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Road map

I mentioned classes like LOGSPACE (usually called L),
SPACE(f (n)) etc. How do they relate to each other, and time
complexity classes?

Next: Various inclusions can be proved, some more easy than
others; let’s begin with “low-hanging fruit”...

e.g., I have noted: TIME(f (n)) is a subset of SPACE(f (n)) (easy!)

We will see e.g. L is a proper subset of PSPACE, although it’s
unknown how they relate to various intermediate classes, e.g. P,
NP

Various interesting problems are complete for PSPACE, EXPTIME,
and some of the others.
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Space Complexity

So far, we have measured the complexity of problems in terms of
the time required to solve them.

Alternatively, we can measure the space/memory required to
compute a solution.

Important difference: space can be re-used

Convention: Turing machines have a designated read only input
tape. So, “logarithmic space” becomes meaningful.
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Space Complexity

Definition. Let M be a Turing accepter and S : N→ N a monotone
growing function. M is S-space bounded if for all input words w ,
M halts and uses at most S(|w |) non-input tape cells.

1 DSPACE(S): languages L for which there is an S-space
bounded k-tape deterministic Turing accepter deciding L for
some k ≥ 1.

2 NSPACE(S): languages L for which there is an S-space
bounded non-deterministic k-tape Turing accepter deciding L
for some k ≥ 1.
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Space Complexity Classes

Deterministic Classes:

LOGSPACE :=
⋃

d∈NDSPACE(d log n)

PSPACE :=
⋃

d∈NDSPACE(nd)

EXPSPACE :=
⋃

d∈NDSPACE(2nd )

Non-Deterministic versions: NLOGSPACE etc

In the above defs, a single separate work-tape is sufficient.

Straightforward observation:

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE

⊆ ⊆ ⊆

NLOGSPACE ⊆ NPSPACE ⊆ NEXPSPACE
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Elementary relationships between time and space

Easy observation:
For all functions f : N→ N:

DTIME(f ) ⊆ DSPACE(f )

NTIME(f ) ⊆ NSPACE(f )

A bit harder:
For all monotone growing functions f : N→ N:

DSPACE(f ) ⊆ DTIME(2O(f ))

NSPACE(f ) ⊆ DSPACE(2O(f ))

Proof. Based on configuration graphs (next 2 slides) and a bound on
the number of possible configurations.

Build the configuration graph

 time 2O(f (n))

Find a path from the start to an accepting stop configuration.

 time 2O(f (n))
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Number of Possible Configurations

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a 1-tape Turing accepter.

(plus input tape)

Recall: Configuration of M is a triple (q, p, x) where

q ∈ Q is the current state,

p ∈ N is the head position, and

x ∈ Γ∗ is the tape content.

Let w ∈ Σ∗ be an input to M, n := |w |
If M is f (n)-space bounded we can assume that p ≤ f (n) and
|x | ≤ f (n)

Hence, there are at most

|Γ|f (n) · f (n) · |Q| = 2O(f (n))

different configurations on inputs of length n.
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Configuration Graphs

Let M := (Q,Σ, Γ, q0,∆,Fa,Fr ) be a 1-tape Turing accepter.

f (n) space bounded

Configuration graph G(M,w) of M on input w :
Directed graph with

Vertices: All possible configurations of M up to length f (|w |)
Edges: Edge (C1,C2) ∈ E (G(M,w)), if C1 `M C2

A computation of M on input w corresponds to a path in G(M,w)
from the start configuration to a stop configuration.

Hence, to test if M accepts input w ,

construct the configuration graph and

find a path from the start to an accepting stop configuration.
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Basic relationships

Recall: L denotes LOGSPACE; NL=NLOGSPACE

L

⊆

NL ⊆ P ⊆ PSPACE

⊆ ⊆

NP ⊆ NPSPACE ⊆ EXPTIME ⊆ EXPSPACE

⊆ ⊆

NEXPTIME⊆NEXPSPACE
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Simulating non-deterministic computations with limited
space

Easy observation: SAT can be solved in linear space

Just try every possible assignment, one after another, reusing
space.

Consequence: NP ⊆ PSPACE
similarly, NEXPTIME is a subset of EXPSPACE

Generally, non-deterministic time f (n) allows O(f (n))
non-deterministic “guesses”; try them all one-by-one, in
lexicographic order, over-writing previous attempts.
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So we can update the previous diagram

L

⊆

NL ⊆ P PSPACE

⊆ ⊆

NP

⊆

NPSPACE ⊆ EXPTIME EXPSPACE
⊆ ⊆

NEXPTIME

⊆

NEXPSPACE

By the time hierarchy theorem (coming up next), P ( EXPTIME,
NP ( NEXPTIME
By the space hierarchy theorem, NL ( PSPACE,
PSPACE ( EXPSPACE.
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Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXPTIME.

Proof sketch: consider “time-bounded halting language”

Hf := {〈M,w〉 : M accepts w after at most f (|w |) steps}

Hf belongs to TIME((f (n))3): construct a universal TM that uses

“quadratic overhead” to simulate a step of M. (The theorem can

be strengthened by using a more economical UTM, but as stated

it’s good enough for P(EXPTIME.)

Next point: Hf 6∈ TIME(f (bn2c)).
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Time Hierarchy theorem

Reminder: Hf := {〈M,w〉 : M accepts w after ≤ f (|w |) steps}

To prove Hf 6∈ TIME(f (bn2c)):

Suppose MHf
decides Hf in time f (bn2c).

Define “diagonalising” machine:
Df (M) : if MHf

(〈M,M〉) = “yes” then “no” else “yes”

Does Df accept its own description? Contradiction!

Corollary

P is a proper subset of EXPTIME.
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Space Hierarchy Theorem

Theorem. (Space Hierarchy Theorem)

Let S , s : N→ N be functions such that

1 S is space constructible, and

2 S(n) ≥ n,

3 s = o(S).

Then DSPACE(s) ( DSPACE(S).

Reminder: item 3 means that limn→∞(s(n)/S(n)) = 0.

Proof later, but note consequences: LOGSPACE is a proper subset
of PSPACE, is proper subset of EXPSPACE
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