Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Another nice result

Theorem
If P=NP, then EXPTIME=NEXPTIME

Suppose X eNEXPTIME. Define pad(X) as follows:
w € X iff wO?" € pad(X) (where n = |w])

We have pad(X) €NP: Given a word of the form w(I",

@ Check you have the right number of [I's.

e run the NEXPTIME algorithm on w-prefix (not the [I's).
Hence pad(X) €P by assumption.

Then, you can take poly-time algorithm for pad(X), and convert it
to algorithm that checks w-prefix, in time exponential in |w].

Paul Goldberg PSPACE-completeness and QBFs 2/15

Savitch's Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M
can accept w within 2P(") steps.

Proof idea: predicate reachable(C, C’, /), satisfied by configurations
C, C’ and integer i, provided C’ is reachable from C within 2
transitions (w.r.t M).

Note: reachable(C, C', i) is satisfied provided there exists C” such
that

reachable(C, C”,i — 1) and reachable(C”, C’",i — 1)

To check reachable(Cipit, Caccept, P(11)), try for all configs C":
reachable(Cinj, C”, p(n) — 1) and reachable(C”, Cyccept, P(n) — 1)

Which themselves are checked recursively. Depth of recursion is
p(n), need to remember at most p(n) configs at any time. We
may assume C,ccepr IS UNique.

Paul Goldberg PSPACE-completeness and QBFs 3/15

Savitch’'s Theorem

More generally:

Theorem. (Savitch 1970)
For all (space-constructible) S : N — N such that S(n) > logn,

NSPACE(S(n)) € DSPACE(S(n)?).

In particular: PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

Paul Goldberg PSPACE-completeness and QBFs 4/15

A PSPACE-complete problem: QBF

c.f. Cook’s theorem. .)
A more general kind of logic problem characterises PSPACE

https://en.wikipedia.org/wiki/True_quantified_Boolean_formula
A Quantified Boolean Formula is a formula of the form

lel PN Qan(p(Xl, . 7)(,,)

where
o the Q; are quantifiers 3 or V

@ is a CNF formula in the variables Xi, ..., X, and atoms 0
and 1

Example
IX1VXoIX3Y Xa W Xs ((xl VOV =Xs5) A (-XoV1V—Xs) A (XoV
X3V X4))

Paul Goldberg PSPACE-completeness and QBFs 5/15

https://en.wikipedia.org/wiki/True_quantified_Boolean_formula

Quantified Boolean Formulae

Consider the following problem:

QBF
Input: A QBF formula ¢.
Question: Is ¢ true?

Observation: For any propositional formula ¢:

© is satisfiable if, and only if, 93Xy ...3X,p is true.
X1, ..., X, Variables occurring in ¢
Consequence: QBF is NP-hard.

Similarly, QBF is also co-NP-hard.

Paul Goldberg PSPACE-completeness and QBFs 6/15

Theorem: QBF is in PSPACE

Proof: Given ¢ := Q1 X1 ... QnXy1, letting m := |¢)]

Eval-QBF(y)
if n=0 Accept if 1) evaluates to true. Reject otherwise.
if o :=3Xv'
construct 1 1= ¢'[X — 1]
if Eval-QBF (1) evaluates to true, accept.

else construct g := 1'[X > 0] (reuse space in Eval-QBF(¢1))
return Eval-QBF (o)
if o := VX'

construct 1 := '[X > 1]

if Eval-QBF(¢1) evaluates to false, reject.

else construct o := 9'[X = 0] (reuse space in Eval-QBF (1))
return Eval-QBF (o)

V.

Paul Goldberg PSPACE-completeness and QBFs 7/15

Theorem: QBF is in PSPACE

Proof: Given ¢ := Q1 X1 ... Q,Xp, letting m := |1)|

Eval-QBF(y)
if n=0 Accept if 1) evaluates to true. Reject otherwise.
if o :=3Xv'
construct 1 1= ¢'[X — 1]
if Eval-QBF (1) evaluates to true, accept.

else construct g := 1'[X > 0] (reuse space in Eval-QBF(¢1))
return Eval-QBF (o)
if o := VX'

construct o1 := '[X — 1]

if Eval-QBF(1) evaluates to false, reject.

else construct ¢g := ¢'[X — 0] (reuse space in Eval-QBF (1))
return Eval-QBF (o)

V.

Space complexity: Algorithm uses O(nm) tape cells.
(At depth d of recursion tree, remember d simplified versions of ¢; can be
improved to O(n + m) by remembering ¢ and d bits...)

Paul Goldberg PSPACE-completeness and QBFs 7/15

Theorem: QBF is NPSPACE-hard

Let £ € NPSPACE. We show £ <, QBF.

Let M :=(Q,%,T,qo, A, Fa, F,) be a TM deciding £
such that M never uses more than p(n) cells.

For each input w € X*, |w| = n, we construct a formula ¢p .,
such that

M accepts w if, and only if, ©M,w is true.

Paul Goldberg PSPACE-completeness and QBFs 8/15

Theorem: QBF is NPSPACE-hard

Let £ € NPSPACE. We show £ <, QBF.

Let M :=(Q,%,T,qo, A, Fa, F,) be a TM deciding £
such that M never uses more than p(n) cells.

For each input w € X*, |w| = n, we construct a formula ¢p .,
such that

M accepts w if, and only if, ©M,w is true.

Describe configuration (g, p, a1 ... ap(n) by a set
Vi={Xy,Yi,Zai:qeQ, acl, 0<i<p(n)}
of variables and the truth assignment 3 defined as

a—=a;

s6)={§ 129 s={} $Z5 sz ={} 372

Paul Goldberg PSPACE-completeness and QBFs 8/15

NPSPACE-Hardness of QBF

Consider the following formula CONF(V) with free variables

Vi={Xq. Vi, Zi:qeQ, acl, 0<i<p(n)}

Conr(V)i=\/ (XgA N\ ~Xg) A Vo (%er A\ o)

qeQ q'#q p<p(n) p'#p
/\ \/ Za i\ /\ _‘Zb i
1<i<p(n) acl’ b#acl’

Definition. For any truth assignment /3 of V define config(V, §) as

{(q,p, w1 ... W) : B(Xq) = B(Yp) = B(Zw,i) = 1,Vi < p(n)}
Lemma
If B satisfies CONF(V) then |config(V, 3)| = J

Paul Goldberg PSPACE-completeness and QBFs 9/15

NPSPACE-hardness of QBF

Definition. For an assignment (3 of V we defined config(V,) as
{(g,p, w1 ... wym) : B(Xq) = B(Yp) = B(Zuw;,i) = 1,¥i < p(n)}

Lemma
If B satisfies CONF(V) then |config(V, 3)| = 1.

Remark. 0 may be defined on other variables than those in V.

config(V, 3) is a potential configuration of M, but it might not be
reachable from the start configuration of M on input w.

Conversely: Every configuration (g, p, w1 ... wp(,) induces a
satisfying assignment.

Paul Goldberg PSPACE-completeness and QBFs 10/15

NPSPACE-Hardness of QBF

Consider the following formula NEXT(V, V) defined as

ConNF(V) A CoNF(V') A NOCHANGE(V, V') A CHANGE(V, V).

NocuANGE = /\ <Y = N\(Za,i <—>Z’)

1<p<p(n) i
CHANGE := /\ ((Yp NXgNZap) =
1<p<p(n)

Vo Xy A Zop A Y)
(g,a,9’,b,m)EA

Lemma

For any assignment [3 defined on V,V':
3 satisfies NEXT(V, V') <= config(V,) Fm config(V', 3)

Paul Goldberg PSPACE-completeness and QBFs 11/15

Define PATH;(V1,V,):
M starting on config(V1, 8) can reach config(Vs, 3) in < 2' steps.

For i=0: PatHe = WVi=V. V Next(W,)Vs)

Define PATH;(V1,V,):
M starting on config(V1, 8) can reach config(Vs, 3) in < 2' steps.

For i=0: PatHe = WVi=V. V Next(W,)Vs)

Fori—i+1:
Idea: PATH 1 (V1, V>) := 3V [CONF(V) A PaTH;(V1, V) A PaTH;(V, Vz)]

NPSPACE-hardness of QBF

Deﬁne PATH,'(Vl, Vz):
M starting on config(V1, 8) can reach config(Vs, 3) in < 2" steps.

For i =0: PaTHy = V1=V, V NexT(V1,)2)

Fori—i+1:
Idea: PATH1(Vi, V) i= 3V [CONF(V) A PATH;(V1, V) A PaTH; (V, Vz)]

Problem: |PaTH;| = O(2") (Reduction would use exp. time/space)

Paul Goldberg PSPACE-completeness and QBFs 12/15

NPSPACE-hardness of QBF

Deﬁne PATH,'(Vl, Vz):
M starting on config(V1, 8) can reach config(Vs, 3) in < 2" steps.

For i =0: PATHy = WVi=V, V NexT(V1,)W)
Fori—i+1:

Idea: PATH1(Vi, V) i= 3V [CONF(V) A PATH;(V1, V) A PaTH; (V, Vz)]
Problem: |PaTH;| = O(2") (Reduction would use exp. time/space)

New ldea:
PATH,’+1(V1,V2) = JV CONF(V) AN

Z = Z =
VZNZQ((gZi - 1]51/\/\222:)}3 V') — PATH;(Z1, Zz))

Paul Goldberg PSPACE-completeness and QBFs 12/15

NPSPACE-hardness of QBF

Define ParH;(V1, V2):
M starting on config(V1, 8) can reach config(Vs, 3) in < 2" steps.

For i =0: PaTHy = V1=V, V NexT(V1,)2)

Fori—i+1:
Idea: PATH1(Vi, V) i= 3V [CONF(V) A PATH;(V1, V) A PaTH; (V, Vz)]

Problem: |PaTH;| = O(2") (Reduction would use exp. time/space)

New ldea:
PATH,'+1(V1,V2) = JY CONF(V) AN

Z = Z =
VZN&((Ezi - El/\/\Z;:)}3 V') — PATH;(Z1, Zz))

Lemma

For any assignment j3 defined on V1,V>: If B satisfies PATH;(V1,)%2), then
config(V2, B) is reachable from config(V1, 8) in < 2' steps.

Paul Goldberg PSPACE-completeness and QBFs 12/15

NPSPACE-hardness of QBF

Path;(Vl, Vz).'
M starting on config(V1, 3) can reach config(Vs, 3) in < 2/ steps.

Start and end configuration:

START(V) = CONF(V)AXg A Yo AAL Zwi AN 75
Exp(V) = ConNF(V) AV ep, X
Lemma

Let Cgiare be starting configuration of M on input w.
@ [satisfies START if, and only if, config(V, 3) = Cestart

@ [satisfies END if, and only if, config(V, 3) is an accepting
stop configuration. (not nec reachable from Cstart)

Paul Goldberg PSPACE-completeness and QBFs 13/15

NPSPACE-hardness of QBF

Path;(Vl, Vz).'
M starting on config(V1, 3) can reach config(Vs, 3) in < 2/ steps.

Start and end configuration:

START(V) = CONF(V)AXg A Yo AAL Zwi AN 75
Exp(V) = ConNF(V) AV ep, X
Lemma

Let Cgiare be starting configuration of M on input w.
@ [satisfies START if, and only if, config(V, 3) = Cestart

@ [satisfies END if, and only if, config(V, 3) is an accepting
stop configuration. (not nec reachable from Cstart)

Putting it all together: M accepts w if, and only if,

Omw = V1 FVa START(V1) A END(V2) A PATH () (V1, V2) is true.

Paul Goldberg PSPACE-completeness and QBFs 13/15

NPSPACE-hardness of QBF (to conclude)

Theorem
QBEF is NPSPACE-hard.

Proof. Let L € NPSPACE, we show £ <, QBF.

Let M :=(Q, X, qo, A, Fa, F;) be a TM deciding £. M never uses
more than p(n) cells.

For each input w € £*, |w| = n, we construct (in poly time!) a
formula ¢p,, such that

M accepts w if, and only if, ©M,w is true.

Glossed over some detail: ¢p,, is not in prenex form, can be
manipulated into that. Also, quantifiers don't alternate
V/3/¥/3...; that also can be fixed...

Paul Goldberg PSPACE-completeness and QBFs 14 /15

To conclude

We have a “natural” PSPACE-complete problem

“natural” (slightly vague definition): the problem does not arise in
the study of PSPACE, it has separate interest.

obvious analogy with SAT being complete for NP

Next: how to use this to prove various other problems are also
PSPACE-complete.

Paul Goldberg PSPACE-completeness and QBFs 15 /15

