
Intro to Predicate Logic

Sipser Ch. 6.2; Papadimitriou Ch. 5
Agenda:

What predicate logic is. And some variants...

What are the associated computational problems?

Some results on complexity/decidability of those problems
(indicates expressive power of predicate logic)

Probably I don’t have time for all the following material...

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 1 / 64

Intro to Predicate Logic

Logical inference:

1 Every student is honest

2 Harry is a student

3 deduce that...

Statements about the world (maybe, a world) where you can
automatically deduce stuff

Propositional logic doesn’t have the expressive power to capture
these statements.
Next: define (first order) predicate logic; study the associated
computational problems: decidable? In P, NP?

From a CS perspective: look for more powerful knowledge
representation language that can describe situations with no fixed
number of individuals.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 2 / 64

Propositional logic worlds

Vocabulary of propositional logic refers to some fixed number of
facts → fixing a vocabulary of propositions p1 . . . pn restricts us to
“state of the world” description using exactly n bits.
Cannot model statements about unspecified numbers of
individuals.

Given a collection of propositional logic statements we can identify
their signature: set of propositions p, q, r , s —
Possible world (a.k.a. truth valuation/assignment) e.g.:

p, q, r=TRUE; s=FALSE

p, q TRUE; r , s FALSE

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 3 / 64

Predicate logic worlds (example)

Vocabulary (a.k.a.
signature or language):
set of predicates,
functions, constants
Possible world (a.k.a.
interpretation; model;
structure): includes
domain, the set of values
that variables can take,
includes the constants

Student(x), Professor(y),

HasAdvisor(x,y)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 4 / 64

Predicate Logic Worlds

Vocabulary: set of
predicates, functions,
constants

Student(x), Professor(y),

HasAdvisor(x,y)

interpretation (a possible
world)

Represented formally, this interpretation looks like:
Domain = {Joe, Jim, Kathy, Jones, Smith}
Student = {Joe, Jim, Kathy}
Professor ={Jones, Smith}
HasAdvisor = {(Joe,Smith), (Jim, Jones), (Kathy, Smith)}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 5 / 64

Worlds

Vocabulary: set of
predicates, functions,
constants

Student(x), Professor(y),

HasAdvisor(x,y)

Possible world

For the same vocabulary, have infinitely many possible worlds!

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 6 / 64

Predicate Logic, formally

Vocabulary: collections of

constants – say {ci : i ≥ 0}.
Constants are names for individuals. E.g.: 0, 1

function symbols – say {fi : i ≥ 0}.
May be of different number of arguments (arities) E.g.:
+(x , y)

predicate symbols – say {pi : i ≥ 0}.
each with its own number of arguments (arity)

Collections don’t have to be finite: a vocabulary can be infinite

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 7 / 64

Predicate Logic, formally

Worlds: For a Predicate Logic vocabulary V, an interpretation for
V consists of:

A set D (the domain or universe)

For every k-ary relation symbol R in V, a k-ary relation on D

For every k-ary function symbol f in V, a k-ary function on D

For every constant symbol c in V, an element of D

Some books call this a model for V, or a structure for V

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 8 / 64

Example Interpretation

Student is 1-ary, Professor

is 1-ary, HasAdvisor is 2-ary;

constants could also be

thought of as 0-ary functions

Vocabulary:

No functions

Predicates: Student(x), Professor(y),

HasAdvisor(x,y)

No constants

Domain = {Joe, Jim, Kathy, Jones, Smith}
Student(x) true for x ∈ {Joe, Jim, Kathy}
Professor(y) true for y ∈ {Jones, Smith}
HasAdvisor(x,y) true for (x , y) ∈ {(Joe,Smith), (Jim, Jones),
(Kathy, Smith)}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 9 / 64

Predicate Logic, formally (more examples)

reminder: For vocab V, interpretation for V comprises:

A set D (the domain or universe)

For every k-ary relation symbol R in V, a k-ary relation on D

For every k-ary function symbol f in V, a k-ary function on D

For every constant symbol c in V, an element of D

Example: Vfield := 2-ary functions +, ∗, constants: 0, 1; for

ordered field, 2-ary predicate <

One interpretation: Domain = Integers

+,*,< usual arithmetic operators and comparison 0,1,= as usual

Alternatively: could have domain = Real numbers

Alternatively: could have domain = Real numbers; 0 = the

number 15; 1 = the number 7

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 10 / 64

Predicate Logic, formally (more examples)

reminder: For vocab V, interpretation for V comprises:

A set D (the domain or universe)

For every k-ary relation symbol R in V, a k-ary relation on D

For every k-ary function symbol f in V, a k-ary function on D

For every constant symbol c in V, an element of D

Example: Vfield := 2-ary functions +, ∗, constants: 0, 1; for

ordered field, 2-ary predicate <

One interpretation: Domain = Integers

+,*,< usual arithmetic operators and comparison 0,1,= as usual

Alternatively: could have domain = Real numbers

Alternatively: could have domain = Real numbers; 0 = the

number 15; 1 = the number 7

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 10 / 64

Predicate Logic, formally (more examples)

reminder: For vocab V, interpretation for V comprises:

A set D (the domain or universe)

For every k-ary relation symbol R in V, a k-ary relation on D

For every k-ary function symbol f in V, a k-ary function on D

For every constant symbol c in V, an element of D

Example: Vfield := 2-ary functions +, ∗, constants: 0, 1; for

ordered field, 2-ary predicate <

One interpretation: Domain = Integers

+,*,< usual arithmetic operators and comparison 0,1,= as usual

Alternatively: could have domain = Real numbers

Alternatively: could have domain = Real numbers; 0 = the

number 15; 1 = the number 7

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 10 / 64

Notation

Suppose V is a vocabulary with n-ary predicate P and m-ary
function symbol F .
If M is an interpretation for V, then M consists of

domain of M (a set) denoted Dom(M) or ‖M‖
interpretation for P, denoted PM , an n-ary relation on M

interpretation for F , denoted FM , an m-ary function on M

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 11 / 64

Predicate Logic Statements

Formulae are statements about one or more objects in a world

“x is an honest student”

Sentences are statements about a world

Every student is honest

Some student is honest

Given an interpretation, a sentence should get the value TRUE or
FALSE

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 12 / 64

Some computational challenges

Decision problems:

1 Given a sentence, it is TRUE in all interpretations? (then,
said to be valid)

2 Is some given sentence satisfiable by some interpretation?
(does it have a model?)

3 Given a sentence and an interpretation, is it true?

Item (3) raises question of how infinite interpretation is presented
to an algorithm (a finite one can be presented as a list of domain
elements). In fact, consider certain specific interpretations; e.g.
“first-order theory of real arithmetic”: sentences where variables
range over R, standard operators +, ×, ∃, ∀

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 13 / 64

Predicate Logic(s)

Many variants (it’s a rich area!) Expressions may use quantifiers ∀,
∃ (you know what those are, right?)

e.g. restriction to “existential theories”, limit to statements
where there’s just one quantifier, ∃ at start of statement.

QBF: “quantified boolean formulae” — propositional logic
with quantifiers, PSPACE-complete to determine whether a
given formula is true/satisfiable.

First-Order Logic – quantifications over domain only: “∀ x”,
“∃ x”: x in domain

There are other logics, e.g. richer than first-order.
Second-order logic, FixedPoint Logic, Logic with Counting
Quantifiers etc.

More on these in other courses (e.g. Logic Automata Games,
Theory of Data and Knowledge Bases)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 14 / 64

Terms

Semantically, a term should represent an element of the domain.
Syntactically, recursive definition:

Every constant of vocabulary V is a term. So is every variable.

If fi is an n-ary function symbol of V and t1, . . . , tn are terms,
then fi (t1, . . . , tn) is a term.

Examples

f (x , g(2, y)) is a term, where f , g are function symbols and
x , y are variables.

+(x , ∗(3, y)) is a term in the vocab for arithmetic; usually
written as x + (3 ∗ y)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 15 / 64

Recursive Definition of Formulae

(Semantically, something that evaluates to true or false. Value may depend on
values of “free variables” in the formula, e.g. formula “x = y”.)

If pi is an n-ary predicate symbol in V and t1, . . . , tn are terms
of V, then:

pi (t1, . . . , tn) is an atomic formula
ti = tj is an atomic formula

If A and B are formulas, then so are:

A ∧ B, T , F , A ∨ B, ¬A, A→ B (could also include A↔ B,
A⊕ B, other propositional connectives...)
∀xiA, ∃xiA, where xi is a variable (usually, xi appears in A).

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 16 / 64

Examples

∀xStudent(x)⇒ ∃y(HasAdvisor(x , y) ∧ Professor(y))

Informally: “Every student has an
advisor that is a professor.”

True in the example
interpretation

∃x(Student(x) ∧ Professor(x))

“There is a student who is also a professor”

Student(x) ∧ ∃y [Student(y) ∧ ¬(x = y)∧
∃z(HasAdvisor(x , z) ∧ HasAdvisor(y , z))]

“x is a student and there
is some other student
who has the same
advisor as x”

True of Joe and Kathy

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 17 / 64

Free and bound Variables

In ∀x A(x , y), the variable x is said to be bound; y is free.
Generally, there is a recursive definition of the free variables of a
formula.

x occurs free in any A(t1 . . . tn) where some ti contains x

x occurs free in t1 = t2, where t1 or t2 contains x

x occurs free in:

∀y A or ∃y A if x occurs free in A and x is not y
¬A if x occurs free in A.
A ∧ B, A ∨ B, A⇒ B, ... if x occurs free in either A or B

If x occurs in a formula φ, and x is not free in φ, then x is a bound
variable of φ

Write φ(x1, . . . , xn) if x1, . . . , xn are all the free variables of φ.
A sentence is a formula with no free variables.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 18 / 64

Examples

∀x [Student(x)⇒ HasAdvisor(x , y)]

x is bound, y is free

Student(x) ∧ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])

y is free and x is free!

∀x [Student(x)⇒ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])]

only y is free

∃y∀x [Student(x)⇒ HasAdvisor(x , y)]

Nothing free – a sentence.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 19 / 64

Examples

∀x [Student(x)⇒ HasAdvisor(x , y)]

x is bound, y is free

Student(x) ∧ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])

y is free and x is free!

∀x [Student(x)⇒ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])]

only y is free

∃y∀x [Student(x)⇒ HasAdvisor(x , y)]

Nothing free – a sentence.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 19 / 64

Examples

∀x [Student(x)⇒ HasAdvisor(x , y)]

x is bound, y is free

Student(x) ∧ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])

y is free and x is free!

∀x [Student(x)⇒ ∃z(Professor(z) ∧ Knows(x , z)∧

(∀x [Student(x)⇒ HasAdvisor(x , y)])]

only y is free

∃y∀x [Student(x)⇒ HasAdvisor(x , y)]

Nothing free – a sentence.
Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 19 / 64

Semantics of First Order Logic

What it means formally for a sentence φ to hold in interpretation
M, as in “bottom up” semantics of propositional logic.
For φ with free variables, can only say whether it is true relative to
some valuation = assignment of each variable to an element of
Dom(M) (also called a variable binding or variable assignment)
Define M, v |= φ
where M is an interpretation, v a valuation for free variables of φ

“M, v satisfies φ”
“M, v models φ”
“M, v entails φ”

E.g. if φ(x) is “x is a student who shares
an advisor” (from prior slide), M is the
model from before, then
M, {x → Kathy} |= φ(x)
M, {x → Joe} |= φ(x)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 20 / 64

Semantics of FO Logic: Base Cases

Let M be an interpretation and v a valuation for free variables in
formula φ. We define M, v |= φ as follows.

M, v |= ti = tj iff v [ti] = v [tj]
where v [ti] is “the extension of v to term ti ” defined inductively
v [xi] = v(xi), v [c] = cM, xi a variable c a constant
v [F (t1 . . . tn)] = FM(v [t1] . . . v [tn])

Example: VField from before

interpretation M: domain=integers, ∗ usual multiplication, + is
usual addition...

v valuation taking: x to 4, y to 4, z to 2
Consider terms t1 = x + y , t2 = y ∗ z then v [t1] = 8 v [t2] = 8
so M, v |= t1 = t2

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 21 / 64

Semantics of FO Logic: Base Cases

Let M be an interpretation and v a valuation for free variables in
formula φ. We define M, v |= φ as follows.

M, v |= P(t1, . . . tn) iff v [ti], . . . v [tn] ∈ PM

where v [ti] is defined inductively on previous slide

Example: VField from before

M the integer interpretation (domain=integers, ∗ is usual
multiplication, + is usual addition, < usual inequality...)

v valuation taking: x to 4, y to 4, z to 2

Then:

M, v |= z + x < y + x

It is not true that M, v |= x < y (written M, v 6|= x < y)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 22 / 64

Semantics of FO Logic: Connectives and quantifiers

Let M be an interpretation and v a valuation for free variables in
formula φ. We define M, v |= φ as follows.

M, v |= A ∧ B iff M, v |= A and M, v |= B

M, v |= A ∨ B iff M, v |= A or M, v |= B

M, v |= ¬A iff it is not the case that M, v |= A

Other connectives can be defined using these.

M, v |= ∃x φ iff

there is some element d in Dom(M) such that:
M, v + (x 7→ d) |= φ
v + (x 7→ d) = function that extends v to map x to d (overwriting
any other assignment to x if need be)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 23 / 64

Semantics of FO Logic

Let M be an interpretation and v a valuation for free variables in
formula φ. We define M, v |= φ as follows.

M, v |= ∀x φ iff

for every element d in Dom(M) such that:
if v + (x 7→ d) = function that extends/overwrites v to map x to
d then M, v + (x 7→ d) |= φ

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 24 / 64

Example of checking a finite model

M=

φ = ∃x(Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y)))
M |= φ means M, {} |= φ where {}=empty valuation
Check: does there exist element d of Domain(M), with

M, {}+ (x 7→ d) |= Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y))

Try d = Joe; Check
M, {}+ (x 7→ Joe) |= Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y))

Check M, {}+ (x 7→ Joe) |= Student(x) Joe ∈ StudentM → OK

Check M, {}+ (x 7→ Joe) |= ∃y(Professor(y) ∧ HasAdvisor(x , y))

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 25 / 64

Example (continued)

M=

φ = ∃x(Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y)))

Try d = Joe; Check
M, {}+ (x 7→ Joe) |= Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y))

Check M, {}+ (x 7→ Joe) |= Student(x) Joe ∈ StudentM → OK

→ Check M, {}+ (x 7→ Joe) |= ∃y(Professor(y) ∧ HasAdvisor(x , y))

Sub Check: does there exist element of d of Domain(M), with
M, {}+ (x 7→ Joe) + (y 7→ d) |= Professor(y) ∧ HasAdvisor(x , y)

Try: d = Smith

Check: M, {}+ (x 7→ Joe) + (y 7→ Smith) |= Professor(y) ∧ HasAdvisor(x , y)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 26 / 64

Example (continued)

M=

φ = ∃x(Student(x) ∧ ∃y(Professor(y) ∧ HasAdvisor(x , y)))
Try: d = Smith

→ Check: M, {}+ (x 7→ Joe) + (y 7→ Smith) |= Professor(y) ∧ HasAdvisor(x , y)

SubCheck 1: M, {}+ (x 7→ Joe) + (y 7→ Smith) |= Professor(y)
Smith ∈ ProfessorM → OK
SubCheck 2: M, {}+ (x 7→ Joe) + (y 7→ Smith) |= HasAdvisor(x , y)
(Joe, Smith) ∈ HasAdvisorM → OK

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 27 / 64

Notes

Previous example is a proper recursive algorithm that checks
for satisfaction, given a finite model.

In each case I hit an existential quantifier, I had to choose a
d : in the example I just showed the correct guess. In general,
the algorithm would have to recursively try every possible d
→ if no d works, returns failure.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 28 / 64

The Logic-Computation Connection

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 29 / 64

First Order Logic and Computation

We have a defined meaning for

M, v |= φ

where M is an interpretation, v a valuation for free variables of φ.
First basic computational problem related to Predicate Logic:
Given a finite model M and a first-order sentence φ, does M |= φ?

Model Checking Problem for First-Order Logic:

{〈M, φ〉 : M |= φ}
Decidable → Use previous algorithm
Time complexity: |M||φ|
Can do much better for special kinds of sentences that arise
frequently.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 30 / 64

Model Checking

MCFO= {〈M, φ〉 : M |= φ}
Also can say: MCFO∈ PSPACE, MCFO is NP-hard
NP-hardness: By reduction from SAT
In the reduction, always produce model for vocabulary with
constants True and False, Mbools that consists just of two
elements, one of which interprets the constant True, the other
interpreting False.
Given propositional formula

φ = (p1 ∨ ¬p2 ∨ p3) ∧ . . .

produce (Mbools , φ
′), where

φ′ = ∃x1 . . . xn

[
(x1 = TRUE ∨ ¬x2 = TRUE ∨ x3 = TRUE) ∧ . . .

]
Observations: (1) the reduction did not require much work; in a sense
model-checking FOPL is easily seen to be “more complex” than SAT-solving.
(2) M does not depend on SAT-instance φ; φ is encoded in φ′

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 31 / 64

Model Checking FO Logic

MCFO= {〈M, φ〉 : M |= φ}

In PSPACE, NP-hard...

In fact, it is PSPACE-complete. For every language L decidable by
a PSPACE machine, there is a PTIME reduction from L to MCFO.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 32 / 64

Complexity Summary

PSPACE could be the same as PTIME (i.e. P)
PSPACE could be the same as NP
PSPACE could be the same as EXP
PSPACE could be different from all of them

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 33 / 64

Properties of Formulae

A sentence φ is satisfiable if there is some interpretation M such
that M |= φ
A sentence φ is valid (or, is a tautology) if for every model M,
M |= φ
A sentence φ is a contradiction if there is no M such that M |= φ
Two sentences φ1 and φ2 are equivalent if they have the same
models (same as φ1 ↔ φ2 is valid).

Examples

∀x(A(x) ∨ ¬A(x)) Valid
A(c)⇒ ∃y A(y) Valid
(∀x Student(x)⇒ Hardworking(x)) ∧ Student(Harry)∧
¬Hardworking(Harry) Contradiction
∀x(Man(x)⇒ Mortal(x))
∀z (z + z > z)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 34 / 64

Properties of Formulae II

A sentence φ is finitely satisfiable if there is some finite model M
such that M |= φ
A sentence φ is finitely valid if for every finite model M, M |= φ.

Example

∃x (x = x) ∧ ∀x∀y∀z((x < y ∧ y < z)⇒ x < z) ∧
∀x ¬(x < x) ∧ ∀x∃y (x < y)
is satisfiable but not finitely satisfiable.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 35 / 64

Computational View

Second basic computational problem:
Given a sentence φ is it finitely satisfiable?
Finite satisfiability problem
Semi-decidable
Enumerate models, and check, using recursive algorithm.
Undecidable
(this is Trakhtenbrot’s Theorem)
Corollary: Finite Validity problem is not CE

Next: overview of proof of Trakhtenbrot’s theorem — reduce TM
acceptance problem to search for finite model for φ.
Given TM M and word w , construct φ(M); φ(M) has finite model
iff M halts and accepts w .

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 36 / 64

Reducing computation to logic

Given M and string w compute a propositional sentence that
codes accepting runs of M on w .

−→ Given M and string w compute a first-order pred logic
sentence that codes accepting runs of M on w .

Want computable f such that: M accepts w ⇔ f (M,w) finitely
satisfiable

Many-1 reduction from AcceptTM to FiniteSatFirst Order Logic

Reduction produces a sentence that describes a (code of an)
accepting run of M on w .
As in Cook’s Theorem, sentence will be a conjunction of many
clauses.

The domain of any (satisfying) finite model will consist of
elements that represent time steps, and TM tape squares.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 37 / 64

Recall: Coding (Smallish) Runs by Formulae

Describe a run with a
propositional world

Given NTM M with bound nk and
string w compute a propositional
formula that describes a (code of)
run of M on w

Have propositions HasSymboli,j (a) and HasHeadi,j (q) for every tape symbol a,

state q and every i , j ≤ nk in this matrix.
HasSymboli,j (a) holds iff run at cell (i , j) has symbol a
HasHeadi,j (q) holds iff the head is on j at step i of the and state is q

Time i

Tape space j

1 2 · · · nk

1 (q0,w1) w2 · · ·
2 w ′1 (q1,w2)
...
...

nk

This corresponds to a
run where
HasSymbol1,1(w1)
HasHead1,1(q0)
HasSymbol1,2(w2)

HasSymbol2,1(w ′1)
HasSymbol2,2(w2)
HasHead2,2(q1)
...are true
(Others, e.g.
HasHead1,2(q0) are
false)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 38 / 64

Coding Big Runs by Sentences

Describe a run with a
predicate logic world

Given any deterministic TM M and
string w compute an FO sentence
that describes a (code of) run of M
on w

Have predicates Time(x), Space(y), LessThan(x1, x2)
Have predicates HasSymbola(t, s) and HasHeadq(t, s) for every symbol a, state
q

Time(x) holds iff x is a number ≤ number of steps of machine
Space(y) holds iff y is a number ≤ amount of space used by machine
LessThan(x1, x2) holds iff x1 and x2 are both in Time or both in Space and

x1 comes before x2
HasSymbola(t, s) holds iff run at time t position s has symbol a
HasHeadq(t, s) holds iff the head is on place s at step t of the run and

state is q

Time

Tape space j

1 2 · · · smax

1 (q0,w1) w2 · · ·
2 w ′1 (q1,w2)
...
...

tfinal

This run corresponds to a world
where
Time = {1, . . . , tfinal}
Space = {1, . . . , smax}
LessThan= usual < on numbers
HasSymbolw1

= {(1, 1), . . .}
HasHeadq0 = {(1, 1), . . .}
HasSymbolw2

= {(1, 2), . . .}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 39 / 64

Clauses for LessThan

∀x , y LessThan(x , y)⇒ ¬LessThan(y , x)

∀x , y , z LessThan(x , y) ∧ LessThan(y , z)⇒ LessThan(x , z)

The above makes sure that LessThan is a linear order. Also add

∀x , y LessThan(x , y)⇒ (Time(x)∧Time(y))∨(Space(x)∧Space(y))

The above makes sure that LessThan may compare domain
elements belonging to relation Time, or alternatively Space.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 40 / 64

Sanity Clauses: world “looks like a run”

LessThan is a linear order, whose domain includes everything
inside the unary predicates Time and Space

Time is closed downward under LessThan and similarly for
Space

i.e. (Time(x) ∧ y < x)⇒ Time(y) etc.

HasHead and HasSymbol hold only of Time/Space pairs:

∀xyHasHeadq(x , y)⇒ Time(x) ∧ Space(y)
∀xyHasSymbola(x , y)⇒ Time(x) ∧ Space(y)

Every cell has at most one symbol
∀x∀yHasSymbola(x , y)⇒ ¬HasSymbolb(x , y) for b 6= a

At most one cell in each row has the head. For every q, q′

have:
∀x∀yHasHeadq(x , y)⇒ ¬∃y ′HasHeadq′(x , y

′) ∧ y ′ 6= y

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 41 / 64

Macros

It’s useful to define/axiomatise new predicates in terms of
LessThan...

We can define IsFirstTime(x) to mean
“Time(x) and for no y with Time(y) do we have
LessThan(y , x)”, i.e. x is time 1

Similarly can write a formula IsFirstSpace(x)

Similarly, can write IsTimen(x), IsSpacen(x) for every fixed n.

We also use the formula:
Successor(x , y)⇔
LessThan(x , y) ∧ ¬∃z(LessThan(x , z) ∧ LessThan(z , y))
i.e. “y = x + 1”

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 42 / 64

Sentence that says “M has an accepting run on w”

Initial Configuration Clause
First row contains Initial State:
∀t1∀s1 . . . ∀sn [IsTime1(t1) ∧ IsSpace1(s1) ∧ . . . ∧ IsSpacen(sn)]⇒
[HasSymbolw1

(t1, s1) ∧ . . . ∧ HasSymbolwn
(t1, sn)

∧HasHeadq0(t1, s1) ∧ ∀z [Space(z) ∧ LessThan(sn, z)⇒
HasSymbol⊥(t1, z)]]

Time

Tape space j

1 2 · · · smax

1 (q0,w1) w2 · · · ⊥
2
...
...

tfinal

⊥ is a blank
symbol

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 43 / 64

Moving head clauses: rightward-move

For every transition (q,w1)→ (q1,w2,R) in machine M
we add a clause:

∀t∀s∀s ′∀t ′ HasHeadq(t, s) ∧ HasSymbolw1
(t, s) ∧

Successor(t, t ′) ∧ Successor(s, s ′)⇒ [HasHeadq1(t ′, s ′) ∧ . . .]

Tape space

1 · · · s s ′ · · · smax

1

t (q,w1) w3 · · ·
t ′ w2 (q1,w3) · · ·
...

tfinal

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 44 / 64

Stay-same-and-write clauses

For every transition (q,w1)→ (q1,w2,Stay) in machine M
we add:

∀t∀s∀t ′ [HasHeadq(t, s) ∧ HasSymbolw1
(t, s) ∧ Successor(t, t ′)]⇒

[HasSymbolw2
(t ′, s) ∧ HasHeadq1(t ′, s)]

Tape space

1 · · · s · · · smax

1

t (q,w1) w3 · · ·
t ′ (q1,w2) w3 · · ·
...

tfinal

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 45 / 64

Hopefully, you get the idea

Add left-move axioms, far-from-head axioms, final-state axioms...

Then need to show:

Function f (M,w) is computable

Yes maps to Yes:
if M accepts w , take the accepting run r and turn it into a
structure code(r) using the coding function. From properties
of an accepting run, we see that code(r) satisfies f (W ,w).

No maps to No:
Suppose f (M,w) does have a (finite) model W. Interpret
members of domain that satisfy Time as time steps, etc;
reconstruct computation of M.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 46 / 64

More Model Checking Problems

OK, so we know there’s a semi-decision procedure for finite
satisfiability (given FOPL sentence), but it’s undecidable.

Third basic computational problem:

Given a sentence φ is it satisfiable? Is it valid?

Not immediately clear if either of these is semi-decidable

If there is an infinite model, how would you find it?

If there are no infinite models, how would you know this?

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 47 / 64

A Proof System (for FOL without equality)

We say formula φ(x1, . . . , xn) is valid if ∀x1 . . . ∀xn φ(x1 . . . xn)
holds in every model.
AS1 A⇒ (B ⇒ A)
AS2 (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))
AS3 (¬A⇒ ¬B)⇒ (B ⇒ A)
AS4 (∀xA)⇒ A(t/x) where t is any term in which x is not free
and t/x means substitute t for x
AS5 A⇒ (∀xA) if x is not free in A
AS6 (∀v(A(v)⇒ B(v))⇒ (∀vA(v)⇒ ∀vB(v))

Inference rules:

If A is a validity then ∀v A is a validity

Modus Ponens (inference rule from propositional logic)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 48 / 64

Completeness Theorem

Theorem

A sentence of FOL (without equality) is
valid iff it is provable in the previous
system.

(Roughly) Gödel’s Ph.D. thesis

Corollary

The set of validities of FOL is CE

Again, turns out to be undecidable.

Prove satisfiability is undecidable (hence validity is...).
Encode non-halting (i.e. infinite, but well-formed) runs: variation
of the proof for finite satisfiability.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 49 / 64

Bad News on FO-Sat

Theorem

The problem of FO satisfiability is undecidable

Show NONHALT ≤m FOSAT

General idea: Trakhtenbrot’s theorem took a TM + input and
constructed FO sentence saying “this TM halts eventually”.
Instead construct a sentence “this TM doesn’t halt”.
Negate clause that says “for some t, the t-th step contains TM in
a halting state”...

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 50 / 64

Recall: Coding Big Runs by Sentences

Describe a run with a
predicate logic world

Given any deterministic TM M and
string w compute an FO sentence
that describes a (code of) accepting
run of M on w

Have predicates Time(x), Space(y), LessThan(x1, x2)
Have predicates HasSymbola(t, s) and HasHeadq(t, s) for every symbol a, state
q

Time(x) holds iff x is a number ≤ number of steps of machine
Space(y) holds iff y is a number ≤ amount of space used by machine
LessThan(x1, x2) holds iff x1 and x2 are both in Time or both in Space and

x1 comes before x2
HasSymbola(t, s) holds iff run at time t position s has symbol a
HasHeadq(t, s) holds iff the head is on place s at step t of the run and

state is q

Time

Tape space j

1 2 · · · smax

1 (q0,w1) w2 · · ·
2 w ′1 (q1,w2)
...
...

tfinal

This run corresponds to a world
where
Time = {1, . . . , tfinal}
Space = {1, . . . , smax}
LessThan= usual < on numbers
HasSymbolw1

= {(1, 1), . . .}
HasHeadq0 = {(1, 1), . . .}
HasSymbolw2

= {(1, 2), . . .}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 51 / 64

Coding Big Runs by Predicate Logic Sentences 2

Coding function describes a
run of arbitrary length with a
predicate logic world

Goal: Given any deterministic TM
M and string w compute an FO
sentence that describes a (code of)
a non-halting run of M on w

Have predicates Time(x), Space(y), LessThan(x1, x2)
Have predicates HasSymbola(t, s) and HasHeadq(t, s) for every symbol a, state
q

Time(x) holds iff x is a number ≤ number of steps of machine
Space(y) holds iff y is a number ≤ amount of space used by machine
LessThan(x1, x2) holds iff x1 and x2 are both in Time or both in Space and

x1 comes before x2
HasSymbola(t, s) holds iff run at time t position s has symbol a
HasHeadq(t, s) holds iff the head is on place s at step t of the run and

state is q

Time

Tape space j

1 2 · · · · · ·
1 (q0,w1) w2 · · ·
2 w ′1 (q1,w2)
...
...

...

Predicate Logic coding: This run
corresponds to a world where
Time = {1, . . .}
Space = {1, . . .}
LessThan= usual < on numbers
HasSymbolw1

= {(1, 1), . . .}
HasHeadq0 = {(1, 1), . . .}
HasSymbolw2

= {(1, 2), . . .}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 52 / 64

Undecidability of FO

Have all the axioms from before saying that the run starts with the
initial state and satisfies the transition axioms.
Main change needed:

Change the final state clause: say that configuration never
gets to accepting or rejecting state.
∀x∀y¬HasHeadq(x , y) q is an accepting or rejecting state

Yes goes to Yes
M doesn’t halt on w , take the infinite run
& the corresponding world → f (M,w) is
satisfiable

No goes to No
If f (M,w) is satisfiable, take the initial
time, and closed under “next time” → this
must be a non-halting run

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 53 / 64

Dealing with undecidability

reminder: “negative” results

Model checking on a finite model is polynomial in the size of the model,
PSPACE-complete in the query.

Finite satisfiability checking (looking for a finite model) is CE but
undecidable.
Validity (“true over all models”) is also CE, undecidable

One response: Use incomplete methods.

Given φ that you think is valid, use proof systems to try to search

for a proof

→ Automatic Theorem Provers

Given φ that you think is satisfiable, search for a finite model.

→ Model Finders

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 54 / 64

Dealing with undecidability

(Satisfiability and Validity are undecidable.)

Response IIa) Restrict sentences:
There are fragments of FO (restricted kinds of sentences) for
which satisfiability and/or validity are decidable.

Response IIb) Restrict models: there are classes of models, where
the satisfiability problem relative to that set of models is decidable.
E.g. For the vocabulary < (x , y) can restrict < to be a linear order
or another special kind of binary relation.

Response IIc) Restrict to a particular infinite model. A model M is
said to be decidable if there is an algorithm that decides whether a
sentence φ holds in M.
E.g. first-order theory of real numbers, or rational numbers.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 55 / 64

Undecidability of FO theory of integers

Theorem

Marith = (Integers,+, ∗, <) is undecidable

That is, the language

{〈φ〉 : Marith |= φ}

is not decidable
Basic idea of proof: reduction from Halting or Acceptance
problem. Encode runs of a Turing Machine by an integer.
new idea — an integer can represent a finite set. E.g. 2335710

encodes the set {3, 5, 10}

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 56 / 64

Showing Models are Decidable

A collection of sentences AM is a set of axioms for a model M if
each sentence of AM is true in M and AM is complete:

for every sentence φ in vocabulary of M, either AM ∪ φ is
inconsistent or AM ∪ ¬φ is inconsistent

That is, the logical consequences of AM are the same as the
sentences that hold in M.

Theorem

if M has a set of axioms that is C.E, then M is decidable (that is,
we can decide which sentences hold in M)

E.g. Mratorder = (Rationals, <) has a complete finite set of axioms:
< is a linear order (transitive, antisymmetric)
< is dense: ∀x∀y∃z x < z < y
< has no highest or lowest element
Hence, by the theorem, Mratorder is decidable.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 57 / 64

Decidability and Complete Axiomatization

Theorem

if M has a set of axioms that is C.E, then M is decidable (that is,
we can decide which sentences hold in M)

Theorem

M = (Integers,+, ∗, <) is not decidable

Corollary

for any c.e. collection of sentences A about +, ∗, <, if each element of A is
true in the integers, then A must be incomplete: There is a sentence φ such
that A∪φ and A∪¬φ are both consistent

A weak form of Godel’s Incompleteness Theorem

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 58 / 64

Summary: Logic and Universal Problems

Propositional Logic:

model checking problems are linear time.

satisfiability problems are decidable but NP-complete:
“canonical hard problem”

Proof systems can help make logic problems tractable in
practice, but are not known to give polynomial worst-case
bounds

First-Order Logic:

model checking problem is PSPACE-complete, but “tractable
in size of the model”

(finite) satisfiability problems are semi/co semi-decidable

Proof systems/theorem provers give semi-decidability of
validity, can be useful in practice

Can get decidability for
restricted classes of models (words, trees, graphs)
particular models (e.g. M = (N,+, <),M = (R,+, ∗, <))

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 59 / 64

Existential second-order logic

First-order properties are defined by FO sentences, e.g. in vocab of
(directed) graphs:
∀v¬∃x , y E(v , x) ∧ E(v , y) ∧ x 6= y “out-degree ≤ 1”
∀x , y [E(x , y)⇒ E(y , x)] ∧ ∀x , y , z [E(x , y) ∧ E(y , z)⇒ E(x , z)]

Now, allow quantification over predicates of specified arity.

“Existential”: to keep things simple, just existential quantification

over predicates.

“∃P(·, ·)φ”: there exists predicate P (of arity 2) such that φ

Evenness: the following formula is satisfied by interpretations for
which the size of the domain is even (can’t be expressed in FOPL):

∃B, S ∀x∃yB(x , y) ∧ ∀x , y , zB(x , y) ∧ B(x , z)⇒ y = z

∧ ∀x , y , zB(x , z) ∧ B(y , z)⇒ x = y

∧ ∀x , yS(x) ∧ B(x , y)⇒ ¬S(y)

∧ ∀x , y¬S(x) ∧ B(x , y)⇒ S(y)

(BTW there is no sentence φ of FOPL such that I |= φ iff |I| is even.)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 60 / 64

another example

3-Colourability: The following formula is true in a graph (V ,E) if
and only if it is 3-colourable.

∃R,B,G∀x(R(x) ∨ B(x) ∨ G(x))

∀x(¬(R(x) ∧ B(x)) ∧ ¬(B(x) ∧ G(x)) ∧ ¬(R(x) ∧ G(x))∧
∀x , y(E(x , y)⇒ ¬(R(x) ∧ R(y)) ∧ ¬(B(x) ∧ B(y)) ∧ ¬(G(x) ∧ G(y)))

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 61 / 64

Fagin’s Theorem

Theorem

A class C of finite structures (or interpretations) is definable by a
sentence of existential second-order logic if and only if C is
decidable by a non-deterministic TM running in polynomial time.

So, we have another characterisation of the class NP.

⇒ (“only if”):

Given formula ∃P1, . . . ,Pr φ, can construct NTM M that, given
interpretation I, guesses predicates P1, . . . ,Pr and checks them.

Runtime is exponential in arities of the Pi and in the depth of
quantification in φ, but poly in |I| as required.

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 62 / 64

Fagin’s Theorem

Theorem

A class C of finite structures (or interpretations) is definable by a
sentence of existential second-order logic if and only if C is
decidable by a non-deterministic TM running in polynomial time.

⇐ (“if”) (much detail omitted):

NTM M having runtime nk , that recognises instances of C.
define 2k-ary predicate “<”: x < y for x and y k-tuples of the
domain of I.
k-ary predicates Sq(x): the state of M at time x is q
2k-ary predicates Tσ(x, y): at time x, the symbol at position y of
the tape is σ
2k-ary predicate H(x, y): at time x, tape head is located at
position y
∃ <, Sq,Tσ,H φ: Clauses in φ to encode a run of M;

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 63 / 64

Define linear order < on domain as before, then:

< (x1, . . . , xk , y1, . . . , yk)⇔ < (x1, y1)
(x1 = y1)∧ < (x2, y2)
(x1 = y1) ∧ (x2 = y2)∧ < (x2, y2)
. . .
(x1 = y1) ∧ . . . ∧ (xk−1 = yk−1)∧ < (xk , yk)

Paul Goldberg Intro to Foundations of CS; slides 5, 2017-18 64 / 64

