Directed Hamiltonian Path is NP-complete

Proof.

(1) Directed Hamiltonian Path $\in \mathrm{NP}$.

Take the path to be the certificate.
(2) Directed Hamiltonian Path is NP-hard.

3 -Satisfiability \leq_{p} Directed Hamiltonian Path
from 3-SAT to DIRECTED HAMILTONIAN PATH

Digression: how to design reductions

Show that problem \mathcal{X} (Dir. Hamiltonian Path) is NP-hard.
Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to Directed Hamiltonian Path - something graph-theoretic?
- Considerations:
- Is there an NP-complete problem similar to \mathcal{X} ?
(E.g. Clique and Independent Set)
- It is not always beneficial to choose a problem of the same type (E.g. reducing a graph problem to a graph problem)
- For instance, Clique, Independent Set are "local" problems (is there a set of vertices inducing some structure)
- Hamiltonian Path is a "global" problem
(find a structure containing all vertices)
How to design the reduction:
- Does your problem come from an optimisation problem? If so: a maximisation problem? a minimisation problem?

NP-Completeness of Subset Sum

$$
\begin{aligned}
& \text { Subset Sum } \\
& \text { Input: } \mathrm{A} \text { collection of positive integers } \\
& S:=\left\{a_{1}, \ldots, a_{k}\right\} \text { and a target integer } t . \\
& \text { Problem: } \text { Is there a subset } T \subseteq S \text { such that } \sum_{a_{i} \in T} a_{i}=t \text { ? }
\end{aligned}
$$

Theorem. Subset Sum is NP-complete

Proof.

(1) Subset $\operatorname{Sum} \in \mathrm{NP}$.

Take T to be the certificate.
(2) Subset Sum is NP-hard.

CNF-SAt \leq_{p} Subset Sum (example next slide)

Example

$$
\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee \neg X_{4}\right) \wedge\left(X_{4} \vee X_{5} \vee \neg X_{2} \vee \neg X_{3}\right)
$$

| | | | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | C_{1} |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$C_{2} C_{3}$

Sat \leq_{p} SUbSET Sum (the general construction)

Given: $\varphi:=C_{1} \wedge \cdots \wedge C_{k}$ in conjunctive normal form.
(for numbers in base 10: at most 9 literals per clause)
Let X_{1}, \ldots, X_{n} be the variables in φ. For each X_{i} let

$$
\begin{aligned}
& t_{j}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& c_{j}:= \begin{cases}1 & X_{i} \text { occurs in } C_{j} \\
0 & \text { otherwise }\end{cases} \\
& a_{j}:= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
& f_{i}:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } \\
& c_{j}:= \begin{cases}1 & \neg X_{i} \text { occurs in } C_{j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Sat \leq_{p} SUbSET Sum (the general construction)

Further, for each clause C_{i} take $r:=\left|C_{i}\right|-1$ integers $m_{i, 1}, \ldots, m_{i, r}$
where $m_{i, j}:=c_{i} \ldots c_{k}$ with $c_{j}:= \begin{cases}1 & j=i \\ 0 & j \neq i\end{cases}$
Definition of S: Let

$$
S:=\left\{t_{i}, f_{i}: 1 \leq i \leq n\right\} \cup\left\{m_{i, j}: 1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-1\right\}
$$

Target: Finally, choose as target

$$
t:=a_{1} \ldots a_{n} c_{1} \ldots c_{k} \text { where } a_{i}:=1 \text { and } c_{i}:=\left|C_{i}\right|
$$

Claim: There is $T \subseteq S$ with $\sum_{a_{i} \in T} a_{i}=t$ iff φ is satisfiable.

NP-Completeness of Subset Sum

$$
\text { Let } \varphi:=\bigwedge C_{i} \quad C_{i}: \text { clauses }
$$

Show. If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s=t$.
Let β be a satisfying assigment for φ
Set $T_{1}:=\left\{t_{i}: \beta\left(X_{i}\right)=1 \quad 1 \leq i \leq m\right\} \cup$

$$
\left\{f_{i}: \beta\left(X_{i}\right)=0 \quad 1 \leq i \leq m\right\}
$$

Further, for each clause C_{i} let r_{i} be the number of satisfied literals in C_{i} (with resp. to β).
Set $T_{2}:=\left\{m_{i, j}: 1 \leq i \leq k, \quad 1 \leq j \leq\left|C_{i}\right|-r_{i}\right\}$ and define $T:=T_{1} \cup T_{2}$.
It follows: $\sum_{s \in T} s=t$

NP-Completeness of Subset Sum

Show. If there is $T \subseteq S$ with $\sum_{s \in T} s=t$, then φ is satisfiable.
Let $T \subseteq S$ s.th. $\sum_{s \in T} s=t$
Define $\beta\left(X_{i}\right)= \begin{cases}1 & \text { if } t_{i} \in T \\ 0 & \text { if } f_{i} \in T\end{cases}$
This is well defined as for all $i: t_{i} \in T$ or $f_{i} \in T$ but not both.
Further, for each clause, there must be one literal set to 1 as for all i, the $m_{i, j}: m_{i, j} \in S$ do not sum up to the number of literals in the clause.

NP-completeness of KNAPSACK

Knapsack
Input: A set $I:=\{1, \ldots, n\}$ of items each of value v_{i} and weight $w_{i} \quad$ for $1 \leq i \leq n$ target value $t \quad$ weight limit ℓ
Problem: Is there $T \subseteq I$ such that

- $\sum_{i \in T} v_{i} \geq t$
- $\sum_{i \in T} w_{i} \leq \ell$

Theorem. Knapsack is NP-complete
(1) Knapsack $\in \mathrm{NP}$

Take T as certificate.
(2) Knapsack is NP-hard

By reduction Subset Sum \leq_{p} Knapsack
Key point: KnAPSACK is "more general/expressive" than SUBSET Sum

Subset Sum \leq_{p} Knapsack (the details)

reminder: SUBSET Sum
Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?

Subset Sum \leq_{p} Knapsack (the details)

reminder: SUBSET Sum
Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?
Reduction: From this input to Subset Sum construct

- $I:=\{1, \ldots, n\}: \quad$ set of items
- $v_{i}=w_{i}=a_{i} \quad$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t \quad$ weight limit $\ell:=t$

Subset Sum \leq_{p} Knapsack (the details)

reminder: SUBSET Sum
Given: $\quad S:=\left\{a_{1}, \ldots, a_{n}\right\} \quad$ collection of positive integers t target integer
Problem: Is there a subset $T \subseteq S$ such that $\sum_{a_{i} \in T} a_{i}=t$?
Reduction: From this input to Subset Sum construct

- $I:=\{1, \ldots, n\}: \quad$ set of items
- $v_{i}=w_{i}=a_{i} \quad$ for all $1 \leq i \leq n$
- target value $t^{\prime}:=t \quad$ weight limit $\ell:=t$

Clearly: For every $T \subseteq S$

$$
\sum_{a_{i} \in T} a_{i}=t \quad \Longleftrightarrow \quad \begin{aligned}
& \sum_{a_{i} \in T} v_{i} \geq t^{\prime}=t \\
& \sum_{a_{i} \in T} w_{i} \leq \ell=t
\end{aligned}
$$

Hence: The reduction is correct and in polynomial time.

