Computational Complexity; slides 5, HT 2022 Reductions, NP-hardness

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

To prove that a problem \mathcal{X} is NP-complete, we now just have to perform two steps:

- Show that $\mathcal{X} \in \mathsf{NP}$ usually easy
- **②** Find a known NP-complete problem X' and reduce $X' ≤_p X$. the FUN part

Thousands of problem have now been shown to be NP-complete (See Garey and Johnson for an early survey); Karp 1972, "reducibility among combinatorial problems" kicked-off this work

A relevant quote

Proving NP-completeness results is an important ingredient of our methodology for studying computational problems. It is also something of an art form.

start of chapter 9 of Papadimitriou's textbook

Coming up next: some examples.

CNF-SAT \leq_p 3-SAT (BTW, goes back to Cook's paper) $\{X_1, X_2, \ldots, X_n\} \mapsto \{X_1, X_2, X_{new}\}, \{\neg X_{new}, X_3, \ldots, X_n\}$ repeat until clause lengths ≤ 3

3-SAT is a more convenient starting-point of reductions than unrestricted SAT.

 $3-SAT \leq_{p}$ INTEGER PROGRAMMING (simple but important) $3-SAT \leq_{p}$ IND SET \leq_{p} CLIQUE $3-SAT \leq_{p}$ DIRECTED HAMILTONIAN PATH $3-SAT \leq_{p}$ SUBSET SUM \leq_{p} KNAPSACK

NP-Completeness of INTEGER PROGRAMMING

IP: Input: a set of linear constraints, Question: can we satisfy them with integer values? $3-SAT \leq_{p} IP$

 X_i in 3-SAT instance $\mapsto x_i$ in IP instance.

 $\forall i$, include constraints $0 \le x_i \le 1$ (idea: 0 means F, 1 means T)

$$\{X_i, X_j, X_k\} \mapsto x_i + x_j + x_k \ge 1$$

 $\{X_i, \neg X_j, X_k\} \mapsto x_i + (1 - x_j) + x_k \ge 1$
and similarly for more than one negated literal

Example

$$\{ \{X_1, X_2, X_3\}, \{\neg X_1, \neg X_2, X_4\} \}$$

is reduced to the following IP:
 $0 \le x_1 \le 1, \ 0 \le x_2 \le 1$
 $x_1 + x_2 + x_3 \ge 1, \ (1 - x_1) + (1 - x_2) + x_4 \ge 1$

NP-Completeness of CLIQUE

CLIQUE: Given G, k, does G contain a clique of order $\geq k$?

Theorem

CLIQUE *is* NP-complete.

It's convenient to reduce from 3-SAT to IND SET and from there to $\operatorname{CLIQUE}\nolimits.$

 $3-SAT \le_p IND$ SET: each clause of a 3-SAT instance becomes a triangle in the graph. Label vertices with the literals. If the formula had *m* clauses, the graph now has 3m vertices. Is there an independent set of size *m*?

(idea: choice of vertex in each triangle corresponds to choice of literal that gets satisfied)

Add new edges between any pair of vertices labelled by a variable X_i and its negation $\neg X_i$.

Any *n*-independent set corresponds to a satisfying assignment.

Directed	Hamiltonian Path
Input:	G: directed graph.
Problem:	Is there a directed path in <i>G</i> containing every vertex exactly once?

Theorem

DIRECTED HAMILTONIAN PATH is NP-complete

Directed	Hamiltonian Path
Input:	G: directed graph.
Problem:	Is there a directed path in <i>G</i> containing every vertex exactly once?

Theorem

DIRECTED HAMILTONIAN PATH is NP-complete

Proof.

1 Directed Hamiltonian Path $\in NP$.

Take the path to be the certificate.

Directed	HAMILTONIAN PATH
Input:	G: directed graph.
Problem:	Is there a directed path in <i>G</i> containing every vertex exactly once?

Theorem

DIRECTED HAMILTONIAN PATH is NP-complete

Proof.

1 Directed Hamiltonian Path $\in NP$.

Take the path to be the certificate.

2 DIRECTED HAMILTONIAN PATH is NP-hard.

3-Satisfiability \leq_p Directed Hamiltonian Path

from 3-SAT to DIRECTED HAMILTONIAN PATH

from 3-SAT to DIRECTED HAMILTONIAN PATH

reductions

Digression: how to design reductions

Show that problem \mathcal{X} (DIR. HAMILTONIAN PATH) is NP-hard.

Which problem to reduce to \mathcal{X} :

- Arguably, the most important part is to decide where to start from; e.g. which problem to reduce to DIRECTED HAMILTONIAN PATH something graph-theoretic?
- Considerations:
 - Is there an NP-complete problem similar to \mathcal{X} ?

(E.g. CLIQUE and INDEPENDENT SET)

- It is not always beneficial to choose a problem of the same type (E.g. reducing a graph problem to a graph problem)
 - For instance, CLIQUE, INDEPENDENT SET are "local" problems (is there a set of vertices inducing some structure)
 - Hamiltonian Path is a "global" problem (find a structure containing all vertices)

How to design the reduction:

• Does your problem come from an optimisation problem?

If so: a maximisation problem? a minimisation problem?

Theorem. SUBSET SUM is NP-complete

Proof.

• Subset Sum \in NP.

Take T to be the certificate.

2 SUBSET SUM is NP-hard.

CNF-SAT \leq_{p} SUBSET SUM (example next slide)

Example

$(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor \neg X_4) \land (X_4 \lor X_5 \lor \neg X_2 \lor \neg X_3)$

		X	$X_1 X_2$	$_2 X_2$	3 X	$_{4}X_{5}$	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
t1f1 t2f2 t3f3 t4f4 t5f5		1 1	0 0 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	0 0 1 0 1 1 0 1 0
$m_{1,1} \ m_{1,2} \ m_{2,1} \ m_{3,1} \ m_{3,2} \ m_{3,3}$							1 1 0 0 0 0	0 0 1 0 0 0	0 0 1 1 1
t	=	1	1	1	1	1	3	2	4

reductions

Paul Goldberg

SAT \leq_p SUBSET SUM (the general construction)

Given: $\varphi := C_1 \land \cdots \land C_k$ in conjunctive normal form.

(for numbers in base 10: at most 9 literals per clause)

Let X_1, \ldots, X_n be the variables in φ . For each X_i let

$$t_{i} := a_{1} \dots a_{n}c_{1} \dots c_{k} \quad \text{where} \quad \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$c_{j} := \begin{cases} 1 & X_{i} \text{ occurs in } C_{j} \\ 0 & \text{otherwise} \end{cases}$$

$$f_{i} := a_{1} \dots a_{n}c_{1} \dots c_{k} \quad \text{where} \quad \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$c_{j} := \begin{cases} 1 & -X_{i} \text{ occurs in } C_{j} \\ 0 & \text{otherwise} \end{cases}$$

SAT \leq_p SUBSET SUM (the general construction)

Further, for each clause C_i take $r := |C_i| - 1$ integers $m_{i,1}, \ldots, m_{i,r}$

where
$$m_{i,j} := c_i \dots c_k$$
 with $c_j := \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$
Definition of S: Let

 $S := \{t_i, f_i : 1 \le i \le n\} \cup \{m_{i,j} : 1 \le i \le k, \quad 1 \le j \le |C_i| - 1\}$

Target: Finally, choose as target

 $t := a_1 \dots a_n c_1 \dots c_k$ where $a_i := 1$ and $c_i := |C_i|$

Claim: There is $T \subseteq S$ with $\sum_{a_i \in T} a_i = t$ iff φ is satisfiable.

NP-Completeness of Subset Sum

Let $\varphi := \bigwedge C_i$ C_i : clauses

Show. If φ is satisfiable, then there is $T \subseteq S$ with $\sum_{s \in T} s = t$.

Let β be a satisfying assignment for φ

Set
$$T_1 := \{t_i : \beta(X_i) = 1 \ 1 \le i \le m\} \cup \{f_i : \beta(X_i) = 0 \ 1 \le i \le m\}$$

Further, for each clause C_i let r_i be the number of satisfied literals in C_i

(with resp. to β).

Set $T_2 := \{m_{i,j} : 1 \le i \le k, \quad 1 \le j \le |C_i| - r_i\}$ and define $T := T_1 \cup T_2$. It follows: $\sum_{s \in T} s = t$ **Show.** If there is $T \subseteq S$ with $\sum_{s \in T} s = t$, then φ is satisfiable.

Let
$$T \subseteq S$$
 s.th. $\sum_{s \in T} s = t$
Define $\beta(X_i) = \begin{cases} 1 & \text{if } t_i \in T \\ 0 & \text{if } f_i \in T \end{cases}$

This is well defined as for all $i: t_i \in T$ or $f_i \in T$ but not both.

Further, for each clause, there must be one literal set to 1 as for all *i*, the $m_{i,j} : m_{i,j} \in S$ do not sum up to the number of literals in the clause.

NP-completeness of KNAPSACK

Theorem. KNAPSACK is NP-complete

• KNAPSACK \in NP

Take *T* as certificate.

O KNAPSACK is NP-hard

By reduction SUBSET SUM \leq_p KNAPSACK

Key point: KNAPSACK is "more general/expressive" than SUBSET SUM

SUBSET SUM \leq_p KNAPSACK (the details)

reminder: SUBSET SUMGiven: $S := \{a_1, \ldots, a_n\}$ collection of positive integerstttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

SUBSET SUM \leq_p KNAPSACK (the details)

reminder: SUBSET SUMGiven: $S := \{a_1, \ldots, a_n\}$ collection of positive integerstttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

- $I := \{1, \ldots, n\}$: set of items
- $v_i = w_i = a_i$ for all $1 \le i \le n$
- target value t' := t weight limit $\ell := t$

SUBSET SUM \leq_p KNAPSACK (the details)

reminder: SUBSET SUMGiven: $S := \{a_1, \ldots, a_n\}$ collection of positive integerstttarget integerProblem:Is there a subset $T \subseteq S$ such that $\sum_{a_i \in T} a_i = t$?

Reduction: From this input to SUBSET SUM construct

• $I := \{1, \dots, n\}$: set of items • $v_i = w_i = a_i$ for all $1 \le i \le n$ • target value t' := t weight limit $\ell := t$

Clearly: For every $T \subseteq S$

$$\sum_{a_i \in T} a_i = t \qquad \Longleftrightarrow \qquad \frac{\sum_{a_i \in T} v_i \ge t'}{\sum_{a_i \in T} w_i \le \ell} = t$$

Hence: The reduction is correct and in polynomial time.