
Schedule A2, (Computer Science, CS and Philosophy, Maths and CS)
Hilary Term 2023

Computational Complexity

Exercise class 5: deterministic/non-deterministic log space

1. The following definitions (hopefully mostly familiar to you) will be used in this question.

Definition. A finite automaton is a tuple (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ
is a finite set of symbols called the alphabet, δ is the transition function, which maps pairs
in Q × Σ to a set of states in P(Q) (with P denoting powerset), q0 ∈ Q is the initial state
and F ⊆ Q is the set of accepting states. We say that a finite automaton is deterministic if
the transition function is of the form Q × Σ 7→ Q; that is, if pairs of state and symbol are
mapped to single states (rather than to sets of states).

Definition. Let A be a finite automaton. A run r of A over a word w = a0 . . . an−1 ∈ Σn is
a sequence of states s0 . . . sn ∈ Qn+1 such that s0 = q0 and si+1 ∈ δ(si, ai) for 0 ≤ i < n. A
run r is accepting if sn ∈ F . A word w is accepted by A if there exists an accepting run of A
over w. The language of A, denoted L(A), is the set of words accepted by A.

Definition. We define the following languages for finite automata:

Acceptance = {⟨A,w⟩ : A a finite automaton, w a word, and w ∈ L(A)}
D-Acceptance = {⟨A,w⟩ : A a deterministic finite automaton, w a word, and w ∈ L(A)}

Emptyness = {⟨A⟩ : A a finite automaton and L(A) = ∅}
D-Emptyness = {⟨A⟩ : A a deterministic finite automaton and L(A) = ∅}
Equivalence = {⟨A1, A2⟩ : finite automata over the same alphabet, L(A1) = L(A2)}

D-Equivalence = {⟨A1, A2⟩ : deterministic finite automata over same alphabet, L(A1) = L(A2)}

(a) Show that D-Acceptance is in L (i.e. deterministic logspace).

(b) Show that Acceptance is in NL (i.e. non-deterministic logspace).

(c) Show that Emptyness is in NL.

(d) Show that D-Emptyness is NL-hard.

(e) Given the aforementioned results, establish tight complexity bounds for the following
problems (that is, argue for which class each of these problems is complete):

• Emptyness

• D-Emptyness

• Emptyness

• D-Emptyness

(f) Show that D-Equivalence is in NL. Hint: Note that A1 and A2 are non-equivalent if
and only if either the intersection of A1 and the complement of A2 is non-empty, or the
intersection of A2 and the complement of A1 is non-empty.

(g) Show that Equivalence is in PSPACE. Hint: Note that A1 and A2 are non-equivalent
if and only if there exists a word that is accepted by one automaton but not the other.
Furthermore, if such a word exists, there exists one of length at most 2|Q1|+|Q2| with Q1

and Q2 the states of A1 and A2 respectively.

1

2. (a) Let f : Σ∗ → Σ∗ be a function computed by a deterministic logarithmic space bounded
transducer. Show that there is a constant d so that for all w ∈ Σ∗, |w| > 1, |f(w)| ≤ |w|d.

(b) Show that Logspace-reductions are transitive, i.e. show that if f and g are Logspace-
computable functions then so is f ◦g, the composition of f and g. ((f ◦g)(w) = f(g(w)))

3. Let Σ := {0, 1} and let Pal ⊆ Σ∗ be the language of palindromes over the alphabet Σ.

(a) Show that Pal cannot be decided in logarithmic space by a Turing machine that can only
move its head on the input tape to the right. (That is, at every time step, the machine
moves its input head to the right, similar to the operation of a finite deterministic
automaton. It can operate arbitrarily on its work tape, though, but can only use d log n
tape cells, for some constant d, where n is the input size.)

(b) Show that the language L := {w ∈ Σ∗ : w is not a palindrome} can be decided in
non-deterministic logarithmic space by a Turing machine as above, that can only move
its read head to the right.

4. A directed graph G is strongly connected if every two nodes in G are connected by a directed
path in each direction. The language SC is the language of strongly connected graphs, i.e.:

SC = {⟨G⟩ : G is a strongly connected graph}.

Show that SC is NL-complete.

2

