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Coming up

Example of PSPACE-completeness (the “geography” game)

Then, alternative characterisation of PSPACE (as poly-time
“alternating” TM). Recall general point that when there are
various characterisations of a complexity class, it suggests the class
is important.

Afterwards, polynomial hierarchy (classes between NP /co-NP and
PSPACE)
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The Formula Game

Players: Played by two Players 4 and V

Board: A formula ¢ in conjunctive normal form with variables
X1y s Xn

Mowves: Players take turns in assigning truth values to Xi,..., X, in
order.
That is, player 3 assigns values to “odd” variables X7, X3, ...

Winning condition: After all variables have been instantiated, 3
wins if the formula evaluates to true. Otherwise V wins.
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The Formula Game

Players: Played by two Players 4 and V

Board: A formula ¢ in conjunctive normal form with variables
X1y s Xn

Mowves: Players take turns in assigning truth values to Xi,..., X, in
order.

That is, player 3 assigns values to “odd” variables Xi, X3,

Winning condition: After all variables have been instantiated, 3
wins if the formula evaluates to true. Otherwise V wins.

Formula Game

Input: A CNF formula ¢ in the variables Xi,..., X,
Problem: Does 3 have a winning strategy in the game on ¢?

Theorem. FORMULA GAME is PSPACE-complete.
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Formula Game (extended version)

Board: A formula ¢ in conjunctive normal form with variables
X1,y Xn

o After players have chosen values for the variables, player V
chooses a clause

@ Then player 3 chooses a literal within that clause

@ exists wins if the literal is satisfied, else V wins
Example
X1V Xo3 X3V XV X5 ((Xl VOV =Xs) A (-XoV1V=Xs) A (XoV
X5V x4))

if 3-player makes right choices, for all clauses C, there exists,
within C, a satisfied literal
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GEOGRAPHY

A generalised version of “Geography”:

The board is a directed graph G and a start node s € V(G)
Initially the token is on the start node.
Players take turns in pushing this token along a directed edge.

Edges may not be used more than once. If a player cannot move,
he loses.
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GEOGRAPHY

A generalised version of “Geography”:

The board is a directed graph G and a start node s € V(G)
Initially the token is on the start node.
Players take turns in pushing this token along a directed edge.

Edges may not be used more than once. If a player cannot move,
he loses.

GEOGRAPHY
Input:  Directed graph G, start node s € V(G)
Problem: Does Player 1 have a winning strategy?

Theorem. GEOGRAPHY is PSPACE-complete.
(Sipser Theorem 8.14)
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Next: Alternating Turing Machines

general idea: a class of automata whose languages are all the
PSPACE languages. They can be a useful way to prove
membership of problems in PSPACE.

They also give alternative characterisations of P, EXPTIME
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Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic
Turing accepter whose set of non-final states is partitioned into
existential and universal states.

Q3: set of existential states Qv: set of universal states

Acceptance: Consider the computation tree 7 of M on w
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Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic
Turing accepter whose set of non-final states is partitioned into
existential and universal states.

Q3: set of existential states Qv: set of universal states
Acceptance: Consider the computation tree 7 of M on w

A configuration C in T is eventually accepting if

@ C is an accepting stop configuration: an accepting leaf of T

e C =(q,p,w) with g € Q5 and there is at least one eventually
accepting successor configuration in T

e C=(q,p,w) with g € Qy and all successor configurations of
C in T are eventually accepting

M accepts w if start configuration on w is eventually accepting.
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Example: Alternating Algorithm for GEOGRAPHY

Input: Directed graph G s € V(G) start node.

Set VISITED := {s} Mark s as current node.
repeat

existential move: choose successor v &€ VISITED of current node s

if not possible then reject.
VISITED := VISITED U {v}
set current node s := v

universal move: choose successor v ¢ VISITED of current node s

if not possible then accept.
VISITED := VISITED U {v}
set current node s := v

Note. This algorithm runs in alternating polynomial time.
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Basic definitions of alternating time/space complexity

Recall £(M) denotes words (in X*) accepted by M.

For function T : N — N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after < T(n)
steps.

Analogously for T space-bounded.
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Basic definitions of alternating time/space complexity

Recall £(M) denotes words (in X*) accepted by M.

For function T : N — N, an alternating TM is T time-bounded if

every computation of M on input w of length n halts after < T(n)
steps.

Analogously for T space-bounded.

For T : N — N a monotone increasing function, define

@ ATIME(T) as the class of languages L for which there is a
T-time bounded k-tape alternating Turing accepter deciding
L, k>1.

@ ASPACE(T) as the class of languages £ for which there is a

T-space bounded alternating k-tape Turing accepter deciding
L, k>1.
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Alternating Complexity Classes:

Time classes: |
® APTIME := |Jycy ATIME(n?) alternating poly time
o AEXPTIME := g en ATII\/IE(2”d) alternating exp. time

o 2-AEXPTIME := |,y ATIME(22")

Space classes:
@ ALOGSPACE := |Jyc ASPACE(d log n)
e APSPACE := gy ASPACE(n9)

o AEXPSPACE := |J, oy ASPACE(2"™)

Examples.
GEOGRAPHY € APTIME.
MoNOTONE CVP (coming up next) € ALOGSPACE.
Similar alg.: CVP € ALOGSPACE.
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Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex
of in-degree 0.

label  no. of successors

The vertices are labelled by:

or | <
ocoO—NN

Example.
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FEvaluation of Circuits. A node v in a circuit C evaluates to 1 if
@ v is a leaf labelled by 1
@ v is a node labelled by VvV and one successor evaluates to 1
@ v is a node labelled by — and its successor evaluates to 0
@ v is a node labelled by A and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1.
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FEvaluation of Circuits. A node v in a circuit C evaluates to 1 if
@ v is a leaf labelled by 1
@ v is a node labelled by VvV and one successor evaluates to 1
@ v is a node labelled by — and its successor evaluates to 0
@ v is a node labelled by A and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input:  Circuit C
Problem: Does C evaluate to 17

Monotone Circuit Value Problem.

Monotone CVP
Input:  Monotone circuit C without negation —.
Problem: Does C evaluate to 17
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Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.
while Current is not a leaf do
if current node v is a V-node then
existential move: choose successor v/ of v
else if current node v is a A-node then
universal move: choose successor v/ of v
end if

set current node Current := v’

if Current is labelled by 1 then accept else reject.
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Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.
while Current is not a leaf do
if current node v is a V-node then
existential move: choose successor v/ of v
else if current node v is a A-node then
universal move: choose successor v/ of v
end if

set current node Current := v’
if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space. Can be
extended to general CVP
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Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L e NP = L e APTIME
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Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L e NP = L e APTIME

Reductions. If L € ATIME(T) and L' <, L then
L' € ATIME(T + f) where f is a polynomial.

Since GEOGRAPHY is PSPACE-complete and also in APTIME we
have PSPACE C APTIME
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Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L NP = L € APTIME
Reductions. If L € ATIME(T) and L' <, L then
L' € ATIME(T + f) where f is a polynomial.
Since GEOGRAPHY is PSPACE-complete and also in APTIME we
have PSPACE C APTIME

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language £

Let M’ be obtained from M by swapping

@ the accepting and rejecting state

@ swapping existential and universal states.
Then L(M') = L(M)
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Example of complementation

Satisfiability for formulae ¢ := X1V X2, where v is quantifier-free:

Algorithm 1:
existential move. choose assignment 3 : Xi +— 1 or 5 : Xy — 0.

universal move.
choose assignment 3 := fU{Xo — 1} and 8 := U {X; — 0}.

if [ satisfies ) then accept else reject.
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Example of complementation

Satisfiability for formulae ¢ := X1V X2, where v is quantifier-free:

Algorithm 1:
existential move. choose assignment 3 : Xi +— 1 or 5 : Xy — 0.

universal move.
choose assignment 3 := fU{Xo — 1} and 8 := U {X; — 0}.

if [ satisfies ) then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment 5 : Xi — 1lor §: X; — 0.

existential move.
choose assignment 8 := U {Xo — 1} or B := U {X> — 0}.
if [ satisfies 1) then reject else accept.
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Example of complementation

Satisfiability for formulae ¢ := X1V X2, where v is quantifier-free:

Algorithm 1:
existential move. choose assignment 3 : Xi +— 1 or 5 : Xy — 0.

universal move.
choose assignment 3 := fU{Xo — 1} and 8 := U {X; — 0}.
if [ satisfies ) then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment 5 : Xi — 1lor §: X; — 0.

existential move.
choose assignment 8 := U {Xo — 1} or B := U {X> — 0}.
if [ satisfies 1) then reject else accept.

Note: Algorithm 1 accepts ¢ iff Algorithm 2 rejects ¢
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APTIME = PSPACE l

Proof.

@ We have already seen that GEOGRAPHY € APTIME.
As GEOGRAPHY is PSPACE-complete,

PSPACE C APTIME.




Alternating vs. Sequential Time and Space

Theorem
APTIME = PSPACE J

Proof.

@ We have already seen that GEOGRAPHY € APTIME.
As GEOGRAPHY is PSPACE-complete,

PSPACE C APTIME.

@ APTIME C PSPACE follows from the following more general
result.

Lemma. For f(n) > n we have

ATIME(f(n)) C DSPACE(f(n))

To prove this, explore configuration tree of ATM of depth f(n)
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Alternating vs. Sequential Time and Space

Theorem.
@ For f(n) > n we have

ATIME(f(n)) € DSPACE(f(n)) C ATIME(f2(n))
@ For f(n) > log n we have ASPACE(f(n)) = DTIME(29(f())

(see Sipser Thm. 10.21)
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Deterministic Space vs. Alternating Time

(c.f. Savitch's theorem)
Lemma. For f(n) > n we have DSPACE(f(n)) C ATIME(f2(n)).

Proof. Let L be in DSPACE(f(n)) and M be an f(n) space-bounded
TM deciding L.

On input w, M makes at most 29(f(")) computation steps.

Alternating Algorithm. Reach(Cy, G, t)
Returns 1 if G is reachable from C; in < 2° steps.

ift=0
if G; = G or GG F G do return 1 else return 0

else
existential step. choose configuration C with |C| < O(f(n))

universal step. choose (D1, D,) = (G, C) or (D1, D5) = (C, &)
return Reach(Di, D, t — 1).
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Alternating vs. Sequential Time and Space

Theorem.
@ For f(n) > n we have

ATIME(f(n)) € DSPACE(f(n)) C ATIME(f2(n))
@ For f(n) > log n we have ASPACE(f(n)) = DTIME(29(f())

(see Sipser Thm. 10.21)
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Alternating vs. Sequential Time and Space

Theorem.
@ For f(n) > n we have

ATIME(f(n)) € DSPACE(f(n)) C ATIME(f2(n))
@ For f(n) > log n we have ASPACE(f(n)) = DTIME(29(f("))

(see Sipser Thm. 10.21)

Corollaries.
o ALOGSPACE = PTIME

e APTIME = PSPACE
e APSPACE = EXPTIME
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To conclude

Alternating TMs give us a different characterisation of complexity
classes we have seen.

Next: the polynomial hierarchy: a sequence of classes that are
intermediate between NP and PSPACE. They represent some
important problems that are “above” NP and “below” PSPACE
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