Computational Complexity; slides 9, HT 2022 PSPACE-complete problems, alternating TMs

Prof. Paul W. Goldberg (Dept. of Computer Science, University of Oxford)

HT 2022

Coming up

Example of PSPACE-completeness (the "geography" game) Then, alternative characterisation of PSPACE (as poly-time "alternating" TM). Recall general point that when there are various characterisations of a complexity class, it suggests the class is important.
Afterwards, polynomial hierarchy (classes between NP/co-NP and PSPACE)

The Formula Game

Players: Played by two Players \exists and \forall
Board: A formula φ in conjunctive normal form with variables X_{1}, \ldots, X_{n}

Moves: Players take turns in assigning truth values to X_{1}, \ldots, X_{n} in order.
That is, player \exists assigns values to "odd" variables X_{1}, X_{3}, \ldots
Winning condition: After all variables have been instantiated, \exists wins if the formula evaluates to true. Otherwise \forall wins.

The Formula Game

Players: Played by two Players \exists and \forall
Board: A formula φ in conjunctive normal form with variables X_{1}, \ldots, X_{n}

Moves: Players take turns in assigning truth values to X_{1}, \ldots, X_{n} in order.
That is, player \exists assigns values to "odd" variables X_{1}, X_{3}, \ldots
Winning condition: After all variables have been instantiated, \exists wins if the formula evaluates to true. Otherwise \forall wins.

Formula Game
 Input: A CNF formula φ in the variables X_{1}, \ldots, X_{n} Problem: Does \exists have a winning strategy in the game on φ ?

Theorem. Formula Game is PSPACE-complete.

Formula Game (extended version)

Board: A formula φ in conjunctive normal form with variables X_{1}, \ldots, X_{n}

- After players have chosen values for the variables, player \forall chooses a clause
- Then player \exists chooses a literal within that clause
- exists wins if the literal is satisfied, else \forall wins

Example

$\exists X_{1} \forall X_{2} \exists X_{3} \forall X_{4} \forall X_{5}\left(\left(X_{1} \vee 0 \vee \neg X_{5}\right) \wedge\left(\neg X_{2} \vee 1 \vee \neg X_{5}\right) \wedge\left(X_{2} \vee\right.\right.$ $\left.X_{3} \vee X_{4}\right)$)
if \exists-player makes right choices, for all clauses C, there exists, within C, a satisfied literal

Geography

A generalised version of "Geography":
The board is a directed graph G and a start node $s \in V(G)$
Initially the token is on the start node.
Players take turns in pushing this token along a directed edge.
Edges may not be used more than once. If a player cannot move, he loses.

Geography

A generalised version of "Geography":
The board is a directed graph G and a start node $s \in V(G)$
Initially the token is on the start node.
Players take turns in pushing this token along a directed edge.
Edges may not be used more than once. If a player cannot move, he loses.

GEOGRAPHY Input: Directed graph G, start node $s \in V(G)$ Problem: Does Player 1 have a winning strategy?

Theorem. GEOGRAPhy is PSPACE-complete.
(Sipser Theorem 8.14)

$$
\begin{array}{r}
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \phi(x) \\
\phi=c_{1} \wedge c_{1} \wedge \ldots \wedge C_{m}
\end{array}
$$

player 1 wants T player 2 wants F winner plays last

Suppose $C_{1}=x_{1} \vee \neg x_{2} \vee x_{3}$
player 1 wants T player 2 wants F winner plays last

Next: Alternating Turing Machines

general idea: a class of automata whose languages are all the PSPACE languages. They can be a useful way to prove membership of problems in PSPACE.

They also give alternative characterisations of P, EXPTIME

Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic Turing accepter whose set of non-final states is partitioned into existential and universal states.

$$
Q_{\exists}: \text { set of existential states } \quad Q_{\forall}: \text { set of universal states }
$$

Acceptance: Consider the computation tree \mathcal{T} of M on w

Alternating Turing Machines

Definition. An alternating Turing machine M is a non-deterministic Turing accepter whose set of non-final states is partitioned into existential and universal states.
Q_{\exists} : set of existential states $\quad Q_{\forall}$: set of universal states
Acceptance: Consider the computation tree \mathcal{T} of M on w
A configuration C in \mathcal{T} is eventually accepting if

- C is an accepting stop configuration: an accepting leaf of \mathcal{T}
- $C=(q, p, w)$ with $q \in Q_{\exists}$ and there is at least one eventually accepting successor configuration in \mathcal{T}
- $C=(q, p, w)$ with $q \in Q_{\forall}$ and all successor configurations of C in \mathcal{T} are eventually accepting
M accepts w if start configuration on w is eventually accepting.

Example: Alternating Algorithm for GEOGRAPHY

Input: Directed graph G
Set Visited $:=\{s\} \quad$ Mark s as current node.
repeat
existential move: choose successor $v \notin$ VISITED of current node s
if not possible then reject.
Visited $:=$ Visited $\cup\{v\}$
set current node $s:=v$
universal move: choose successor $v \notin$ Visited of current node s
if not possible then accept.
Visited $:=$ Visited $\cup\{v\}$
set current node $s:=v$
Note. This algorithm runs in alternating polynomial time.

Basic definitions of alternating time/space complexity

Recall $\mathcal{L}(M)$ denotes words (in Σ^{*}) accepted by M.
For function $T: \mathbb{N} \rightarrow \mathbb{N}$, an alternating TM is T time-bounded if every computation of M on input w of length n halts after $\leq T(n)$ steps.

Analogously for T space-bounded.

Basic definitions of alternating time/space complexity

Recall $\mathcal{L}(M)$ denotes words (in Σ^{*}) accepted by M.
For function $T: \mathbb{N} \rightarrow \mathbb{N}$, an alternating TM is T time-bounded if every computation of M on input w of length n halts after $\leq T(n)$ steps.

Analogously for T space-bounded.

For $T: \mathbb{N} \rightarrow \mathbb{N}$ a monotone increasing function, define
(1) $\operatorname{ATIME}(T)$ as the class of languages \mathcal{L} for which there is a T-time bounded k-tape alternating Turing accepter deciding $\mathcal{L}, k \geq 1$.
(2) $\operatorname{ASPACE}(T)$ as the class of languages \mathcal{L} for which there is a T-space bounded alternating k-tape Turing accepter deciding $\mathcal{L}, k \geq 1$.

Alternating Complexity Classes:

Time classes:

- APTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(n^{d}\right)$
alternating poly time
- AEXPTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(2^{n^{d}}\right) \quad$ alternating exp. time
- 2-AEXPTIME $:=\bigcup_{d \in \mathbb{N}} \operatorname{ATIME}\left(2^{2^{n^{d}}}\right)$

Space classes:

- ALOGSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}(d \log n)$
- APSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}\left(n^{d}\right)$
- AEXPSPACE $:=\bigcup_{d \in \mathbb{N}} \operatorname{ASPACE}\left(2^{n^{d}}\right)$

Examples.
GEOGRAPhy \in APTIME.
Monotone CVP (coming up next) \in ALOGSPACE.
Similar alg.: CVP \in ALOGSPACE.

Circuit Value Problem

Circuit. A connected directed acyclic graph with exactly one vertex of in-degree 0 .

The vertices are labelled by:

Example.

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

- v is a leaf labelled by 1
- v is a node labelled by \vee and one successor evaluates to 1
- v is a node labelled by \neg and its successor evaluates to 0
- v is a node labelled by \wedge and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1 .

Evaluation of Circuits. A node v in a circuit C evaluates to 1 if

- v is a leaf labelled by 1
- v is a node labelled by \vee and one successor evaluates to 1
- v is a node labelled by \neg and its successor evaluates to 0
- v is a node labelled by \wedge and both successors evaluate to 1
C evaluates to 1 if its root evaluates to 1 .
Circuit Value Problem.
CVP
Input: Circuit C
Problem: Does C evaluate to 1 ?

Monotone Circuit Value Problem.
Monotone CVP
Input: Monotone circuit C without negation \neg.
Problem: Does C evaluate to 1 ?

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.
Set Current :=s.
while Current is not a leaf do
if current node v is a V-node then existential move: choose successor v^{\prime} of v
else if current node v is a \wedge-node then universal move: choose successor v^{\prime} of v
end if
set current node Current := v'
if Current is labelled by 1 then accept else reject.

Monotone Circuit Value Problem

Input: Monotone circuit C with root s.
Set Current :=s.
while Current is not a leaf do
if current node v is a V-node then existential move: choose successor v^{\prime} of v
else if current node v is a \wedge-node then universal move: choose successor v^{\prime} of v

end if

set current node Current := v'
if Current is labelled by 1 then accept else reject.
Note. This algorithm runs in alternating logarithmic space. Can be extended to general CVP

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Reductions. If $\mathcal{L} \in \operatorname{ATIME}(T)$ and $\mathcal{L}^{\prime} \leq_{p} \mathcal{L}$ then $\mathcal{L}^{\prime} \in \operatorname{ATIME}(T+f)$ where f is a polynomial.

Since Geography is PSPACE-complete and also in APTIME we have PSPACE \subseteq APTIME

Basic general properties of alternating TMs/complexity

Non-determinism. A non-deterministic Turing accepter is an alternating TM (without universal states).

$$
\mathcal{L} \in \mathrm{NP} \Longrightarrow \mathcal{L} \in \mathrm{APTIME}
$$

Reductions. If $\mathcal{L} \in \operatorname{ATIME}(T)$ and $\mathcal{L}^{\prime} \leq_{p} \mathcal{L}$ then $\mathcal{L}^{\prime} \in \operatorname{ATIME}(T+f)$ where f is a polynomial.

Since Geography is PSPACE-complete and also in APTIME we have PSPACE \subseteq APTIME

Complementation. Alternating Turing accepters are easily "negated".

Let M be an alternating TM accepting language \mathcal{L}
Let M^{\prime} be obtained from M by swapping

- the accepting and rejecting state
- swapping existential and universal states.

Then $\mathcal{L}\left(M^{\prime}\right)=\overline{\mathcal{L}(M)}$

Example of complementation

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:
Algorithm 1:
existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ and $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.

Example of complementation

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ and $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.
Its complement is defined as:
Algorithm 2:
universal move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
existential move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then reject else accept.

Example of complementation

Satisfiability for formulae $\varphi:=\exists X_{1} \forall X_{2} \psi$, where ψ is quantifier-free:

Algorithm 1:
existential move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
universal move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ and $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then accept else reject.
Its complement is defined as:
Algorithm 2:
universal move. choose assignment $\beta: X_{1} \mapsto 1$ or $\beta: X_{1} \mapsto 0$.
existential move.
choose assignment $\beta:=\beta \cup\left\{X_{2} \mapsto 1\right\}$ or $\beta:=\beta \cup\left\{X_{2} \mapsto 0\right\}$.
if β satisfies ψ then reject else accept.
Note: Algorithm 1 accepts φ iff Algorithm 2 rejects φ

Alternating vs. Sequential Time and Space

Theorem
APTIME $=$ PSPACE

Proof.

(1) We have already seen that GEOGraphy \in APTIME. As Geography is PSPACE-complete, PSPACE $\subseteq A P T I M E$.

Alternating vs. Sequential Time and Space

Theorem

APTIME $=$ PSPACE

Proof.

(1) We have already seen that GEography \in APTIME. As Geography is PSPACE-complete, PSPACE $\subseteq A P T I M E$.
(2) APTIME \subseteq PSPACE follows from the following more general result.

Lemma. For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))
$$

To prove this, explore configuration tree of ATM of depth $f(n)$

Alternating vs. Sequential Time and Space

Theorem.

(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$ (see Sipser Thm. 10.21)

Deterministic Space vs. Alternating Time

(c.f. Savitch's theorem)

Lemma. For $f(n) \geq n$ we have $\operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)$.
Proof. Let \mathcal{L} be in $\operatorname{DSPACE}(f(n))$ and M be an $f(n)$ space-bounded TM deciding \mathcal{L}.

On input w, M makes at most $2^{\mathcal{O}(f(n))}$ computation steps.

Alternating Algorithm. Reach $\left(C_{1}, C_{2}, t\right)$
Returns 1 if C_{2} is reachable from C_{1} in $\leq 2^{t}$ steps.

$$
\begin{aligned}
& \text { if } t=0 \\
& \text { if } C_{1}=C_{2} \text { or } C_{1} \vdash C_{2} \text { do return } 1 \text { else return } 0 \\
& \text { else } \\
& \quad \text { existential step. choose configuration } C \text { with }|C| \leq \mathcal{O}(f(n)) \\
& \text { universal step. choose }\left(D_{1}, D_{2}\right)=\left(C_{1}, C\right) \text { or }\left(D_{1}, D_{2}\right)=\left(C, C_{2}\right) \\
& \text { return } \operatorname{Reach}\left(D_{1}, D_{2}, t-1\right) .
\end{aligned}
$$

Alternating vs. Sequential Time and Space

Theorem.

(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$ (see Sipser Thm. 10.21)

Alternating vs. Sequential Time and Space

Theorem.

(1) For $f(n) \geq n$ we have

$$
\operatorname{ATIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n)) \subseteq \operatorname{ATIME}\left(f^{2}(n)\right)
$$

(2) For $f(n) \geq \log n$ we have $\operatorname{ASPACE}(f(n))=\operatorname{DTIME}\left(2^{\mathcal{O}(f(n))}\right)$ (see Sipser Thm. 10.21)

Corollaries.

- ALOGSPACE $=$ PTIME
- $\operatorname{APTIME~=~PSPACE~}$
- APSPACE $=$ EXPTIME

Alternating TMs give us a different characterisation of complexity classes we have seen.

Next: the polynomial hierarchy: a sequence of classes that are intermediate between NP and PSPACE. They represent some important problems that are "above" NP and "below" PSPACE

