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Abstract. In a standard path auction, all of the edges in a graph are
sold as separate entities, each edge having a single cost. We consider a
generalisation in which a graph is partitioned and each subset of edges
has a unique owner. We show that if the owner is allowed to apply a
non-additive pricing structure then the winner determination problem
becomes NP-hard (in contrast with the quadratic time algorithm for the
standard additive pricing model). We show that this holds even if the
owners have subsets of only 2 edges. For subadditive pricing (e.g. volume
discounts), there is a trivial approximation ratio of the size of the largest
subset. Where the size of the subsets is unbounded then we show that
approximation to within a Ω(log n) factor is hard. For the superadditive
case we show that approximation with a factor of nε for any ε > 0 is
hard even when the subsets are of size at most 2.

1 Introduction

One of the most commonly studied types of set-system procurement auction is
the path auction (e.g. [2,21,9,16]). In a typical path auction each seller, or agent,
is represented by an edge in a graph and the feasible sets (the sets of sellers
that are suitable to the buyer) are exactly those that contain a path between
two specified vertices of the graph. This models a number of reasonable settings,
such as routing over the internet or in a transport network.

In the standard setting, each of the edges is considered as if it were a separate
entity and takes part in the auction as such. However, it seems reasonable to
assume that multiple edges may actually be controlled by a single entity. In the
examples of Internet routing or transport networks, it seems particularly likely
that this assumption will hold. Therefore, we propose a model that incorporates
the idea that some entity may control the pricing of a set of individual edges,
and we allow them to price bundles of edges in a non-additive way. It is quite
common, in economic and related literature, to study the concept of ‘volume
discounts’ or ‘bundling services’ (see, e.g., [20,19]) — when the price charged for
a collection of goods or services is lower than the sum of the individual prices. In
many situations, producing large quantities of some commodity is more efficient
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than producing smaller quantities and hence has lower unit cost. More directly,
two reasonable motivations that may apply here are, firstly, that a path auction
may actually be representative of something other than a network layout. It could
be a model, for instance, to describe the components needed to produce some
complicated commodity, such as an electronic device, where edges represent some
component, and a path through the graph represents a collection of components
that are sufficient to build the device. Alternatively, it is reasonable to assume, in
general, that there may be some overhead to making each single purchase (such
as the overhead of preparing bids, performing background and credit checks,
or drawing up contracts). In this setting, the overhead may be substantial for
selling a single item but could be much reduced for subsequent items. With this
motivation it seems reasonable to allow a seller to alter their prices depending
on the total number of edges they sell.

If we take volume discounts (or bundling) to an extreme level, we have a situ-
ation where a single price may be charged in order to purchase access to any or
all of the edges owned by some entity. This can be particularly attractive in cases
where there is surplus capacity on the network, such as at off-peak times, and it
is the aim of the seller to create demand for their service that may otherwise not
exist. A type of path auction where agents can own multiple edges in a graph was
studied by Du et al. [7]. They show that allowing agents to manipulate which
edges they declare ownership of may have disastrous effects on the payments
that are made (more precisely, an exponential frugality ratio [16,18]). Hence we
do not consider this, and simply assume that information on the ownership of
edges is public knowledge.

Perhaps the most commonly seen auction mechanism is the Vickrey-Clarke-
Groves (VCG) mechanism [22,5,13]. While this can be applied to any set-system
auction, it requires that an optimal feasible set be chosen as ‘winners’. However,
this may not always be possible in polynomial time and this intractability is gen-
erally seen as extremely undesirable. There has also been attention in describing
polynomial-time mechanisms, based on approximation algorithms, for a variety
of settings [1,8,3] in which finding the optimal set (and hence running VCG)
cannot be computed in polynomial time. Shortest path problems can be solved
efficiently (in quadratic time [6]) and it is the aim of this paper to consider the
complexity of finding an optimal solution when we apply bundling (or ‘volume
discounts’). Unfortunately, our results are largely negative. We find that even
the most basic form of discount that we consider — a simple “buy at least x
edges and get a discount of d” scheme — results in the winner-determination
problem being NP-hard. This precludes running the VCG mechanism in poly-
nomial time, which makes its use undesirable. We note that where the discounts
are small relative to the costs then just ignoring discounts would be close to op-
timal. For the case of large discounts we show limits on the approximation ratio
that may be achieved (subject to certain complexity theoretic assumptions).

Instead of having only negative ‘discounts’ we also consider positive values,
which we call volume supplements. While superadditive pricing may not seem as
readily justifiable as the subadditive case, it is worth studying for completeness.
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We are able to show that the winner determination problem for superadditive
pricing is also NP-hard, and it is also hard to find an approximate solution which
is within a factor of nε of the optimal for any ε > 0 where the supplement values
are large in relation to the weights.

2 Preliminaries

Our model involves finding the shortest path between two specified vertices of a
graph, taking into account the volume discounts that may be offered by the edge
owners. In order to represent ‘ownership’ we partition the edges of a graph into
disjoint sets, which we call bundles. Each bundle has a discount vector, which
specifies a discount value depending on the number of edges in that bundle which
are in the chosen path.

To compute a discounted-weight for a given path we add the weight of all of
the edges in the path to the (negative) discount values for each of the bundles.
Hence the aim of the problem is to discover the path between the specified
vertices with the lowest discounted-weight, and we will see this is hard via a
reduction from MINIMUM SET COVER, a well-known NP-hard problem [11].

Name SHORTEST PATH WITH DISCOUNTS
Instance A graph G = (V,E), positive weight function w on edges, two dis-

tinct vertices s, t, a collection, Z = {Z1, . . . , Zm} of subsets (or bundles)
of E (Zi ⊆ E) such that ∀e ∈ E, e occurs in exactly one Zi and a set of
discount vectors D = {d1, . . . ,dm} (one for each Zi) such that dij ≤ 0 for
j ∈ {0, . . . , |Zi|} (observe that, for ease of notation, this vector includes a
discount value for zero edges).

Output The subset P ⊆ E with minimum discounted-weight, given by∑
e∈P w(e) +

∑
Zi∈Z di|Zi∩P |, that contains a path from s to t.

Name EXACT COVER BY 3-SETS
Instance A finite set X containing exactly 3n elements; a collection, C, of

subsets of X each of which contains exactly 3 elements.
Output Does C contain an exact cover for X , i.e. a sub-collection of 3-element

sets D ⊆ C such that each element of X occurs in exactly one subset in D?

Name MINIMUM SET COVER
Instance A finite set X and a collection, C, of subsets of X .
Output What is the size of the minimum cover of X using C?

3 Complexity

We firstly show a simple reduction, from MINIMUM SET COVER, which shows
hardness and also preserves approximation. Informally, we consider a multigraph
on a line and show how the sets that ‘cover’ elements of a ground set (in a set
cover) can be simulated with bundles of edges that cover gaps in the line which
represents the ground set. The discounts are arranged such that the cost of every
non-empty bundle of edges is 1, regardless of the specific number of edges used.
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Lemma 1. MINIMUM SET COVER is polynomial-time reducible to SHORT-
EST PATH WITH DISCOUNTS.

Proof. Taking an instance I of MINIMUM SET COVER, let m = |X | and let
n = |C|. Build an instance I ′ = (G,Z) of SHORTEST PATH WITH DIS-
COUNTS as follows. (We present G as a multigraph, although we will see that
this assumption may be removed later on.) Let n = |C| and let m = |X |. Create
m + 1 vertices, labeled V1, . . . , Vm+1, and let s = V1 and t = Vm+1. For each
Ci ∈ C, for all j ∈ Ci, add an edge ei,j = (Vj , Vj+1) and add all of the ei,j
edges to bundle Zi. Let w(e) = 1 for all e ∈ E be the weight function, and
let the discount vectors be given by di = (0, 0,−1,−2, . . . , 1 − |Zi|) . Hence
for a path P containing a non-zero number of edges from some bundle Zi then
w(Zi∩P )+di|ZI∩P | = 1, so there is a contribution of exactly 1 to the discounted-
weight for each included Zi. Therefore, for any set of bundles S ⊆ Z containing
a path between s and t, the discounted-weight may be given by |S|.

An example of this reduction is shown in Fig. 1 and Fig. 2. Fig. 1 describes
a MINIMUM SET COVER instance, for which the minimum cover is of size 2
(given by the set D = {C1, C4}). In the corresponding instance of SHORTEST
PATH WITH DISCOUNTS in Fig. 2, the lowest discounted-weight path is of
weight 2, consisting of the path P = {e1,1, e1,2, e1,5, e4,3, e4,4, e4,6} (shown as
dashed lines), and hence the bundles S = {Z1, Z4}.

X = {1, 2, 3, 4, 5, 6}
C1 = {1, 2, 5} C2 = {1, 3, 4} C3 = {2, 3, 6} C4 = {3, 4, 6} C5 = {4, 5, 6}

Fig. 1. Example of MINIMUM SET COVER

Z1 = {e1,1, e1,2, e1,5}, Z2 = {e2,1, e2,3, e2,4}, Z3 = {e3,2, e3,3, e3,6},
Z4 = {e4,3, e4,4, e4,6}, Z5 = {e5,4, e5,5, e5,6}

Fig. 2. SHORTEST PATH WITH DISCOUNTS construction from Fig. 1

Returning to the proof, a set S contains a path between s and t if and only
if it contains an edge (Vj , Vj+1) for all j ∈ {1, . . . ,m}. Hence, where S contains
such a path, let D ⊆ C be the set containing Ci if and only if Zi ∈ S. Hence
D contains a cover of X and |D| ≤ |S| — as an edge from (Vj , Vj+1) in some
Zi ∈ S implies an element j in some Ci ∈ D. Similarly, where D contains a cover
of X , then the corresponding set S contains a path from s to t and |S| ≤ |D|.
Following this translation, we have |S| = |D| and the size of the minimum cover
of X can be computed by finding a path P with lowest discounted weight (and
hence the number of bundles in S which contain the edges in P ). ��
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The reduction in Lemma 1 gives an instance of SHORTEST PATH WITH DIS-
COUNTS that is typically a multigraph. This can be amended to construct a
simple graph, by replacing each edge with two edges in series (adding one new
vertex shared by each pair of edges).

Lemma 1 shows that SHORTEST PATH WITH DISCOUNTS is NP-hard, in
general, provided that the cardinality of the bundles is at least 3 (as a gener-
alisation of EXACT COVER BY 3-SETS). As bundles of size 1 correspond to
a polynomial-time computable shortest-path [6], we now consider the remaining
case where the bundles are of size at most 2 — and show that this also results
in an NP-hard problem, even when the discount values are arbitrarily small.

In Fig. 3 we see an example of the proposed reduction — Fig. 1 is encoded
as an instance of SHORTEST PATH WITH DISCOUNTS; where the shortest
discounted path is given by P = {e′1,1, e′1,2, e′1,5, e2,0, e′2,0, e2,x, e3,0, e′3,0, e3,x, e′4,3,
e′4,4, e

′
4,6, e5,0, e

′
5,0, e5,x, e1,1, e1,2, e4,3, e4,4, e1,5, e4,6}, which is marked as a dashed

line. Observe that Fig. 1 is a ‘yes’ instance of EXACT COVER BY 3-SETS and
a path of discounted-weight 21 + 9d exists only because just two ‘upper’ paths
between V1 and V6 (containing e′1,... and e′4,...) are sufficient to give a discount
on all edges in a path from V6 to t. A ‘no’ instance would require three or more
upper paths, which must give a discounted-weight greater than 21 + 9d .

Z = {{e1,1, e′1,1}, {e1,2, e′1,2}, {e1,5, e′1,5}, {e1,0, e′1,0}, {e1,x}, {e2,1, e′2,1}, {e2,3, e′2,3},
{e2,4, e′2,4}, {e2,0, e′2,0}, {e2,x}, {e3,2, e′3,2}, {e3,3, e′3,3}, {e3,6, e′3,6}, {e3,0, e′3,0},
{e3,x}, {e4,3, e′4,3}, {e4,4, e′4,4}, {e4,6, e′4,6}, {e4,0, e′4,0}, {e4,x}, {e5,4, e′5,4},
{e5,5, e′5,5}, {e5,6, e′5,6}, {e5,0, e′5,0}, {e5,x}}

Fig. 3. SHORTEST PATH WITH DISCOUNTS translated from Fig. 1 as described
in Theorem 1. The dashed line marks an optimal solution.

Theorem 1. SHORTEST PATH WITH DISCOUNTS is NP-hard even when
each bundle has size at most 2 and there is a single small discount value d < 0.

Proof. Let I = (X,C) be an instance of EXACT COVER BY 3-SETS, and
build an instance I ′ = (G,Z) of SHORTEST PATH WITH DISCOUNTS as
follows. Let n = |C| and let m = |X |. Create n + m + 1 new vertices, labeled
V1, . . . , Vn+m+1, and let s = V1 and t = Vn+m+1. Let w(e) = 1 for every edge
e ∈ G.

For each of the subcollections Ci ∈ C, let the elements in Ci be given by
{x, y, z}. Insert three edges in series e′i,x,e

′
i,y,e

′
i,z making an ‘upper’ path from Vi

to Vi+1 in G (adding unlabelled vertices, as needed). Next, insert three additional
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edges ei,x = (Vn+x, Vn+x+1),ei,y = (Vn+y , Vn+y+1),ei,z = (Vn+z , Vn+z+1). Now
create three bundles Zi,x = {e′i,x, ei,x}, Zi,y = {e′i,y, ei,y}, and Zi,z = {e′i,z, ei,z}
and add these to Z.

For each i ∈ {1, . . . , n} create a second ‘lower’ path from Vi to Vi+1 consisting
of three new edges, in series, and add two new bundles to Z, one which contains
two of these three new edges and another bundle containing the remaining edge.
Let d be some small value, −1 ≤ d < 0 for a discount parameter and let the
discount vectors be fixed, dj = (0, 0, d) for all j ∈ Z. (The purpose of the
‘lower’ paths are to create an alternative path from each Vi to Vi+1 which has a
discounted-weight of 3+d — as two of the edges are in the same bundle, exactly
one will be discounted.)

Taking P ⊆ E to be the lowest discounted-weight path between s and t, let
S ⊆ Z be the minimal set of bundles that contain all of the edges in P . We can
assume that all of the edges in P between Vn+1 and Vn+m+1 are ‘discounted’
edges (i.e. they are in some bundle with another edge that is also in P ). This
is without loss of generality, as for any path P containing an undiscounted edge
e, there is another path P ′, having the same discounted-weight, that includes
a discounted edge e′ in place of e. To verify this, we know that edge e is in a
bundle with another edge e′. As e is not discounted, we know that e′ is not in
the path. Hence, there is some ‘lower’ path chosen between V1 and Vn+1 that
avoids e′ with discounted-weight 3+d. Create a path P ′ by including the ‘upper’
path that includes e′, which increases the discounted-weight by −d on this path,
but also decreases the discounted-weight of edge e by −d, hence paths P and P ′

have the same discounted-weight.
Observe that any minimal path from s to t contains exactly 3n + m edges.

Furthermore, we have seen that there is a minimum path P where the m edges
from Vn+1 to Vn+m+1 are all discounted. Hence, we are interested in how many
of the upper paths must be selected between V1 and Vn+1, as these add to the
weight of the solution when compared to the lower paths. Assume a collection D
that contains a minimum cover of X ; now consider a set of bundles S such that
for every Ci ∈ D all of Zi,x, Zi,y, Zi,z are present in S. Observe that S contains
a path from Vn+1 and Vn+m+1, or else D does not cover every element in X .
Furthermore, S contains an upper path between two vertices in Vi, . . . , Vi+1 only
if D contains the corresponding set Ci. Let P be the path obtained from all the
bundles in S, as well as ‘lower’ paths between any vertices in {V1, . . . , Vn+1}
that were not connected by S. We can then determine that the total discounted-
weight of path P may be given by 3n+m+nd+md−|D|d (discounts are applied
to m edges from Vn+1 to Vn+m+1, and n− |D| edges in the lower paths from V1

to Vn+1). We can see that P is, in fact, a minimum discounted-weight path, as
any lower weight path must have more lower paths chosen, yet still discounts all
of the edges between Vn+1 and Vn+m+1, which would imply a cover of X exists
which is smaller than D, giving a contradiction.

We now claim that the path from s to t with lowest discounted-weight will
have a weight of 3n+m+ nd+md− (m/3)d if and only if C contains an exact
cover for X , i.e. there is a sub-collection D of 3-element sets D = (D1, ..., Dn)
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such that each element of X occurs in exactly one subset in D. Observe that
if C contains an exact cover, there is a set D such that |D| = m/3 and every
element in X is contained in some Ci in D. Now consider the path P that is
created, as described, by augmenting the set of bundles S (by adding lower paths,
where needed). We have seen that the discounted-weight of P may be given by
3n+m+nd+md−|D|d; hence where an exact cover exists then P has weight of
3n+m+ nd+md− |m/3|d. If no exact cover exists then the discounted-weight
of P is at least 3n+m+ nd+md− (|m/3|+ 1)d.

Hence we have the decision problem “Is there a path in I ′ with discounted-
weight of 3n+m+ nd+md− (m/3)d?” which has a ‘yes’ answer if and only if
instance I contains an exact cover by 3-sets, which is NP-hard to compute. As
computing a minimum discounted-weight path must answer this question (we
have seen that no lower weight path can exist), then we see that computing the
minimum discounted-weight path is also NP-hard. ��
Thus we have seen NP-hardness in the case where one edge in a bundle is dis-
counted, and one is not. If we assume a slightly more general scheme, in which
a discount is only applied after x edges are purchased, it is a simple observation
to extend this hardness result. In the construction given in Theorem 1, simply
simulate every edge e ∈ G by x − 1 edges in series, which are contained in the
same bundle. Hence, in this new graph, selecting any two of these new simulated
edges will trigger the discount value.

It is also worth noting, again, that although this reduction was presented for
simplicity as a multigraph, it would also work as a simple graph. All of the edges
between Vn+1 to Vn+m+1 could be replaced by two edges, in series, having a new
undiscounted edge added to the original edge. This would simply add a constant
weight of m to every possible minimal path, and hence the complexity remains
unchanged.

4 Inapproximability Results

If the discount values are small, relative to the weights, then simply ignoring the
discount values and computing a shortest path would give a good polynomial-
time approximation of the optimal solution. (Assuming a maximum weight of 1
and a discount value of d, then 1/(1+d) is an upper bound on the approximation
ratio.) However, if we assume larger discount values, we can see inapproximability
results, from Lemma 1. If we assume an unweighted case (∀e ∈ E,w(e) = 1) and
allow large discount values, then we have a scenario in which the sets of edges can
be thought of as bundled together, where a single price applies to all non-empty
subsets of a bundle.

We now discuss the implications of Lemma 1 in terms of the inapproximability
of finding a minimum discounted-weight path, although this is primarily a short
review of known set cover approximations.
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4.1 Bounded Cardinality

Let k be an upper bound on the cardinality of the bundles; i.e. no single owner
has more than k edges, and call this k-CARDINALITY SHORTEST PATH
WITH DISCOUNTS. MINIMUM k-SET COVER is the variation in which the
cardinality of all sets in C are bounded from above by a constant k; and hence
it is a corollary of Lemma 1 that MINIMUM k-SET COVER may be computed
exactly with k-CARDINALITY SHORTEST PATH WITH DISCOUNTS.

It is known that the MINIMUM k-SET COVER can be approximated to
within a constant factor, but that no better than a constant factor is possible
unless P=NP. (see, e.g., [10,14]). Fairly obviously, we can get a k-approximation
with the ‘bundling’ discount scheme, by ignoring the discounts and simply
computing the shortest path regardless. It is worth comparing this with the ap-
proximation ratios that are known for MINIMUM k-SET COVER. The best ap-
proximation ratio for MINIMUM k-SET COVER remains something of an open
problem — the best known result for the weighted case is currently Hk − k−1

8k9 ,
where Hk =

∑
1,...k

1
k is the k−th harmonic number [14], and hence finding some

better approximation ratio for k-CARDINALITY SHORTEST PATH WITH
DISCOUNTS would likely be a difficult, but significant, result.

Theorem 2. No polynomial-time algorithm with an approximation ratio of less
than (1−ε) lnn for any ε > 0 exists for SHORTEST PATHWITH DISCOUNTS
unless NP ⊂ DTIME(n

log logn).

Proof. In the proof of Lemma 1, we show that all possible solutions to a MIN-
IMUM SET COVER problem exist with identical weight in an instance of
SHORTEST PATH WITH DISCOUNTS and vice-versa, so it is approximation-
preserving. Hence any approximation ratio for SHORTEST PATH WITH DIS-
COUNTS would give the same ratio for MINIMUM SET COVER. It was shown
by Feige in [10], for MINIMUM SET COVER, that no approximation ratio of (1−
ε) lnn exists for any ε > 0 under the assumption that NP ⊂ DTIME(n

log logn),
hence this also holds for SHORTEST PATH WITH DISCOUNTS. ��

5 Superadditive Pricing

We now consider the alternative setting, where instead of a (negative) ‘discount’
value, we introduce a (positive) ‘supplement’. We call this problem SHORTEST
PATH WITH SUPPLEMENTS, which differs from SHORTEST PATH WITH
DISCOUNTS in that each of the ‘discount’ vectors has only positive values
di|T | ≥ 0 (we call these ‘supplement’ values).

We will see, firstly that even for small supplement values (any d > 0) that
finding the optimal solution is NP-hard. If we have larger supplement values
then we will also see strong inapproximability results. Hardness is shown with
a reduction from EXACT COVER BY 3-SETS, as follows. The reduction is
demonstrated with the example from Fig. 1, which is shown in Fig. 4. Observe
that the shortest path has supplemented weight of 6 — which may be described
by either (1, 2, 5), (3, 4, 6) or (3, 4, 6), (1, 2, 5).
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Fig. 4. Fig. 1 As a SHORTEST PATH WITH SUPPLEMENTS problem.
Z = {1, 2, 3, 4, 5, 6}; edges are labeled with the ‘owner’.

Theorem 3. SHORTEST PATH WITH SUPPLEMENTS is NP-hard, even
with bundles of size at most 2.

Proof. In the first stage, we will ignore the restriction on the size of the bundles.
Take the input X,C to an instance I of EXACT COVER BY 3-SETS. Let m =
|X |, and build an instance I ′ of SHORTEST PATH WITH SUPPLEMENTS
as follows. Let Z ′ = X be the set of owners, and let V ′ = {V ′

1 , . . . , V
′
m/3+1}.

For each triple Ci ∈ C let the elements in Ci be given by {x, y, z}, and insert
m/3 paths of length 3, one between each V ′

j and V ′
j+1 for all j ∈ {1, . . . ,m/3},

and for each of these paths, let the owners of the edges be given by one each
of {x, y, z} (the ordering is unimportant). Let m′ = |E′|, let there be a small
supplement parameter, 1/m2 > d > 0, and let the supplement vectors be fixed,
di = (0, 0, d, . . . , d).

Observe that the shortest path from s to t contains exactly m edges. Also
observe that, where a shortest path exists of weight m, this has exactly m edges
and that no edges share the same owner. Where an exact cover by 3-sets ex-
ists, then there are exactly m/3 subsets of C that contain all of the elements
in X . Hence there are m/3 paths (each of length 3) from V1 to Vm+1 which
can be selected, such that no owner appears for more than one edge. Hence a
shortest path of weight m exists in instance I ′ if and only if the instance I is a
‘yes’ instance of EXACT COVER BY 3-SETS, and SHORTEST PATH WITH
SUPPLEMENTS is NP-hard.

Now, we can see that this still holds where the bundles are of at most size 2.
For the graph G′ = V ′, E′, build an input I ′′ with graph G′′ = V ′′, E′′. Replace
every edge e′ in E′ by a path of length m′ − 1, and label each of these edges
e′′(e,j) for all j ∈ E′ \{e′}. For every bundle Zi in the input, consider every pair of

edges (u, v) ∈ Zi and add a new bundle to Z ′′ containing the two edges labeled
e′′(u,v) and e′′(v,u). Hence for any path P ′ ⊆ E′ of size t there is a corresponding

path P ′′ ⊆ E′′ (with the replaced edges) of size (m′ − 1)t. Also observe that
P ′′ contains two edges in the same bundle, e′′(u,v) and e′′(v,u) if and only if P ′

contained two edges (u, v) in the same bundle. Hence for every shortest path P ′

in I ′ with supplemented weight given by |P | + xd, the shortest path in I ′′ has
supplemented weight |P |(m′ − 1) + xd; hence the solution to instance I ′′ gives
a solution to instance I ′, and thus instance I, and SHORTEST PATH WITH
SUPPLEMENTS is NP-hard even with edge bundles of size at most 2. ��
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As in the subadditive case, it is easy to observe that where the supplement values
are small then ignoring the discounts gives a good approximation ratio (assuming
a maximum weight of 1 and a maximum supplement value of d, then d is an upper
bound on the approximation ratio, as the optimal solution has a supplemented
weight of at least the ‘found’ solution, and the supplemented weight of this
found solution is bounded from above by a factor of d). However, if we allow
supplement values to be as large as m, then we will see strong inapproximability
results, from SHORTEST PATH WITH FORBIDDEN PAIRS.

Name SHORTEST PATH WITH FORBIDDEN PAIRS
Instance A weighted graph G = (V,E,w) with two distinct vertices s, t and a

collection, F = {F1, . . . , Fm} of pairs of vertices.
Output The minimum weight path P ⊂ E from s to t such that for every edge

e ∈ P adjacent to vertex x there is no other edge e′ ∈ P adjacent to vertex
y where there is some Fi ∈ F = {x, y}.

It is known that no polynomial time approximation algorithm for SHORTEST
PATH WITH FORBIDDEN PAIRS exists with an approximation ratio of nε for
any ε > 0, unless P=NP [15].

Theorem 4. No polynomial-time algorithm with an approximation ratio of less
than nε for any ε > 0 exists for SHORTEST PATH WITH SUPPLEMENTS
unless P=NP.

Proof. Taking the input to a SHORTEST PATH WITH FORBIDDEN PAIRS,
build an instance of SHORTEST PATH WITH SUPPLEMENTS with G′ = G
(let n = |V | and m = |E|). For each pair of forbidden vertices {x, y} assume
an edge e ∈ E that is adjacent to one of these vertices (let it be x) and add a
bundle Zi containing this edge e and all edges that are adjacent to y. Assume
an unweighted graph, i.e. w(e) = 1 for all e ∈ E, and that discount values are
large; d ≥ n; hence any SHORTEST PATH WITH SUPPLEMENTS is exactly
a shortest path that contains no two edges in the same bundle (unless no such
path exists, in which case the total weight is greater than n). Observe that
any path through vertex x contains an edge adjacent to x, and hence if it also
contains an edge adjacent to y then there is a bundle containing both edges and
the supplemented weight is at least n + 1 (from the construction of bundles).
Similarly, any path with supplemented weight of less than n contains no two
edges in the same bundle, and hence does not visit the forbidden pair {x, y}.

Another instance I ′′ can be created with bundles of size at most 2 in the same
way as in the proof of Theorem 3, by replacing each edge with m edges in series.
Let the weight of each edge be w′′(e′′) = 1/m. Hence every SHORTEST PATH
WITH SUPPLEMENTS (with weight of less than m) gives a path of the same
size in I which avoids forbidden pairs. Let n′′ be the number of vertices in I ′′,
and observe that n′′ ≤ n3. Any approximation algorithm for I ′′ that gives an
approximation ratio of α = n′′ε (with ε > 0) for I ′′ would give an approximation
ratio of α = nε/3 for SHORTEST PATH WITH FORBIDDEN PAIRS, which
would imply P=NP. ��
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6 Conclusion and Open Problems

We gave a model for generalising shortest-path problems that appears to have
relevance to economic theory. As ‘volume discounts’ appear in a wide range of
literature, it seems an obvious goal to try and combine them with the well-
studied path auction. However, the results we have seen are quite negative —
even the very simplest discounting scheme, of “buy at least x edges and get a d
discount” results in the winner determination problem becoming NP-hard, and
hence the VCG mechanism may not be a practical solution.

Our only alternative mechanism, of ignoring the discounts, is obviously quite
unsatisfactory — we have identified that allowing volume discounts is a desirable
feature. We have also shown that better than Ω(log(n)) approximation ratios
may not be possible, where the discount parameters may be large. This is a
reasonable assumption in many settings, such as the supply of services when
there is relatively little overhead, for example the use of transport or network
infrastructures that have surplus capacity.

Considering the problem as k-CARDINALITY SHORTEST PATH WITH
DISCOUNTS, we do not know how to improve on the approximation ratio of
k, or if a ratio of k might be close to optimal. However, there is scope for
the existence of an approximation algorithm with an improved approximation
ratio. An approximation algorithm which does better than the naive approach
of ignoring the discounts would likely be a fundamental contribution to a better
auction mechanism. There could be economic benefits to being able to run a
tractable procurement auction which takes advantage of these volume discounts,
and this is an area that might benefit from future study.

The reductions of Theorem 1 and Theorem 3 show that finding an exact
solution is NP-hard, even for series-parallel graphs. We may also be interested in
discovering if there are certain other properties of the problem that are required
for hardness results — for example, the distance between edges that are bundled
together. However, it is easy to observe in Lemma 1 that the solutions to a single-
pathed multigraph give exactly the solutions to a set-cover problem of the same
size, and hence there exists a Hk-approximation for this class of graph. If the
general case does not give rise to a better than k approximation, there may be
interesting results in finding classes of graph that have a better approximation.

It is also worth noting that there is a difference in the approximation of the
subadditive and superadditive cases. While the discount parameters may be
reasonably limited by the weights of the edges, the supplement parameter does
not have this limitation — and so we find that approximation may be harder in
the superadditive case when the supplement parameter is large.

Differences in approximation can be particularly important in terms of auction
mechanisms; the frugality ratio of an auction mechanism is often used to measure
its performance in terms of payment. It was shown in [12] that the frugality ratio
(of a truthful approximation mechanism) may be upper bounded a factor of the
approximation ratio; hence a good approximation ratio is important in making
an attractive auction mechanism. Mechanisms with a much better frugality ra-
tio than VCG have been shown to exist for path auctions (e.g. [16,4,17]). It is a
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natural question to ask if similar approaches could improve frugality for this
auction model. By combining those approaches with a good approximation al-
gorithm, it may be possible to create a particularly desirable auction mechanism
— that is both tractable and has good frugality in this setting.
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