
Computational Complexity; slides 9, HT 2022
PSPACE-complete problems, alternating TMs

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg PSPACE-complete problems, alternating TMs 1 / 23

Coming up

Example of PSPACE-completeness (the “geography” game)
Then, alternative characterisation of PSPACE (as poly-time
“alternating” TM). Recall general point that when there are
various characterisations of a complexity class, it suggests the class
is important.
Afterwards, polynomial hierarchy (classes between NP/co-NP and
PSPACE)

Paul Goldberg PSPACE-complete problems, alternating TMs 2 / 23

The Formula Game

Players: Played by two Players ∃ and ∀

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

Moves: Players take turns in assigning truth values to X1, . . . ,Xn in
order.

That is, player ∃ assigns values to “odd” variables X1,X3, . . .

Winning condition: After all variables have been instantiated, ∃
wins if the formula evaluates to true. Otherwise ∀ wins.

Formula Game
Input: A CNF formula ϕ in the variables X1, . . . ,Xn

Problem: Does ∃ have a winning strategy in the game on ϕ?

Theorem. Formula Game is PSPACE-complete.

Paul Goldberg PSPACE-complete problems, alternating TMs 3 / 23

The Formula Game

Players: Played by two Players ∃ and ∀

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

Moves: Players take turns in assigning truth values to X1, . . . ,Xn in
order.

That is, player ∃ assigns values to “odd” variables X1,X3, . . .

Winning condition: After all variables have been instantiated, ∃
wins if the formula evaluates to true. Otherwise ∀ wins.

Formula Game
Input: A CNF formula ϕ in the variables X1, . . . ,Xn

Problem: Does ∃ have a winning strategy in the game on ϕ?

Theorem. Formula Game is PSPACE-complete.
Paul Goldberg PSPACE-complete problems, alternating TMs 3 / 23

Formula Game (extended version)

Board: A formula ϕ in conjunctive normal form with variables
X1, . . . ,Xn

After players have chosen values for the variables, player ∀
chooses a clause

Then player ∃ chooses a literal within that clause

exists wins if the literal is satisfied, else ∀ wins

Example

∃X1∀X2∃X3∀X4∀X5

(
(X1 ∨ 0 ∨ ¬X5) ∧ (¬X2 ∨ 1 ∨ ¬X5) ∧ (X2 ∨

X3 ∨ X4)
)

if ∃-player makes right choices, for all clauses C , there exists,
within C , a satisfied literal

Paul Goldberg PSPACE-complete problems, alternating TMs 4 / 23

Geography

A generalised version of “Geography”:

The board is a directed graph G and a start node s ∈ V (G)

Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.

Edges may not be used more than once. If a player cannot move,
he loses.

Geography
Input: Directed graph G , start node s ∈ V (G)

Problem: Does Player 1 have a winning strategy?

Theorem. Geography is PSPACE-complete.

(Sipser Theorem 8.14)

Paul Goldberg PSPACE-complete problems, alternating TMs 5 / 23

Geography

A generalised version of “Geography”:

The board is a directed graph G and a start node s ∈ V (G)

Initially the token is on the start node.

Players take turns in pushing this token along a directed edge.

Edges may not be used more than once. If a player cannot move,
he loses.

Geography
Input: Directed graph G , start node s ∈ V (G)

Problem: Does Player 1 have a winning strategy?

Theorem. Geography is PSPACE-complete.

(Sipser Theorem 8.14)

Paul Goldberg PSPACE-complete problems, alternating TMs 5 / 23

Paul Goldberg PSPACE-complete problems, alternating TMs 6 / 23

Paul Goldberg PSPACE-complete problems, alternating TMs 7 / 23

Paul Goldberg PSPACE-complete problems, alternating TMs 8 / 23

Next: Alternating Turing Machines

general idea: a class of automata whose languages are all the
PSPACE languages. They can be a useful way to prove
membership of problems in PSPACE.

They also give alternative characterisations of P, EXPTIME

Paul Goldberg PSPACE-complete problems, alternating TMs 9 / 23

Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic
Turing accepter whose set of non-final states is partitioned into
existential and universal states.

Q∃: set of existential states Q∀: set of universal states

Acceptance: Consider the computation tree T of M on w

A configuration C in T is eventually accepting if

C is an accepting stop configuration: an accepting leaf of T
C = (q, p,w) with q ∈ Q∃ and there is at least one eventually
accepting successor configuration in T
C = (q, p,w) with q ∈ Q∀ and all successor configurations of
C in T are eventually accepting

M accepts w if start configuration on w is eventually accepting.

Paul Goldberg PSPACE-complete problems, alternating TMs 10 / 23

Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic
Turing accepter whose set of non-final states is partitioned into
existential and universal states.

Q∃: set of existential states Q∀: set of universal states

Acceptance: Consider the computation tree T of M on w

A configuration C in T is eventually accepting if

C is an accepting stop configuration: an accepting leaf of T
C = (q, p,w) with q ∈ Q∃ and there is at least one eventually
accepting successor configuration in T
C = (q, p,w) with q ∈ Q∀ and all successor configurations of
C in T are eventually accepting

M accepts w if start configuration on w is eventually accepting.

Paul Goldberg PSPACE-complete problems, alternating TMs 10 / 23

Example: Alternating Algorithm for Geography

Input: Directed graph G s ∈ V (G) start node.

Set Visited := {s} Mark s as current node.

repeat

existential move: choose successor v 6∈ Visited of current node s

if not possible then reject.
Visited := Visited ∪ {v}
set current node s := v

universal move: choose successor v 6∈ Visited of current node s

if not possible then accept.
Visited := Visited ∪ {v}
set current node s := v

Note. This algorithm runs in alternating polynomial time.

Paul Goldberg PSPACE-complete problems, alternating TMs 11 / 23

Basic definitions of alternating time/space complexity

Recall L(M) denotes words (in Σ∗) accepted by M.

For function T : N→ N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after ≤ T (n)
steps.

Analogously for T space-bounded.

For T : N→ N a monotone increasing function, define

1 ATIME(T) as the class of languages L for which there is a
T -time bounded k-tape alternating Turing accepter deciding
L, k ≥ 1.

2 ASPACE(T) as the class of languages L for which there is a
T -space bounded alternating k-tape Turing accepter deciding
L, k ≥ 1.

Paul Goldberg PSPACE-complete problems, alternating TMs 12 / 23

Basic definitions of alternating time/space complexity

Recall L(M) denotes words (in Σ∗) accepted by M.

For function T : N→ N, an alternating TM is T time-bounded if
every computation of M on input w of length n halts after ≤ T (n)
steps.

Analogously for T space-bounded.

For T : N→ N a monotone increasing function, define

1 ATIME(T) as the class of languages L for which there is a
T -time bounded k-tape alternating Turing accepter deciding
L, k ≥ 1.

2 ASPACE(T) as the class of languages L for which there is a
T -space bounded alternating k-tape Turing accepter deciding
L, k ≥ 1.

Paul Goldberg PSPACE-complete problems, alternating TMs 12 / 23

Alternating Complexity Classes:

Time classes:

APTIME :=
⋃

d∈N ATIME(nd) alternating poly time

AEXPTIME :=
⋃

d∈N ATIME(2n
d
) alternating exp. time

2-AEXPTIME :=
⋃

d∈N ATIME(22
nd

)

Space classes:

ALOGSPACE :=
⋃

d∈N ASPACE(d log n)

APSPACE :=
⋃

d∈N ASPACE(nd)

AEXPSPACE :=
⋃

d∈N ASPACE(2n
d
)

Examples.

Geography ∈ APTIME.

Monotone CVP (coming up next) ∈ ALOGSPACE.
Similar alg.: CVP ∈ ALOGSPACE.

Paul Goldberg PSPACE-complete problems, alternating TMs 13 / 23

Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex
of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.

Space Complexity and Hierarchy Theorems Alternation

EXAMPLE: CIRCUIT VALUE PROBLEM

Circuit.
A connected dir. acyclic graph with exactly one vertex of in-degree 0.

The vertices are labelled by:

label no. of successors
∧ 2
∨ 2
¬ 1
1 0
0 0

Example.
∧

∨ ∨

0 ∧ ∧ 0

1 ¬ ¬ 0

0 1

Ian Horrocks Computational Complexity 40/113

Paul Goldberg PSPACE-complete problems, alternating TMs 14 / 23

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

v is a leaf labelled by 1

v is a node labelled by ∨ and one successor evaluates to 1

v is a node labelled by ¬ and its successor evaluates to 0

v is a node labelled by ∧ and both successors evaluate to 1

C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input: Circuit C

Problem: Does C evaluate to 1?

Monotone Circuit Value Problem.

Monotone CVP
Input: Monotone circuit C without negation ¬.

Problem: Does C evaluate to 1?

Paul Goldberg PSPACE-complete problems, alternating TMs 15 / 23

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

v is a leaf labelled by 1

v is a node labelled by ∨ and one successor evaluates to 1

v is a node labelled by ¬ and its successor evaluates to 0

v is a node labelled by ∧ and both successors evaluate to 1

C evaluates to 1 if its root evaluates to 1.

Circuit Value Problem.

CVP
Input: Circuit C

Problem: Does C evaluate to 1?

Monotone Circuit Value Problem.

Monotone CVP
Input: Monotone circuit C without negation ¬.

Problem: Does C evaluate to 1?

Paul Goldberg PSPACE-complete problems, alternating TMs 15 / 23

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.

while Current is not a leaf do

if current node v is a ∨-node then

existential move: choose successor v ′ of v

else if current node v is a ∧-node then

universal move: choose successor v ′ of v

end if

set current node Current := v’

if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space. Can be
extended to general CVP

Paul Goldberg PSPACE-complete problems, alternating TMs 16 / 23

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.

Set Current := s.

while Current is not a leaf do

if current node v is a ∨-node then

existential move: choose successor v ′ of v

else if current node v is a ∧-node then

universal move: choose successor v ′ of v

end if

set current node Current := v’

if Current is labelled by 1 then accept else reject.

Note. This algorithm runs in alternating logarithmic space. Can be
extended to general CVP

Paul Goldberg PSPACE-complete problems, alternating TMs 16 / 23

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then
L′ ∈ ATIME(T + f) where f is a polynomial.

Since Geography is PSPACE-complete and also in APTIME we
have PSPACE ⊆ APTIME

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M ′ be obtained from M by swapping

the accepting and rejecting state
swapping existential and universal states.

Then L(M ′) = L(M)

Paul Goldberg PSPACE-complete problems, alternating TMs 17 / 23

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then
L′ ∈ ATIME(T + f) where f is a polynomial.

Since Geography is PSPACE-complete and also in APTIME we
have PSPACE ⊆ APTIME

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M ′ be obtained from M by swapping

the accepting and rejecting state
swapping existential and universal states.

Then L(M ′) = L(M)

Paul Goldberg PSPACE-complete problems, alternating TMs 17 / 23

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an
alternating TM (without universal states).

L ∈ NP =⇒ L ∈ APTIME

Reductions. If L ∈ ATIME(T) and L′ ≤p L then
L′ ∈ ATIME(T + f) where f is a polynomial.

Since Geography is PSPACE-complete and also in APTIME we
have PSPACE ⊆ APTIME

Complementation. Alternating Turing accepters are easily
“negated”.

Let M be an alternating TM accepting language L
Let M ′ be obtained from M by swapping

the accepting and rejecting state
swapping existential and universal states.

Then L(M ′) = L(M)
Paul Goldberg PSPACE-complete problems, alternating TMs 17 / 23

Example of complementation

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} and β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg PSPACE-complete problems, alternating TMs 18 / 23

Example of complementation

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} and β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg PSPACE-complete problems, alternating TMs 18 / 23

Example of complementation

Satisfiability for formulae ϕ := ∃X1∀X2ψ, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

universal move.
choose assignment β := β ∪ {X2 7→ 1} and β := β ∪ {X2 7→ 0}.

if β satisfies ψ then accept else reject.

Its complement is defined as:

Algorithm 2:
universal move. choose assignment β : X1 7→ 1 or β : X1 7→ 0.

existential move.
choose assignment β := β ∪ {X2 7→ 1} or β := β ∪ {X2 7→ 0}.

if β satisfies ψ then reject else accept.

Note: Algorithm 1 accepts ϕ iff Algorithm 2 rejects ϕ

Paul Goldberg PSPACE-complete problems, alternating TMs 18 / 23

Alternating vs. Sequential Time and Space

Theorem

APTIME = PSPACE

Proof.

1 We have already seen that Geography ∈ APTIME.
As Geography is PSPACE-complete,

PSPACE ⊆ APTIME.

2 APTIME ⊆ PSPACE follows from the following more general
result.

Lemma. For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n))

To prove this, explore configuration tree of ATM of depth f (n)

Paul Goldberg PSPACE-complete problems, alternating TMs 19 / 23

Alternating vs. Sequential Time and Space

Theorem

APTIME = PSPACE

Proof.

1 We have already seen that Geography ∈ APTIME.
As Geography is PSPACE-complete,

PSPACE ⊆ APTIME.

2 APTIME ⊆ PSPACE follows from the following more general
result.

Lemma. For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n))

To prove this, explore configuration tree of ATM of depth f (n)

Paul Goldberg PSPACE-complete problems, alternating TMs 19 / 23

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg PSPACE-complete problems, alternating TMs 20 / 23

Deterministic Space vs. Alternating Time

(c.f. Savitch’s theorem)
Lemma. For f (n) ≥ n we have DSPACE(f (n)) ⊆ ATIME(f 2(n)).

Proof. Let L be in DSPACE(f (n)) and M be an f (n) space-bounded
TM deciding L.

On input w , M makes at most 2O(f (n)) computation steps.

Alternating Algorithm. Reach(C1,C2, t)

Returns 1 if C2 is reachable from C1 in ≤ 2t steps.

if t = 0

if C1 = C2 or C1 ` C2 do return 1 else return 0

else
existential step. choose configuration C with |C | ≤ O(f (n))

universal step. choose (D1,D2) = (C1,C) or (D1,D2) = (C ,C2)

return Reach(D1,D2, t − 1).

Paul Goldberg PSPACE-complete problems, alternating TMs 21 / 23

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg PSPACE-complete problems, alternating TMs 22 / 23

Alternating vs. Sequential Time and Space

Theorem.

1 For f (n) ≥ n we have

ATIME(f (n)) ⊆ DSPACE(f (n)) ⊆ ATIME(f 2(n))

2 For f (n) ≥ log n we have ASPACE(f (n)) = DTIME(2O(f (n)))

(see Sipser Thm. 10.21)

Corollaries.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

Paul Goldberg PSPACE-complete problems, alternating TMs 22 / 23

To conclude

Alternating TMs give us a different characterisation of complexity
classes we have seen.

Next: the polynomial hierarchy: a sequence of classes that are
intermediate between NP and PSPACE. They represent some
important problems that are “above” NP and “below” PSPACE

Paul Goldberg PSPACE-complete problems, alternating TMs 23 / 23

