Computational Complexity; slides 8, HT 2022 PSPACE-completeness and Quantified Boolean Formulae

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

Another nice result

Theorem

If $\mathrm{P}=\mathrm{NP}$, then EXPTIME=NEXPTIME

Suppose $X \in$ NEXPTIME. Define $\operatorname{pad}(X)$ as follows:

$$
w \in X \text { iff } w \square^{2^{n}} \in \operatorname{pad}(X) \quad \text { (where } n=|w| \text {) }
$$

We have $\operatorname{pad}(X) \in N P$: Given a word of the form $w \square^{N}$,

- Check you have the right number of \square 's.
- run the NEXPTIME algorithm on w-prefix (not the \square 's).

Hence $\operatorname{pad}(X) \in \mathrm{P}$ by assumption.
Then, you can take poly-time algorithm for $\operatorname{pad}(X)$, and convert it to algorithm that checks w-prefix, in time exponential in $|w|$.

Savitch's Theorem: PSPACE=NPSPACE

Let M be an NPSPACE TM of interest; want to know whether M can accept w within $2^{p(n)}$ steps.

Proof idea: predicate reachable $\left(C, C^{\prime}, i\right)$, satisfied by configurations C, C^{\prime} and integer i, provided C^{\prime} is reachable from C within 2^{i} transitions (w.r.t M).

Note: reachable $\left(C, C^{\prime}, i\right)$ is satisfied provided there exists $C^{\prime \prime}$ such that
reachable($\left.C, C^{\prime \prime}, i-1\right)$ and reachable $\left(C^{\prime \prime}, C^{\prime}, i-1\right)$
To check reachable $\left(C_{\text {init }}, C_{\text {accept }}, p(n)\right)$, try for all configs $C^{\prime \prime}$: reachable $\left(C_{\text {init }}, C^{\prime \prime}, p(n)-1\right)$ and reachable $\left(C^{\prime \prime}, C_{\text {accept }}, p(n)-1\right)$

Which themselves are checked recursively. Depth of recursion is $p(n)$, need to remember at most $p(n)$ configs at any time. We may assume $C_{\text {accept }}$ is unique.

Savitch's Theorem

More generally:

Theorem.

(Savitch 1970)
For all (space-constructible) $S: \mathbb{N} \rightarrow \mathbb{N}$ such that $S(n) \geq \log n$, $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{DSPACE}\left(S(n)^{2}\right)$.

In particular: $\mathrm{PSPACE}=\mathrm{NPSPACE}$
EXPSPACE $=$ NEXPSPACE

A PSPACE-complete problem: QBF

c.f. Cook's theorem.

A more general kind of logic problem characterises PSPACE https://en.wikipedia.org/wiki/True_quantified_Boolean_formula

A Quantified Boolean Formula is a formula of the form

$$
Q_{1} X_{1} \ldots Q_{n} X_{n} \varphi\left(X_{1}, \ldots, X_{n}\right)
$$

where

- the Q_{i} are quantifiers \exists or \forall
- φ is a CNF formula in the variables X_{1}, \ldots, X_{n} and atoms 0 and 1

Example

$\exists X_{1} \forall X_{2} \exists X_{3} \forall X_{4} \forall X_{5}\left(\left(X_{1} \vee 0 \vee \neg X_{5}\right) \wedge\left(\neg X_{2} \vee 1 \vee \neg X_{5}\right) \wedge\left(X_{2} \vee\right.\right.$ $\left.X_{3} \vee X_{4}\right)$)

Quantified Boolean Formulae

Consider the following problem:

```
QBF
    Input: A QBF formula }\varphi\mathrm{ .
Question: Is }\varphi\mathrm{ true?
```

Observation: For any propositional formula φ :
φ is satisfiable if, and only if, $\exists X_{1} \ldots \exists X_{n} \varphi$ is true.

$$
X_{1}, \ldots, X_{n}: \text { Variables occurring in } \varphi
$$

Consequence: QBF is NP-hard.
Similarly, QBF is also co-NP-hard.

Theorem: QBF is in PSPACE

Proof: Given $\varphi:=Q_{1} X_{1} \ldots Q_{n} X_{n} \psi$, letting $m:=|\psi|$

Eval-QBF(φ)

if $n=0 \quad$ Accept if ψ evaluates to true. Reject otherwise.
if $\varphi:=\exists X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to true, accept.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$
if $\varphi:=\forall X \psi^{\prime}$
construct $\varphi_{1}:=\psi^{\prime}[X \mapsto 1]$
if Eval-QBF $\left(\varphi_{1}\right)$ evaluates to false, reject.
else construct $\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad$ (reuse space in Eval-QBF $\left(\varphi_{1}\right)$) return Eval-QBF $\left(\varphi_{0}\right)$

Theorem: QBF is in PSPACE

Proof: Given $\varphi:=Q_{1} X_{1} \ldots Q_{n} X_{n} \psi$, letting $m:=|\psi|$

Eval-QBF(φ)

```
if \(n=0 \quad\) Accept if \(\psi\) evaluates to true. Reject otherwise.
if \(\varphi:=\exists X \psi^{\prime}\)
    construct \(\varphi_{1}:=\psi^{\prime}[X \mapsto 1]\)
    if Eval-QBF \(\left(\varphi_{1}\right)\) evaluates to true, accept.
    else construct \(\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad\) (reuse space in Eval-QBF \(\left(\varphi_{1}\right)\) )
        return Eval-QBF \(\left(\varphi_{0}\right)\)
if \(\varphi:=\forall X \psi^{\prime}\)
    construct \(\varphi_{1}:=\psi^{\prime}[X \mapsto 1]\)
    if Eval-QBF \(\left(\varphi_{1}\right)\) evaluates to false, reject.
    else construct \(\varphi_{0}:=\psi^{\prime}[X \mapsto 0] \quad\) (reuse space in Eval-QBF \(\left(\varphi_{1}\right)\) )
        return Eval-QBF \(\left(\varphi_{0}\right)\)
```

Space complexity: Algorithm uses $\mathcal{O}(n m)$ tape cells.
(At depth d of recursion tree, remember d simplified versions of φ; can be improved to $\mathcal{O}(n+m)$ by remembering φ and d bits...)

Let $\mathcal{L} \in$ NPSPACE. We show $\mathcal{L} \leq_{p}$ QBF.
Let $M:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding \mathcal{L} such that M never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct a formula $\varphi_{M, w}$ such that

$$
M \text { accepts } w \quad \text { if, and only if, } \quad \varphi_{M, w} \text { is true. }
$$

Theorem: QBF is NPSPACE-hard

Let $\mathcal{L} \in$ NPSPACE. We show $\mathcal{L} \leq_{p}$ QBF.
Let $M:=\left(Q, \Sigma, \Gamma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding \mathcal{L} such that M never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct a formula $\varphi_{M, w}$ such that
M accepts $w \quad$ if, and only if, $\quad \varphi_{M, w}$ is true.
Describe configuration $\left(q, p, a_{1} \ldots a_{p(n)}\right)$ by a set

$$
\mathcal{V}:=\left\{X_{q}, Y_{i}, Z_{a, i}: q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\}
$$

of variables and the truth assignment β defined as
$\beta\left(X_{s}\right):=\left\{\begin{array}{ll}1 & s=q \\ 0 & s \neq q\end{array} \quad \beta\left(Y_{s}\right):=\left\{\begin{array}{ll}1 & s=p \\ 0 & s \neq p\end{array} \quad \beta\left(Z_{a, i}\right):= \begin{cases}1 & a=a_{i} \\ 0 & a \neq a_{i}\end{cases}\right.\right.$

NPSPACE-Hardness of QBF

Consider the following formula $\operatorname{ConF}(\mathcal{V})$ with free variables

$$
\begin{aligned}
\mathcal{V}:= & \left\{X_{q}, Y_{i}, Z_{a, i}: q \in Q, \quad a \in \Gamma, \quad 0 \leq i<p(n)\right\} \\
\operatorname{ConF}(\mathcal{V}):= & \bigvee_{q \in Q}\left(X_{q} \wedge \bigwedge_{q^{\prime} \neq q} \neg X_{q^{\prime}}\right) \wedge \bigvee_{p \leq p(n)}\left(Y_{p} \wedge \bigwedge_{p^{\prime} \neq p} \neg Y_{p^{\prime}}\right) \\
& \bigwedge_{1 \leq i \leq p(n)} \bigvee_{a \in \Gamma}\left(Z_{a, i} \wedge \bigwedge_{b \neq a \in \Gamma} \neg Z_{b, i}\right)
\end{aligned}
$$

Definition. For any truth assignment β of \mathcal{V} define config (\mathcal{V}, β) as

$$
\left\{\left(q, p, w_{1} \ldots w_{p(n)}\right): \beta\left(X_{q}\right)=\beta\left(Y_{p}\right)=\beta\left(Z_{w_{i}, i}\right)=1, \forall i \leq p(n)\right\}
$$

Lemma

If β satisfies $\operatorname{Conf}(\mathcal{V})$ then $|\operatorname{config}(\mathcal{V}, \beta)|=1$.

NPSPACE-hardness of QBF

Definition. For an assignment β of \mathcal{V} we defined $\operatorname{config}(\mathcal{V}, \beta)$ as

$$
\left\{\left(q, p, w_{1} \ldots w_{p(n)}\right): \beta\left(X_{q}\right)=\beta\left(Y_{p}\right)=\beta\left(Z_{w_{i}, i}\right)=1, \forall i \leq p(n)\right\}
$$

Lemma

If β satisfies $\operatorname{Conf}(\mathcal{V})$ then $|\operatorname{config}(\mathcal{V}, \beta)|=1$.

Remark. β may be defined on other variables than those in \mathcal{V}.
config (\mathcal{V}, β) is a potential configuration of M, but it might not be reachable from the start configuration of M on input w.

Conversely: Every configuration ($q, p, w_{1} \ldots w_{p(n)}$) induces a satisfying assignment.

NPSPACE-Hardness of QBF

Consider the following formula $\operatorname{Next}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$ defined as
$\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Conf}\left(\mathcal{V}^{\prime}\right) \wedge \operatorname{Nochange}\left(\mathcal{V}, \mathcal{V}^{\prime}\right) \wedge \operatorname{Change}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$.

$$
\begin{aligned}
& \text { NOCHANGE }:=\bigwedge_{1 \leq p \leq p(n)}\left(Y_{p} \Rightarrow \bigwedge_{\substack{i \neq p \\
a \in \Gamma}}\left(Z_{a, i} \leftrightarrow Z_{a, i}^{\prime}\right)\right) \\
& \text { CHANGE }:= \bigwedge_{1 \leq p \leq p(n)}\left(\left(Y_{p} \wedge X_{q} \wedge Z_{a, p}\right) \Rightarrow\right. \\
&\left.\bigvee_{\left(q, a, q^{\prime}, b, m\right) \in \Delta}\left(X_{q^{\prime}}^{\prime} \wedge Z_{b, p}^{\prime} \wedge Y^{\prime \prime}{ }_{p+m^{\prime \prime}}\right)\right)
\end{aligned}
$$

Lemma

For any assignment β defined on $\mathcal{V}, \mathcal{V}^{\prime}$:
β satisfies $\operatorname{Next}\left(\mathcal{V}, \mathcal{V}^{\prime}\right) \Longleftrightarrow \operatorname{config}(\mathcal{V}, \beta) \vdash_{M} \operatorname{config}\left(\mathcal{V}^{\prime}, \beta\right)$

NPSPACE-hardness of QBF

Define РАтн $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
M starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Patho $:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$

NPSPACE-hardness of QBF

Define $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
M starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach config $\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Ратн $0:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{Path}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$

NPSPACE-hardness of QBF

Define РАтн $_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$:
M starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Patho $:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{Path}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{Conf}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{Path}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right)$
(Reduction would use exp. time/space)

NPSPACE-hardness of QBF

Define $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
M starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Path $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \quad \vee \quad \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{ConF}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{PATH}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right)$
(Reduction would use exp. time/space)
New Idea:
$\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V} \operatorname{ConF}(\mathcal{V}) \wedge$

$$
\left.\forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2}\left(\binom{\mathcal{Z}_{1}=\mathcal{V}_{1} \wedge \mathcal{Z}_{2}=\mathcal{V}}{\mathcal{Z}_{1}=\mathcal{V} \wedge \mathcal{Z}_{2}=\mathcal{V}_{2}} \quad \vee\right) \rightarrow \operatorname{PATH}_{i}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)\right)
$$

NPSPACE-hardness of QBF

Define $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
M starting on config $\left(\mathcal{V}_{1}, \beta\right)$ can reach $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
For $i=0: \quad$ Path $_{0}:=\mathcal{V}_{1}=\mathcal{V}_{2} \vee \operatorname{Next}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$
For $i \rightarrow i+1$:
Idea: $\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\exists \mathcal{V}\left[\operatorname{ConF}(\mathcal{V}) \wedge \operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}\right) \wedge \operatorname{PATH}_{i}\left(\mathcal{V}, \mathcal{V}_{2}\right)\right]$
Problem: $\left|\mathrm{PATH}_{i}\right|=\mathcal{O}\left(2^{i}\right)$
(Reduction would use exp. time/space)
New Idea:

$$
\begin{aligned}
\operatorname{PATH}_{i+1}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):= & \exists \mathcal{V} \operatorname{CoNF}(\mathcal{V}) \wedge \\
& \forall \mathcal{Z}_{1} \forall \mathcal{Z}_{2}\left(\left(\binom{\left.\mathcal{Z}_{1}=\mathcal{V}_{1} \wedge \mathcal{Z}_{2}=\mathcal{V}\right)}{\mathcal{Z}_{1}=\mathcal{V} \wedge \mathcal{Z}_{2}=\mathcal{V}_{2}} \quad \vee\right) \rightarrow \operatorname{PATH}_{i}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)\right)
\end{aligned}
$$

Lemma

For any assignment β defined on $\mathcal{V}_{1}, \mathcal{V}_{2}$: If β satisfies $\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$, then $\operatorname{config}\left(\mathcal{V}_{2}, \beta\right)$ is reachable from config $\left(\mathcal{V}_{1}, \beta\right)$ in $\leq 2^{i}$ steps.

NPSPACE-hardness of QBF

$\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
M starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach config $\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
Start and end configuration:
$\operatorname{StaRt}(\mathcal{V}):=\operatorname{Conf}(\mathcal{V}) \wedge X_{q_{0}} \wedge Y_{0} \wedge \bigwedge_{i=0}^{n-1} Z_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)} Z_{\square, i}$
$\operatorname{End}(\mathcal{V}):=\operatorname{Conf}(\mathcal{V}) \wedge \bigvee_{q \in F_{a}} X_{q}$

Lemma

Let $C_{\text {start }}$ be starting configuration of M on input w.
(1) β satisfies Start if, and only if, config $(\mathcal{V}, \beta)=C_{\text {start }}$
(2) β satisfies End if, and only if, config (\mathcal{V}, β) is an accepting stop configuration. (not nec reachable from $C_{\text {start }}$)

NPSPACE-hardness of QBF

$\operatorname{Path}_{i}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):$
M starting on $\operatorname{config}\left(\mathcal{V}_{1}, \beta\right)$ can reach config $\left(\mathcal{V}_{2}, \beta\right)$ in $\leq 2^{i}$ steps.
Start and end configuration:
$\operatorname{StaRT}(\mathcal{V}):=\operatorname{ConF}(\mathcal{V}) \wedge X_{q_{0}} \wedge Y_{0} \wedge \bigwedge_{i=0}^{n-1} Z_{w_{i}, i} \wedge \bigwedge_{i=n}^{p(n)} Z_{\square, i}$
$\operatorname{End}(\mathcal{V}):=\operatorname{Conf}(\mathcal{V}) \wedge \bigvee_{q \in F_{a}} X_{q}$

Lemma

Let $C_{\text {start }}$ be starting configuration of M on input w.
(1) β satisfies Start if, and only if, config $(\mathcal{V}, \beta)=C_{\text {start }}$
(2) β satisfies End if, and only if, config (\mathcal{V}, β) is an accepting stop configuration. (not nec reachable from $C_{\text {start }}$)

Putting it all together: M accepts w if, and only if,
$\varphi_{M, w}:=\exists \mathcal{V}_{1} \exists \mathcal{V}_{2} \operatorname{START}\left(\mathcal{V}_{1}\right) \wedge \operatorname{END}\left(\mathcal{V}_{2}\right) \wedge \operatorname{PATH}_{p(n)}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ is true.

NPSPACE-hardness of QBF (to conclude)

Theorem

QBF is NPSPACE-hard.
Proof. Let $\mathcal{L} \in$ NPSPACE, we show $\mathcal{L} \leq_{p}$ QBF.
Let $M:=\left(Q, \Sigma, q_{0}, \Delta, F_{a}, F_{r}\right)$ be a TM deciding \mathcal{L}. M never uses more than $p(n)$ cells.

For each input $w \in \Sigma^{*},|w|=n$, we construct (in poly time!) a formula $\varphi_{M, w}$ such that
M accepts $w \quad$ if, and only if, $\quad \varphi_{M, w}$ is true.

Glossed over some detail: $\varphi_{M, w}$ is not in prenex form, can be manipulated into that. Also, quantifiers don't alternate $\forall / \exists / \forall / \exists \ldots$; that also can be fixed...

We have a "natural" PSPACE-complete problem
"natural" (slightly vague definition): the problem does not arise in the study of PSPACE, it has separate interest.
obvious analogy with SAT being complete for NP
Next: how to use this to prove various other problems are also PSPACE-complete.

