Computational Complexity; slides 8, HT 2022 PSPACE-completeness and Quantified Boolean Formulae

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

Another nice result

Theorem

If P=NP, then EXPTIME=NEXPTIME

Suppose $X \in NEXPTIME$. Define pad(X) as follows:

$$w \in X \text{ iff } w \square^{2^n} \in pad(X) \quad \text{(where } n = |w|\text{)}$$

We have $pad(X) \in NP$: Given a word of the form $w \square^N$,

- Check you have the right number of \square 's.
- run the NEXPTIME algorithm on w-prefix (not the \square 's).

Hence $pad(X) \in P$ by assumption.

Then, you can take poly-time algorithm for pad(X), and convert it to algorithm that checks w-prefix, in time exponential in |w|.

Savitch's Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M can accept w within $2^{p(n)}$ steps.

Proof idea: predicate reachable (C, C', i), satisfied by configurations C, C' and integer i, provided C' is reachable from C within 2^i transitions (w.r.t M).

Note: reachable (C, C', i) is satisfied provided there exists C'' such that reachable (C, C'', i-1) and reachable (C'', C', i-1)

To check reachable $(C_{init}, C_{accept}, p(n))$, try for all configs C'': reachable $(C_{init}, C'', p(n) - 1)$ and reachable $(C'', C_{accept}, p(n) - 1)$

Which themselves are checked recursively. Depth of recursion is p(n), need to remember at most p(n) configs at any time. We may assume C_{accept} is unique.

Savitch's Theorem

More generally:

Theorem. (Savitch 1970) For all (space-constructible)
$$S: \mathbb{N} \to \mathbb{N}$$
 such that $S(n) \ge \log n$,

 $NSPACE(S(n)) \subseteq DSPACE(S(n)^2).$

In particular: PSPACE = NPSPACE

EXPSPACE = NEXPSPACE

A PSPACE-complete problem: QBF

c.f. Cook's theorem.
A more general kind of logic problem characterises PSPACE
https://en.wikipedia.org/wiki/True_quantified_Boolean_formula

A Quantified Boolean Formula is a formula of the form

$$Q_1X_1\ldots Q_nX_n\varphi(X_1,\ldots,X_n)$$

where

- the Q_i are quantifiers \exists or \forall
- φ is a CNF formula in the variables X_1, \ldots, X_n and atoms 0 and 1

Example

$$\exists X_1 \forall X_2 \exists X_3 \forall X_4 \forall X_5 \Big((X_1 \lor 0 \lor \neg X_5) \land (\neg X_2 \lor 1 \lor \neg X_5) \land (X_2 \lor X_3 \lor X_4) \Big)$$

Quantified Boolean Formulae

Consider the following problem:

QBF

Input: A QBF formula φ .

Question: Is φ true?

Observation: For any propositional formula φ :

 φ is satisfiable if, and only if, $\exists X_1 \dots \exists X_n \varphi$ is true.

 X_1, \ldots, X_n : Variables occurring in φ

Consequence: QBF is NP-hard.

Similarly, QBF is also co-NP-hard.

Theorem: QBF is in PSPACE

Proof: Given $\varphi := Q_1 X_1 \dots Q_n X_n \psi$, letting $m := |\psi|$

```
Eval-QBF(\varphi)
    if n = 0 Accept if \psi evaluates to true. Reject otherwise.
    if \varphi := \exists X \psi'
         construct \varphi_1 := \psi'[X \mapsto 1]
         if Eval-QBF(\varphi_1) evaluates to true, accept.
         else construct \varphi_0 := \psi'[X \mapsto 0] (reuse space in Eval-QBF(\varphi_1))
              return Eval-QBF(\varphi_0)
    if \varphi := \forall X \psi'
         construct \varphi_1 := \psi'[X \mapsto 1]
         if Eval-QBF(\varphi_1) evaluates to false, reject.
         else construct \varphi_0 := \psi'[X \mapsto 0]
                                                             (reuse space in Eval-QBF(\varphi_1))
              return Eval-QBF(\varphi_0)
```

Theorem: QBF is in PSPACE

Proof: Given $\varphi := Q_1 X_1 \dots Q_n X_n \psi$, letting $m := |\psi|$

```
Eval-QBF(\varphi)
    if n=0 Accept if \psi evaluates to true. Reject otherwise.
    if \varphi := \exists X \psi'
         construct \varphi_1 := \psi'[X \mapsto 1]
         if Eval-QBF(\varphi_1) evaluates to true, accept.
         else construct \varphi_0 := \psi'[X \mapsto 0] (reuse space in Eval-QBF(\varphi_1))
              return Eval-QBF(\varphi_0)
    if \varphi := \forall X \psi'
         construct \varphi_1 := \psi'[X \mapsto 1]
         if Eval-QBF(\varphi_1) evaluates to false, reject.
         else construct \varphi_0 := \psi'[X \mapsto 0]
                                                             (reuse space in Eval-QBF(\varphi_1))
              return Eval-QBF(\varphi_0)
```

Space complexity: Algorithm uses $\mathcal{O}(nm)$ tape cells. (At depth d of recursion tree, remember d simplified versions of φ ; can be improved to $\mathcal{O}(n+m)$ by remembering φ and d bits...)

Theorem: QBF is NPSPACE-hard

Let $\mathcal{L} \in \mathsf{NPSPACE}$. We show $\mathcal{L} \leq_{p} \mathsf{QBF}$.

Let $M := (Q, \Sigma, \Gamma, q_0, \Delta, F_a, F_r)$ be a TM deciding \mathcal{L} such that M never uses more than p(n) cells.

For each input $w \in \Sigma^*$, |w| = n, we construct a formula $\varphi_{M,w}$ such that

M accepts w if, and only if, $\varphi_{M,w}$ is true.

Theorem: QBF is NPSPACE-hard

Let $\mathcal{L} \in \mathsf{NPSPACE}$. We show $\mathcal{L} \leq_p \mathsf{QBF}$.

Let $M := (Q, \Sigma, \Gamma, q_0, \Delta, F_a, F_r)$ be a TM deciding \mathcal{L} such that M never uses more than p(n) cells.

For each input $w \in \Sigma^*$, |w| = n, we construct a formula $\varphi_{M,w}$ such that

M accepts w if, and only if, $\varphi_{M,w}$ is true.

Describe configuration $(q, p, a_1 \dots a_{p(n)})$ by a set

$$\mathcal{V} := \{X_q, Y_i, Z_{a,i} : q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n)\}$$

of variables and the truth assignment β defined as

$$\beta(X_s) := \left\{\begin{matrix} 1 & s = q \\ 0 & s \neq q \end{matrix}\right. \qquad \beta(Y_s) := \left\{\begin{matrix} 1 & s = p \\ 0 & s \neq p \end{matrix}\right. \qquad \beta(Z_{a,i}) := \left\{\begin{matrix} 1 & a = a_i \\ 0 & a \neq a_i \end{matrix}\right.$$

Consider the following formula $\mathrm{CONF}(\mathcal{V})$ with free variables

$$\mathcal{V} := \big\{ X_q, Y_i, Z_{a,i} : q \in Q, \quad a \in \Gamma, \quad 0 \le i < p(n) \big\}$$

$$\mathrm{Conf}(\mathcal{V}) := \bigvee_{q \in Q} \left(X_q \land \bigwedge_{q' \neq q} \neg X_{q'} \right) \qquad \land \qquad \bigvee_{p \leq p(n)} \left(Y_p \land \bigwedge_{p' \neq p} \neg Y_{p'} \right) \land$$

$$\bigwedge_{1 \leq i \leq p(n)} \bigvee_{a \in \Gamma} \left(Z_{a,i} \land \bigwedge_{b \neq a \in \Gamma} \neg Z_{b,i} \right)$$

Definition. For any truth assignment β of \mathcal{V} define config (\mathcal{V}, β) as $\{(q, p, w_1 \dots w_{p(n)}) : \beta(X_q) = \beta(Y_p) = \beta(Z_{w_i, i}) = 1, \forall i \leq p(n)\}$

Lemma

If β satisfies $Conf(\mathcal{V})$ then $|config(\mathcal{V}, \beta)| = 1$.

Definition. For an assignment β of \mathcal{V} we defined config (\mathcal{V}, β) as $\{(q, p, w_1 \dots w_{p(n)}) : \beta(X_q) = \beta(Y_p) = \beta(Z_{w_i, i}) = 1, \forall i \leq p(n)\}$

Lemma

If β satisfies $Conf(\mathcal{V})$ then $|config(\mathcal{V}, \beta)| = 1$.

Remark. β may be defined on other variables than those in \mathcal{V} .

 $config(V, \beta)$ is a potential configuration of M, but it might not be reachable from the start configuration of M on input w.

Conversely: Every configuration $(q, p, w_1 \dots w_{p(n)})$ induces a satisfying assignment.

Consider the following formula $\operatorname{Next}(\mathcal{V},\mathcal{V}')$ defined as

 $\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Conf}(\mathcal{V}') \wedge \operatorname{Nochange}(\mathcal{V}, \mathcal{V}') \wedge \operatorname{Change}(\mathcal{V}, \mathcal{V}').$

$$\begin{split} \text{Nochange} := \bigwedge_{1 \leq p \leq p(n)} & \left(Y_p \Rightarrow \bigwedge_{\stackrel{i \neq p}{a \in \Gamma}} (Z_{a,i} \leftrightarrow Z'_{a,i}) \right) \\ \text{Change} := & \bigwedge_{1 \leq p \leq p(n)} \left((Y_p \land X_q \land Z_{a,p}) \Rightarrow \\ & \bigvee_{(q,a,q',b,m) \in \Delta} (X'_{q'} \land Z'_{b,p} \land Y''_{"p+m"}) \right) \end{split}$$

Lemma

For any assignment β defined on $\mathcal{V}, \mathcal{V}'$:

$$\beta$$
 satisfies $Next(\mathcal{V}, \mathcal{V}') \iff config(\mathcal{V}, \beta) \vdash_{\mathcal{M}} config(\mathcal{V}', \beta)$

 $\begin{aligned} & \textbf{\textit{Define}} \ \operatorname{PATH}_i(\mathcal{V}_1,\mathcal{V}_2) \colon \\ & \textit{\textit{M}} \ \operatorname{starting} \ \operatorname{on} \ \operatorname{config}(\mathcal{V}_1,\beta) \ \operatorname{can} \ \operatorname{reach} \ \operatorname{config}(\mathcal{V}_2,\beta) \ \operatorname{in} \ \leq 2^i \ \operatorname{steps}. \\ & \textbf{\textit{For}} \ i = 0 \colon \quad \operatorname{PATH}_0 \ := \ \mathcal{V}_1 = \mathcal{V}_2 \quad \lor \quad \operatorname{NEXT}(\mathcal{V}_1,\mathcal{V}_2) \end{aligned}$

```
\begin{aligned} &\textit{Define} \ \mathrm{PATH}_i(\mathcal{V}_1,\mathcal{V}_2) \colon \\ &\textit{M} \ \text{starting on } \mathrm{config}(\mathcal{V}_1,\beta) \ \text{can reach } \mathrm{config}(\mathcal{V}_2,\beta) \ \text{in} \le 2^i \ \text{steps}. \end{aligned} \textit{For} \ i = 0 \colon \qquad \mathrm{PATH}_0 \quad := \quad \mathcal{V}_1 = \mathcal{V}_2 \quad \lor \quad \mathrm{NEXT}(\mathcal{V}_1,\mathcal{V}_2) \textit{For} \ i \to i+1 \colon \\ & \quad \mathsf{Idea:} \ \mathrm{PATH}_{i+1}(\mathcal{V}_1,\mathcal{V}_2) := \exists \mathcal{V} \Big[ \mathrm{Conf}(\mathcal{V}) \land \mathrm{PATH}_i(\mathcal{V}_1,\mathcal{V}) \land \mathrm{PATH}_i(\mathcal{V},\mathcal{V}_2) \Big] \end{aligned}
```

```
Define Path<sub>i</sub>(V<sub>1</sub>, V<sub>2</sub>):

M starting on config(V<sub>1</sub>, β) can reach config(V<sub>2</sub>, β) in ≤ 2<sup>i</sup> steps.

For i = 0: Path<sub>0</sub> := V<sub>1</sub> = V<sub>2</sub> ∨ Next(V<sub>1</sub>, V<sub>2</sub>)

For i \to i + 1:

Idea: Path<sub>i+1</sub>(V<sub>1</sub>, V<sub>2</sub>) := \exists V[Conf(V) ∧ Path<sub>i</sub>(V<sub>1</sub>, V) ∧ Path<sub>i</sub>(V, V<sub>2</sub>)]

Problem: |Path<sub>i</sub>| = \mathcal{O}(2^i) (Reduction would use exp. time/space)
```

```
Define Path<sub>i</sub>(V_1, V_2):
```

M starting on config(V_1, β) can reach config(V_2, β) in $\leq 2^i$ steps.

For
$$i = 0$$
: Path₀ := $V_1 = V_2 \lor \text{Next}(V_1, V_2)$

For
$$i \rightarrow i + 1$$
:

Idea:
$$PATH_{i+1}(\mathcal{V}_1, \mathcal{V}_2) := \exists \mathcal{V} \Big[CONF(\mathcal{V}) \wedge PATH_i(\mathcal{V}_1, \mathcal{V}) \wedge PATH_i(\mathcal{V}, \mathcal{V}_2) \Big]$$

Problem:
$$|PATH_i| = \mathcal{O}(2^i)$$

(Reduction would use exp. time/space)

New Idea:

$$\begin{array}{ll} \operatorname{Path}_{i+1}(\mathcal{V}_{1},\mathcal{V}_{2}) := & \exists \mathcal{V} \ \operatorname{Conf}(\mathcal{V}) \ \wedge \\ & \forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2} \Big(\big(\begin{array}{c} \mathcal{Z}_{1} = \mathcal{V}_{1} \wedge \mathcal{Z}_{2} = \mathcal{V} \\ \mathcal{Z}_{1} = \mathcal{V} \wedge \mathcal{Z}_{2} = \mathcal{V}_{2} \end{array} \right) \ \lor \) \rightarrow \operatorname{Path}_{i}(\mathcal{Z}_{1},\mathcal{Z}_{2}) \Big) \end{array}$$

Define Path_i(V_1, V_2):

M starting on config(V_1, β) can reach config(V_2, β) in $\leq 2^i$ steps.

For
$$i = 0$$
: Path₀ := $V_1 = V_2 \lor \text{Next}(V_1, V_2)$

For $i \rightarrow i + 1$:

Idea:
$$PATH_{i+1}(\mathcal{V}_1, \mathcal{V}_2) := \exists \mathcal{V} \Big[CONF(\mathcal{V}) \wedge PATH_i(\mathcal{V}_1, \mathcal{V}) \wedge PATH_i(\mathcal{V}, \mathcal{V}_2) \Big]$$

Problem: $|PATH_i| = O(2^i)$ (Reduction would use exp. time/space)

New Idea:

$$\begin{array}{ll} \operatorname{Path}_{i+1}(\mathcal{V}_{1},\mathcal{V}_{2}) := & \exists \mathcal{V} \ \operatorname{Conf}(\mathcal{V}) \ \wedge \\ & \forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2} \Big(\Big(\begin{array}{c} \mathcal{Z}_{1} = \mathcal{V}_{1} \wedge \mathcal{Z}_{2} = \mathcal{V} \\ \mathcal{Z}_{1} = \mathcal{V} \wedge \mathcal{Z}_{2} = \mathcal{V}_{2} \end{array} \right) \ \lor \Big) \rightarrow \operatorname{Path}_{i}(\mathcal{Z}_{1},\mathcal{Z}_{2}) \Big) \end{array}$$

Lemma

For any assignment β defined on V_1, V_2 : If β satisfies $PATH_i(V_1, V_2)$, then $config(V_2, \beta)$ is reachable from $config(V_1, \beta)$ in $\leq 2^i$ steps.

Path_i(V_1, V_2):

M starting on config(V_1, β) can reach config(V_2, β) in $\leq 2^i$ steps.

Start and end configuration:

START(
$$\mathcal{V}$$
) := Conf(\mathcal{V}) $\wedge X_{q_0} \wedge Y_0 \wedge \bigwedge_{i=0}^{n-1} Z_{w_i,i} \wedge \bigwedge_{i=n}^{p(n)} Z_{\square,i}$

$$\text{End}(\mathcal{V}) := \text{Conf}(\mathcal{V}) \wedge \bigvee_{q \in F_a} X_q$$

Lemma

Let C_{start} be starting configuration of M on input w.

- **1** β satisfies Start if, and only if, config $(V, \beta) = C_{start}$
- **2** β satisfies END if, and only if, config (V, β) is an accepting stop configuration. (not nec reachable from C_{start})

$\mathbf{Path}_i(\mathcal{V}_1,\mathcal{V}_2)$:

M starting on config(V_1, β) can reach config(V_2, β) in $\leq 2^i$ steps.

Start and end configuration:

$$START(\mathcal{V}) := CONF(\mathcal{V}) \wedge X_{q_0} \wedge Y_0 \wedge \bigwedge_{i=0}^{n-1} Z_{w_i,i} \wedge \bigwedge_{i=n}^{p(n)} Z_{\square,i}$$

$$\text{End}(\mathcal{V}) := \text{Conf}(\mathcal{V}) \wedge \bigvee_{q \in F_a} X_q$$

Lemma

Let C_{start} be starting configuration of M on input w.

- **1** β satisfies Start if, and only if, config $(V, \beta) = C_{start}$
- **2** β satisfies END if, and only if, config (V, β) is an accepting stop configuration. (not nec reachable from C_{start})

Putting it all together: M accepts w if, and only if,

$$\varphi_{M,w} := \exists \mathcal{V}_1 \; \exists \mathcal{V}_2 \; \text{Start}(\mathcal{V}_1) \wedge \text{End}(\mathcal{V}_2) \wedge \text{Path}_{\rho(n)}(\mathcal{V}_1, \mathcal{V}_2) \text{ is true.}$$

NPSPACE-hardness of QBF (to conclude)

Theorem

QBF is NPSPACE-hard.

Proof. Let $\mathcal{L} \in \mathsf{NPSPACE}$, we show $\mathcal{L} \leq_p \mathsf{QBF}$.

Let $M := (Q, \Sigma, q_0, \Delta, F_a, F_r)$ be a TM deciding \mathcal{L} . M never uses more than p(n) cells.

For each input $w \in \Sigma^*$, |w| = n, we construct (in poly time!) a formula $\varphi_{M,w}$ such that

M accepts w if, and only if, $\varphi_{M,w}$ is true.

Glossed over some detail: $\varphi_{M,w}$ is not in prenex form, can be manipulated into that. Also, quantifiers don't alternate $\forall/\exists/\forall/\exists\ldots$; that also can be fixed...

To conclude

We have a "natural" PSPACE-complete problem

"natural" (slightly vague definition): the problem does not arise in the study of PSPACE, it has separate interest.

obvious analogy with SAT being complete for NP

Next: how to use this to prove various other problems are also PSPACE-complete.