Schedule A2, (Computer Science, CS and Philosophy, Maths and CS) Hilary Term 2023

COMPUTATIONAL COMPLEXITY

Exercise class 4: oracle TMs, space-bounded computation

1. The following definitions will be used in this question:

Definition. An oracle Turing Machine (OTM) is a Turing Machine M that has a special read-write tape (the machine's oracle tape) and three special states: q_{query} , q_{yes} , q_{no} . To execute M, we specify in addition a language $\mathcal{O} \subseteq \{0,1\}^*$ that is used as the oracle for M. Whenever during the execution M enters the state q_{query} , the machine moves to the state q_{yes} if $w \in \mathcal{O}$ and q_{no} if $w \notin \mathcal{O}$, where w denotes the contents of the special oracle tape. Regardless of the choice of \mathcal{O} , a membership query to \mathcal{O} counts only as a single computation step. For every $\mathcal{O} \in \{0,1\}^*$, $P^{\mathcal{O}}$ is the class of problems that can be decided by a polynomial-time deterministic TM with oracle access to \mathcal{O} . The corresponding class of problems based on non-deterministic Turing machines is denoted as NP^{\mathcal{O}}.

Definition. For any 3CNF formula ϕ , let $MAX_{true}(\phi)$ be the maximum number of variables set to true in a satisfying assignment for ϕ . If ϕ is not satisfiable, $MAX_{true}(\phi) = 0$. We now define the following languages:

 $MAXTRUE3SAT = \{ \langle \phi, n \rangle : MAX_{true}(\phi) \text{ is at least } n \}$ ODDMAXTRUE3SAT = { $\phi : MAX_{true}(\phi) \text{ is odd} \}$

- (a) Show that if $\mathcal{O} \in \mathbf{P}$, then $\mathbf{P}^{\mathcal{O}} = \mathbf{P}$.
- (b) Show that $NP \cup CO-NP \subseteq P^{SAT}$.
- (c) Let us define $P^{NP} = \bigcup_{\mathcal{O} \in NP} P^{\mathcal{O}}$. Show that $P^{NP} = P^{SAT}$.
- (d) Show that MAXTRUE3SAT is in NP.
- (e) Show that ODDMAXTRUE3SAT is contained in P^{SAT}.
- 2. The following definitions will be used in this question:

Definition. A propositional formula is minimal if there is no smaller formula equivalent to it (a formula ϕ is smaller than formula ψ if the binary representation of ϕ is smaller than the binary representation of ψ). Then, we define the following language:

NOTMINFORMULA = { ϕ : ϕ is not minimal}

(a) Show that NOTMINFORMULA is in NP^{SAT}.

(b) Show that NOTMINFORMULA is in APTIME by designing an alternating algorithm that solves the problem.

3. Given a non-deterministic polynomially-time bounded Turing machine M and a word w, denote by Acc(M, w) all the accepting computations of M on w and by Rej(M, w) all the rejecting computations.

Let PP be the complexity class defined as follows: a language L is in PP if there exists a non-deterministic polynomially-time bounded Turing machine M such that $w \in L$ if and only if

$$|Acc(M, w)| \ge |Rej(M, w)|.$$

Show that $PP \subseteq PSPACE$ and $NP \subseteq PP$.

4. Show that the following problem is in LOGSPACE.

MATCHEDPARENTHESISInput:A word w over the alphabet $\Sigma := \{\}, (\}.$ Question:Is every parenthesis in w properly matched?(e.g. "(()(()()))" is properly matched whereas "(()))(" is not.)