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We consider the problem of revenue maximization on multi-unit auctions where items are distinguished by
their relative values; any pair of items has the same ratio of values to all buyers. As is common in the study of
revenue maximizing problems, we assume that buyers’ valuations are drawn from public known distributions and
they have additive valuations for multiple items. Our problem is well motivated by sponsored search auctions, which
made money for Google and Yahoo! in practice. In this auction, each advertiser bids an amount b; to compete
for ad slots on a web page. The value of each ad slot corresponds to its click-through-rate, and each buyer has
her own per-click valuations, which is her private information. Obviously, a strategic bidder may bid an amount
that is different with her true valuation to improve her utility. Our goal is to design truthful mechanisms avoiding
this misreporting.

We develop the optimal (with maximum revenue) truthful auction for a relaxed demand model (where each
buyer i wants at most d; items) and a sharp demand model (where buyer i wants exactly d; items). We also find
an auction that always guarantees at least half of the revenue of the optimal auction when the buyers are budget
constrained. Moreover, all of the auctions we design can be computed efficiently, that is, in polynomial time.
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1. INTRODUCTION

Internet markets have opened up many opportunities for applications of different mar-
kets and their pricing models. Search engine advertising, as an example, makes the matching
market model an everyday’s practice: advertisement slots of Google and Yahoo! are created
as products for advertisers (the buyers) who want to display their ads to users searching key-
words related to their business. Each such ad slot may be of different importance, which is
measured by the click-through-rates (CTR), the average number of clicks on the ad placed
at the slot for a unit time. Slots with higher CTR are more likely to be clicked by customers.
On the other hand, users’ interest expressed by a click on an ad may have different values to
different advertisers. Combining the two major factors, we have a standard model of a spon-
sored search market (Edelman, Ostrovsky, and Schwarz 2007; Varian 2007). Besides the
standard sponsored search auctions, our model is also motivated by TV advertising where
inventories of a commercial break are usually divided into slots of five seconds each, and
slots have various qualities measuring their expected number of viewers and corresponding
attraction. Note that the private information about the value for each advertiser creates an
asymmetry among the participants and the market maker. Truthful market design relies on
the general revelation principle (Myerson 1979) to simplify the search for mechanisms with
desirable properties, such as one that brings in the maximum revenue. Therefore, our focus
will be on considering market mechanisms that bring in the optimum revenue (or failing
that, an approximation to the optimal revenue), while ensuring the participants’ incentives
to speak the truth about their private values.
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We model the problem as a multi-unit auction where the auctioneer holds m indivisible
items and each item j has a parameter ¢ ;, measuring the quality of the item. On the other
side, n potential buyers participate in the auction and each buyer i has a value v; for an
item of unit quality. Thus, the valuation that i obtains from item j is given by v; = v;q;.
The v;q; valuation model has been considered by Edelman et al. (2007) and Varian (2007)
in their seminal work for keywords advertising. We will explore this model by considering
buyers that have specific demand or are budget constrained. Demand is a practical consider-
ation and has occurred in a number of applications. For instance, in TV (or radio) advertising
(Nisan et al. 2009), advertisers may request different lengths of advertising slots for their
ads programs. As another example, in banner (or newspaper) advertising, advertisers may
request different sizes or areas for their displayed ads, which may be decomposed into a
number of base units. Simultaneously, in several scenarios, such as the Google TV ad auc-
tion (Nisan et al. 2009) and the Federal Communications Commission spectrum auctions
(Brusco and Lopomo 2009), where auctions have been applied in the past few years, bidders
are constrained by the amount of money they can spend.

Instead of the standard deterministic model, we consider a Bayesian model for the pri-
vate values v; of the buyers, where i € [n]. To obtain the performance guarantees we study
here, we need to use this kind of prior knowledge of what the valuations are likely to be,
and in the context of ad auctions, it is realistic to assume that distributions on valuations and
click-through rates have been previously learned from data (Graepel et al. 2010; Richardson,
Dominowska, and Ragno 2007). Thus, the private value v; of advertiser i follows a publicly
known distribution. Therefore, an advertiser knows its exact per-click value v;, but other
advertisers as well as the seller of the slots only know that v; is generated by the given
public probability distribution. Therefore, we adapt Myerson’s (1981) classic setting, where
each buyer’s private value is independently drawn from a publicly known distribution, and
the buyers are risk neutral. We focus on Bayesian incentive compatible (BIC) mechanisms,
that is, bidding his true value is a Bayesian dominant strategy for every buyer (that is, it
maximizes the expected gain for a buyer, where expectation is taken over the random selec-
tion of values for the other buyers). We are interested in obtaining mechanisms to optimize
or approximate the expected revenue, taking into consideration the demand constraints and
the budget constraints for all the buyers.

2. RELATED WORK

The theoretical study of sponsored search under the generalized second price auction
was initiated in Edelman et al. (2007) and Varian (2007). The items for sale are called
“positions,” referring to positions of ads on a web page. Some positions have more value
than others; usually, the ones toward the top of the web page are considered to be more
valuable. Under this model, the utility of an agent is its private per unit value times the
quality of the position it acquires through the auction, minus the price that it pays. Each
buyer is assigned to at most one position, and in this article, we study a more general model
that does not have that limitation. In our model, each buyer may demand multiple items, so
that we have a special kind of combinatorial auction. This represents a natural extension of
the sponsored search auction model, and is motivated by applications such as TV ad slot
bidding, rich medium web page ads, and so on. The total value of a buyer is determined by
its private per unit value times the total quality of the positions it is assigned. In the relaxed
demand version, a buyer’s demand is an upper bound on the number of positions it may be
assigned. In the sharp demand version, the number of positions assigned to any successful
buyer must be equal to that buyer’s demand. In either case, the demand may vary from buyer
to buyer.
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There have been a series of studies of position auctions in deterministic settings (Lahaie
2006). Chen et al. (2012) introduce an ad auction setting having the same combinatorial
demand structure we study here (each buyer wanting a specific quantity of items). Chen et
al. (2012) differs from this article by focusing on the search for prices that constitute market
equilibrium solutions, based on known valuations of the buyers. In contrast, here, we address
the challenge of eliciting truthful bids from the buyers, based on partial knowledge.

Our consideration of position auctions in the Bayesian setting fits in the general
single-parameter auction design framework (Hartline and Roughgarden 2009) with demand
constraints and budget constraints. The work in Hartline and Roughgarden (2009) compares
the Vickrey-Clarke-Groves auction revenue with reserve prices versus optimal revenues in
many one-dimensional settings. For a single item with budget constraints, the problem is
reduced to the case of single item without budget (Chawla, Malec, and Malekian 2011)
where a 2-approximate mechanism was introduced. Their method does not directly apply to
our problem.

Our study considers continuous distributions on buyers’ values. For discrete dis-
tributions, Cai, Daskalakis, and Weinberg (2012a) present an optimal mechanism for
budget-constrained buyers without demand constraints in multiparameter settings, and
very recently, they also give a general reduction from revenue to welfare maximization
in Cai, Daskalakis, and Weinberg (2012b); for buyers with both budget constraints and
demand constraints, 2-approximate mechanisms (Alaei 2011) and 4-approximate mecha-
nisms (Bhattacharya et al. 2010) exist in the literature. However, their techniques based
on solving a related linear programming cannot be extended to the buyers with continu-
ous distributions and budget constraints. Their techniques’ limits are addressed in Cai et al.
(2012a, 2012b), which in some sense imply that the problem with continuous distribution
is more difficult than that with discrete distribution when other constraints are the same, for
example, multi parameters, demand constraints.

3. OUR CONTRIBUTION

We construct new mechanisms that we analyze mathematically and prove the follow-
ing performance guarantees (detailed definitions are given in the next section). Following
Myerson’s works, we compare our mechanism with the optimal truthful mechanism (with
maximal expected revenue) in Bayesian setting. For the relaxed demand or the sharp demand
case without budget constraints, an optimal truthful mechanism (that is, one that maximizes
the expected revenue) can be constructed efficiently (this is, the mechanism is computable in
polynomial time). For the case with the budget constraint but without demand constraints, a
2-approximate truthful mechanism (one that guarantees revenue within a factor 2 of optimal)
can be constructed efficiently.

4. PRELIMINARIES

4.1. The Auction Domain

In our auction design problem, we want to sell m items to n buyers. Each buyer has a
private number v; representing her valuation, and each item is characterized by a number
qj, which can be viewed as the quality or desirability of the item. Thus, the i th buyer’s value
for item j is v;¢q;. In other words, the valuation matrix for n buyers and m items is the outer
product of ¥ and ¢. Buyers are also assumed to abide by additional constraints as follows.
We consider three specific constraints of this problem.



358 COMPUTATIONAL INTELLIGENCE

(1) Relaxed demand constraint: Buyer i’s demand is relaxedly constrained by d; if i may
buy any number of items up to a maximum d; in this auction.

(2) Sharp demand constraint: Buyer i’s demand is sharply constrained by d; if i must buy
exactly d; items in this auction or alternatively buys nothing.

(3) Budget constraint: Buyer i’s budget is constrained by a publicly known number B; if i
cannot pay more than B;.

The vector of all the buyers’ values is denoted by v or sometimes (v;; v—;) where v_;
is the joint bids of all bidders other than i. We assume that all buyers’ values are distributed
independently according to publicly known bounded distributions, that is, v; € [g i 6,-] and

v € V = [, [v;. 0i]. For each buyer i, let F; be the cumulative distribution function of
buyer i ’s value distribution and let f; be the probability density function of this distribution.
In addition, we assume that the concave closure or convex closure or integration of those
functions can be computed efficiently.

We represent a feasible assignment by a vector x = (x;7);, j, where x;; is simply the prob-
ability that item j is assigned to buyer i; thus, we have x; € [0, 1] forevery 7, j, >, x; < 1
for every item j. We say an assignment is deterministic if every x;; is 1 or 0. Given a fixed
assignment x, we use #; to denote the expected total quality of items that buyer i is assigned,
precisely, t; = Y ; 4j%ij- In general, when x is a function of buyers’ bids v, we define #; to

be a function of ¥ such that 7; () = Y~ ; ¢,x; (V).

4.2. Mechanism Design

We consider the revenue maximization problem in the aforementioned auction domains
in the context of mechanism design. Mechanism design studies algorithmic procedures
where the input data are not always objective but reported from selfish agents. Following the
work of Myerson (1981), we consider this problem in a Bayesian setting where the seller has
a prior knowledge about the buyers’ distribution of valuations. This probability distribution
can be regarded as a model of the seller’s beliefs about which values are more likely than
others. This has been shown to be a necessary assumption if one wants to optimize the auc-
tioneer’s revenue. More specifically, in the setting (called prior-free) without this assump-
tion, any performance guarantees for an auction would have to apply to worst-case choices
of buyers’ valuations. In such a setting, we cannot approximate the optimal revenue within
any factor, that is, the performance of any mechanism will be arbitrary bad for some bidder
profile. The auctioneer holds the set of items that can be sold, but does not know the (true)
valuations of these items for different buyers. Each buyer is a selfish entity, which privately
knows her own valuation for each item (which constitutes the buyer’s type). Obviously, a
strategic buyer may choose to misreport her valuations, which are private, to increase her
utility, that is, the valuation of assigned item minus her payment. Because we only con-
sider the auction setting, we may use auction and mechanism interchangeably when there is
no ambiguity.

We consider direct-revelation mechanisms: each buyer reports her valuation, and the
mechanism must be designed such that it is in the buyers’ best interest to report their
true valuation. The mechanism then computes a feasible assignment and charges the play-
ers (i.e., buyers) the payment for the items they have been assigned. An auction M thus
consists of a tuple (x, p), where x specifies the allocation of items and p = (p;); spec-
ifies the buyers’ payments where both x and p are functions of the reported valuations
U. Thus, the expected revenue of the mechanism is Rev(M) = E;[Y"; pi (V)] where E;
denotes the expectation with respect to components of v sampled from their respective
distributions. From the viewpoint of a single buyer i with private value v;, her expected
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utility is given by Ey_, [vit; (V) — pi (¥)]- The goal of an auctioneer is to maximize her
expected revenue. A buyer i is however only interested in maximizing her own expected
utility. Considering the possibility that a buyer may declare a false value if this could
increase her utility, the mechanism therefore needs to incentivize the buyers/players to
truthfully reveal their values. This is made precise using the following notion of Bayesian
incentive compatibility.

Definition 1 (Incentive compatibility). A mechanism M = (x, p) is called BIC iff the
following inequalities hold for all player i and his valuation v;, v;. Recall that ¢; (17) =

Zj q;Xij (ﬁ)
Ev_,- [viti (1_5) — Di (17)] > Ev_,' [U,’l‘i (Ul/-; v_,') — Di (Ul{; v_i)] . (1)

If vit; (V) — pi (V) = vit; (v}:v—i) — pi (v};v—;), forall ¥, i, v}, we say M is deterministi-
cally incentive compatible (1C).

To put it in words, in a BIC mechanism, no player can improve her expected utility
(expectation taken over other players’ bids) by misreporting her value. An IC mechanism
satisfies the stronger requirement that no matter what the other players declare, no player
has incentives to deviate.

In addition to Bayesian incentive compatibility, the desired mechanism should also sat-
isfy another constraint named individual rationality, which guarantees the participation of
all players. It requires that the (expected) utility of each player cannot be negative no matter
what valuation she has.

Definition 2 (Individual Rationality). A mechanism M = (x, p) is called ex-interim Indi-
vidual Rational (IR) iff the following inequalities hold for all player i and his valuation v;.

Recall that ; (V) = Y ; q;x; (V).

Ey_; [vit: (V) — pi (V)] = 0. (2
If v;t; (V) — pi (V) = 0 forall U, i, we say M is ex-post individual rational.

Obviously, an ex-post individual rational mechanism must be ex-interim individual
rational. The term “ex-interim” here indicates that the nonnegativity of each agent’s utility
holds for every possible valuation of this agent, averaged over the possible valuations of the
other agents. Ex-post IR holds if and only if the utility of each player cannot be negative for
any bidding profile v.

4.3. Goal and Objectives

Given the buyers’ value distributions, our goal is to design BIC and ex-interim IR mech-
anisms to allocate items to buyers so as to maximize the auctioneer’s expected revenue. As
is common in Computer Science, the optimal solution may be hard to compute efficiently;
thus, we also consider the mechanisms that implement this objective approximately. More
precisely, our aim is to devise a mechanism that for any distributions of buyers’ values, the
mechanism guarantees at least 1/« times the optimum, where « is a constant. We call such
mechanisms «-approximate mechanisms.

Definition 3 (a-approximate Mechanism). We say a BIC and ex-interim IR mechanism M
is an a-approximate mechanism if and only if for any BIC and ex-interim IR mechanism
M', Rev(M) > 1/a - Rev(M’). We say a mechanism is optimal if it is a 1-approximate
mechanism.
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We are also interested in obtaining computationally efficient mechanisms, which is made
precise by requiring that they should be computable in polynomial time. That is of course a
standard requirement in the context of algorithmic mechanism design.

5. OPTIMAL MECHANISM FOR DEMAND CONSTRAINTS

In this section, we consider the case where the buyers have relaxed demand or sharp
demand. We show that, in these auction domains, the optimal randomized, BIC and ex-
interim IR auction can be represented by a simple deterministic, IC and ex-post IR auction.
Furthermore, this optimal auction can be constructed efficiently.

Our constructions and proofs are simple and based on a basic idea of converting the
optimization problem with allocation rules and payment rules to a problem only involving
allocations. This can be carried out in two steps. First, because of the fact that our mech-
anism design problems fall within the single-parameter domain where each player can be
represented by a single parameter, we can replace the complicated BIC conditions with a
much simpler requirement of monotonicity on allocation rules. After that, all of the con-
straints are related with allocation functions instead of payments. Second, although the
objective of our auction is to maximize the revenue, we can show that maximizing the
auctioneer’s revenue in a BIC auction is equivalent to maximizing a specific function of allo-
cations, more precisely, the virtual surplus, which is developed in Myerson (1981). Thus,
we can get rid of the payments in our optimizing goal as well.

After this transformation, the original revenue optimization problems can be viewed as
simple combinatorial optimization problems. As we will show later, both of the problems
can be solved efficiently and even in a deterministic way. Following the sketch described
earlier, we will review the classical characterization of Bayesian incentive compatibility in
Section 5.1. And then, in Section 5.2, we will show how the payments can be discarded in the
objective by incorporating Myerson’s virtual value functions. At the end, we will solve the
pure optimization problems for relaxed demand and sharp demand settings in Section 5.3
and Section 5.4, respectively.

5.1. Monotonicity

Although the incentive compatibility is defined in the terms of payments, it can be
boiled down to a simple condition of monotonicity in single-parameter settings. The
proof can be sketched as follows. Fix a player i and all other players’ bids v_;. Recall
that we use f;, a function of U to denote the total quality of items assigned to i. Con-
sider two possible values v; and v] player i may hold. By the definition of IC, we have
viti (visv—) — pi(visv—) = vity (vjiv—;) — pi (v}:v—;) and similarly v/5; (v};v—) —
Di (vlf; v_i) > v/t (v;;v—;) — pi (v;;v—;). Summing up these two inequalities, we obtained
(vi —v}) (ti (visv—i) — t; (v};v—;)) > 0. It follows that #;(x; v—;) must be a monotone
nondecreasing function of x for any given v_;. Regarding the Bayesian setting, the BIC
condition can be similarly characterized in the following Lemma 1 adapted from Myerson
(1981). For convenience in the Bayesian model, let 7; (v;) be the expectation of #; (¥) over all
other players’ bids, more precisely, 7;(v;) = E,_,[t;(v)]. Similarly, we define an expected
version of payment rules, thus P; (v;) = E,_,; [p;i(v)]. Let U; (v;, T, P) = v; T; (v;) — P; (v;).

Lemma 1 (From Myerson (1981)). A mechanism M = (x, p) is BIC if and only if

(a) T;(x) is monotone nondecreasing for any agent i.
(®) Pi(vi) = v; T; (vi) —f;f Ti(z)dz—v; Ti (v;) + Pi(v;).
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The proof of the aforementioned lemma is similar to the IC condition except we need to
take integration for continuous distributions (Myerson 1981). For completeness, we provide
a proof of Lemma 1 in the succeeding text.

Proof. If M = (x, p) is BIC, then for any v; and v},

viTi(vi) — Pi(vi) = v T; (v)) — Pi (v])
viT; (v)) — Pi (v]) = v;T;(vi) — Py (vy).

Adding the aforementioned two inequalities, we could obtain (v; — v}) (73 (v;) — T (v})) =
0; hence, T; (x) is monotone nondecreasing for any buyer . In addition, v; T; (v;) — P; (v;) >
viT; (v]) — P; (v}) is equivalent to U (v;, T, P) > (v; — v}) T; (v}) + U; (v}, T, P), for any

i,v;,v}. Therefore, U; (v;, T, P) = U; (v;, T, P) + fvv," T;(z)dz. Thus,

Pi(vi) = v Ty () — / Ti(2)dz — v, Ty (v) + Piw;).

2i

Similarly, if (a) and (b) hold, then v; T; (v;) — P;(v;) > v; T;(v}) — P; (v}) is equivalent to
(by b)) fvv,"' T;(z)dz > (vi — v})T; (v}), which is true by the monotonicity of 7 (x). [ |

5.2. Virtual Surplus

For single-item settings where the auctioneer has only one item to be sold, Myerson
(1981) showed that to maximize the seller’s revenue is equivalent to maximizing the social

welfare when each agent’s bid is his virtual value defined as ¢; (v;) = v; — l}i"v(iv)") , Where

recall that F; (x) and f;(x) are, respectively, the cumulative distribution function and prob-
ability density function of the agent i’s value distribution. That is, the virtual value of an
agent is her true value minus the hazard rate of her value and distribution. Then given buy-
ers’ distributions, we define the virtual surplus as the expectation of the summation of every
buyer’s virtual value times her allocation, more precisely, E; [Zl ¢i (Vi) (17)]. Then we
can show that in both of our auction domains in this section, expected revenue is equal to
expected virtual surplus. Recall that U; (v;, T, P) is defined as v; T; (v;) — P; (v;).

Lemma 2. For any BIC mechanism M = (x, p), the expected revenue E; [Zl P; (v,-)] is
equal to the virtual surplus Bz [, ¢ (vi)1; (V)] minus }; U(v;, T'(v;). P(v;)).

The proof is based on standard mathematical calculations. We express expectation as
an integration over densities, that is, p;, x;, and f;, apply the Myerson characterization of
payments, and simplify.

Proof.
E;[P; (vi)] = E5[-U;i(vi. T, P) + v; T; (v;)]
= E3[~Ui(vi, T, P)] + E3[v; T; (v;)]
= —E; [/ Ti(Z)dZ] —U(v;, T(v;), P(v;)) + Eglviti (V)]

~i

- _/vi dv; /v,- fi(i)T;(z)dz + Bgvit; @)] — U(v;, T(v;), P(v;))
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_ / " 1oz / Fiwi)dv; + Eg[uits ()] — Uy, T(wy). P(uy))

~i

= —/U Ti(z2)(1 = Fi(2))dz + Eg[vit; ©)] = U(v;, T (v;), P(v;))

~i

=—/A i)t fi o)z + Bt (9] - Ulwi. T(w). P()

[T( i) ff() )] + Ejviti 0)] — U(y;. T (). P(v;))

= Egl¢i (vi)ti 0)] — Ulw;. T (). P(v;)).
|

Remark 1. Because the mechanism we consider is ex-post IR, U(v;., T'(v;), P(v;)) = 0, for
any i. Thus, to maximize the total revenue, what we need to do is to find allocations x to
maximize the virtual surplus, and set U(v;, T(v;), P(v;)) = O for all i and then use the

payment rule P; (v;) = v; T; (v;) — f;f Ti(z)dz.

5.3. Relaxed Demand Case

For the relaxed demand case, the only problem we need to address is the additional
demand constraint. Note that our mechanism only considers the allocation probability x,
not the realized allocations. To convert the randomized mechanism to a realized allocation,
we need a randomized rounding procedure satisfying the demand constraints. Fortunately,
such a procedure is explicit in the Birkhoff-von Neumann theorem (Johnson et al. 1960).
Thus, the relaxed demand constraint can be rewritten as ;j(xy) = d; for each buyer i.
By using the characterization of BIC and virtual surplus, we can transform the revenue
optimization problem to an essentially simpler combinatorial optimization problem. The
following lemma follows from Lemma 2 and Remark 1.

Lemma 3. Suppose that x is the allocation function that maximizes Ez[¢; (v;)t; (V)] subject
to the constraints that 7; (v;) is monotone nondecreasing and inequalities

Y@ <din Y x(0) <1, x(©) = 0. 3)
J i

Suppose also that

pi(3) = viti (7) — / ot si)ds;. )

;i
Then (x, p) represents an optimal mechanism for the relaxed demand case.

We assume ¢;(¢) is monotone increasing, that is, the distribution is regular. This
assumption is without loss of generality, otherwise Myerson’s ironing technique can be
utilized to make ¢;(¢) monotone—it is here that we invoke our assumption that we can
efficiently compute the convex closure and integration of a continuous function.

A main observation on Lemma 3 is that all inequalities in equation (3) only constrain
v independently, not correlatively with different v’s. This allows us to consider the opti-
mization problem for each v separately. After that, we will prove T; is still monotone
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increasing in the resulting mechanism. In other words, we consider the problem of maxi-
mizing ) ; ¢; (v;)#; (v) for each v separately instead of maximizing its expectation overall.
This problem can be solved by a simple greedy algorithm in the spirit of assigning items
with good quality to buyers with higher virtual value. For completeness, we describe our
mechanism for the relaxed demand case in Algorithm 1.

Input: Demands d;, CDFs F;, PDFs f;, qualities ¢; and bids ¥
Output: Allocation z;;
1-Fi(vi).
i 4= Vi — fi(vi)
Sort buyers in decreasing order of ¢;;
Sort items in decreasing order of ¢;;
Tij < 0;
for each buyer i do
for each item j do
if p; > 0 and Zi Tij < 1 and Zj Tij < d; then
‘ Tij < 1;
end
end
end
return x;

Algorithm 1: RELAXED

Ultimately, we prove that the 7; deduced from our mechanism is monotone nondecreas-
ing in the following theorem—our summary statement.

Theorem 1. The mechanism that applies the allocation rule according to Algorithm 1 and
payment rule according to equation (4) is an optimal mechanism for the multi-unit auction
design problem with relaxed demand constrained buyers.

Proof.  As mentioned earlier, it suffices to prove that 7;(v;) is monotone nonde-
creasing. More specifically, we prove a stronger fact that #; (v;, v—;) is nondecreasing as v;
increases. In Algorithm 1, given v_;, the monotonicity of #; is equivalent to ¢ (v;, v—;) <
t (vlf, v_i) given v; > v;. If v/ > v;, without loss of generality, suppose ¢; (v;) < ¢; (vl/)
(otherwise, if ¢; (v;) = ¢; (v{) because ¢; is regular, then #; (v;, v—;) = ¢; (vl’ , v_i) because
the algorithm is deterministic, we are done). Let Q and Q' denote the total quantities
obtained by all the other buyers except buyer i in Algorithm 1 when buyer i bids v; and v},
respectively. Then we have

¢i (v]) 1i (vi.v—i) + Q" = ti(vi, v_i)i (v]) + O
> 1;(vi, v-)¢i (v;) + @ = t; (v).v—) pi(vi) + Q.

The first and last inequalities are due to the optimality of allocations found by the greedy
Algorithm 1 when i bids v; and v}, respectively, and the second one comes from ¢; (v;) <

¢i (v}). Thus, we have
i (vi) (ti (i, v—) =1 (vj,v—;)) < Q" = Q < @i (vi) (ti (vi, v—i) — i (v}, v—)).

By the fact that ¢; (v;) < ¢; (v}), it follows #; (v;, v—;) — t; (v}, v—;) <O. [ |



364 COMPUTATIONAL INTELLIGENCE

5.4. Sharp Demand Case

We now describe how to design an optimal mechanism for sharp demand cases. The
only difference between this problem with the one with relaxed constraints is that buyers’
demands are sharply constrained. To address this, we replace the inequalities (3) in Lemma 3
with the following inequalities.!

Y xy@) =dior0, Y xy(@) <1, xz(¥) =0 Vi, 0. (5)
J i

Similar to the relaxed demand case, we can convert the revenue optimization problem in
the sharp demand case to a simple combinatorial optimization problem. Recall that ¢; (¢) is
monotone nondecreasing without loss of generality.

Lemma 4. Suppose that x is the allocation function that maximizes Eg[)_; ¢; (v;)2; (V)] sub-
ject to the constraints that 7; (v;) is nondecreasing monotone and inequalities (5). Suppose
also that

Vi
pi(v) = vit; (V) — / ti(si,v—i)ds;.

Y

Then (x, p) represents an optimal mechanism for the sharp demand case.

Considering each bidding profile v_; separately, we observe that the optimal mecha-
nism always maximizes Y ; ¢;(v;)t; (V) for all v subject to sharp demand constraints. By
incorporating the definition of ¢;, our goal is to maximize Zi > j @i (vi)g; xl-,-(f)) subject to
> i x;;(V) = d; or 0 and _; x;;(¥) < 1. It is not hard to see that this problem is equivalent
to a maximum weighted matching problem on a bipartite graph with n left nodes and m right
nodes. For any pair of nodes (i, j) € [n] x [m], there exists an edge with weight ¢; (v;)q;.
Besides, the matching should satisfy an additional constraint that each left node must be
matched with exact d; right nodes or nothing. We call this problem maximum weighted
matching with sharp constraints. An essential observation our algorithm relies on is a prop-
erty of the optimal solution as we will show in Lemma 5. For convenience, we sort all left
nodes in decreasing order of their ¢; (v;) and all right nodes in decreasing order of their g ;.

Lemma 5. There must exist an optimal solution for the maximum weighted matching prob-
lem with sharp constraints such that each left node is matched with consecutive d; right
nodes or nothing.

Proof. Assume by contradiction, there exists a left node that the optimal match it with a
set of nonconsecutive right nodes. Let i be the first left node (with regard to the decreasing
order of ¢;(v;)) with this property and U; be the set of right nodes assigned to i. By our
assumption, U; is not consecutive. Thus, there exists a right node j not in U; such that
mingey; {qk} < q;j < maxgey, {9k} It is easy to see that j must be assigned to a left node
with smaller ¢ than i; otherwise, i is not the first left node with nonconsecutive matching
set. Let r be the last node of U;, that is, with the largest index in U;. Thus g; > ¢q,. After
that, we can refine the optimal solution by exchanging the assignment of node j and node r.

' The formula 2 x;(U) = d; or 0 here is not precise because in the random mechanism 2 x;(0) may be an
arbitrary number between 0 and d;. A more precise definition may need to be in terms of a distribution over deterministic
mechanisms. However, we did not explicitly use the randomized value of 3 ; x;(¥) in our algorithm, and our mechanism is

deterministic implying x; € {0, 1},and }_ ; x;(¥) = d; or 0 is correct if x; € {0, 1}; hence, we still use this formula here.
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The resulting assignment is still feasible and has larger weight. If we keep doing this, we can

obtain the desired optimal solution.

By using this property, the problem can be solved by dynamic programming precisely.
Let w[i, j] denote the weight of the maximum weighted matchings with first i left nodes

and all first j right nodes being assigned. Then we have the transition function

J
wli, jl=max{wli — L jlwli —1j—d]+ > ¢i(vi)ex
k=j—d;+1

Finding the maximum w[i, j] over i € [n] and j € [m] gives the maximum weighted

matchings and optimal solutions. We describe the mechanism in Algorithm 2.

Input: Demands d;, CDFs F;, PDFs f;, qualities ¢; and bids ¥
Output: Allocation z;;
I—FZ (3

o v = ot
Sort buyers ¢ in decreasing order of ¢;;
Sort items j in decreasing order of g;;
wli, j] < —o0; w|0, 0] + 0;
T[i,j] 0 ZTij <+~ 0
for each buyer i with positive ¢; do
for each item j do
tmp < wli — 1,7 — d;] + Zizj_d#l biq;
wli, j] < wli =1, 3;
if w(i, j] < tmp then

T[%]] «— 1

wli, j] « tmp;
end

end

end
wli*, j*] = mas {wli,j]}:
while i* > 0 do
if r[i*, j*] = 1 then
for each item k from j* — di= + 1 to j* do
| e 1
end
JT g = diss
end
17— —1;

end
return x;

Algorithm 2: SHARP

Theorem 2. The mechanism that applies the allocation rule with regard to the aforemen-
tioned dynamic programming and payment rule with regard to equation (4) is an optimal
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mechanism for the multi-unit auction design problem with sharp demand constrained
buyers.

To complete the proof of Theorem 2, it is sufficient to show T;(v;) is nondecreasing,
where the proof is similar to the relaxed demand case.

6. APPROXIMATE MECHANISM FOR BUDGET CONSTRAINTS

In this section, we will present a 2-approximate mechanism for the multi-item auction
with budget-constrained buyers. It should be noted that there are no demand constraints for
all the buyers considered in this section. Recall that a mechanism M = (x, p) satisfies
the buyer i’s budget constraint iff p;(v) < B; for all buyer profiles v. If m = 1, that
is, the auctioneer only has one slot, a 2-approximate mechanism has been suggested in
Alaei (2011) and Bhattacharya et al. (2010). Thus, our approach is to reduce the multi-item
auction to single-item auction, that is, the case for m = 1. Recall that B; denotes bidder i ’s
budget, x;;(v) denote the probability of allocating item j to buyer i when the buyers’ bids
revealed type is v and recall we use ; (V) = ) ; ¢, x;;(V), a function of ¥ to denote the total
quality of items assigned to i. Then the multi-item auction problem can be formalized as
the following optimization problem.

Max: E, |:Z Di (17)1|

st Ey_; [viti 0) — pi (V)] = By_; [vit; (v}, v—) — pi(v;, v—)], VU,i,0]

E,_; [viti () — pi (V)] = 0, Vi, i

pi(V) < B;, VT, i

x;(V) >0 VU,i, j

> x®) <1 Vi)
i

(MULTI-ITEM)
Now consider the following single-item problem. Denote B/ = %, and let y; (V) be
J 17

the allocation function for bidder i and s; (V) be the payment function for bidder i. The
single-item auction with budget constraints can be formalized as following optimization
problem.

Maximize: E, |:Z Si (17)i|
i

st. By, [viyi(@) —s5i(0)] = Bo_, [viyi (v], v—) —si (v};v—)]. VD.i,v]

Ey_; [viyi(¥) — 5:(¥)] = 0, VD, i

Si(ﬁ) < Bl(, Vﬁ,i

yi(¥) >0 VU, i

Y i@ <1 Vi
i

(SINGLE)
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Our main observation for the aforementioned optimization problems is the following
proposition.

Proposition 1. The problems MULTI-ITEM and SINGLE are equivalent as follows:

e For any feasible mechanism M(V) = (x(¥), p(¥)) of problem MULTI-ITEM, the fol-
lowing mechanism M (V) = (y(v), s(V)) is a feasible mechanism for problem SINGLE

where y; (V) = Zt"(v) 5; (V) = %, Vi € [n].

.9
j4j

e For any feasible mechanism M (V) = (y(),s(v)) of problem SINGLE, the follow-
ing mechanism M(v) = (x(¥), p(v)), where x;(¥) = y;(¥)Vi j and p;(¥) =
5; (V) (Zj q;) Vi, is a feasible mechanism for problem MULTI-ITEM.

Ultimately, we reduce the multi-item auction design problem to the single-item auction
design problem. By the results of Alaei (2011) and Bhattacharya et al. (2010), there exists a
2-approximate mechanism for problem SINGLE. Thus, we have a 2-approximate mechanism
for problem MULTI-ITEM.

Remark 2. For the discrete distribution case, Cai et al. (2012a) presents an optimal mecha-
nism, for multibuyers with multi-items. Their algorithm can be extended to the case where
buyers are budget constrained but not demand constrained. Given buyers’ discrete distribu-
tion and bid profiles, a revised version of their mechanism is an optimal mechanism and runs
in time polynomial in ) ; |7;|, where |T;| is the number of types of buyer i for all the items.
Hence, restricting their results to MULTI-ITEM auction, that optimal mechanism is indeed
an optimal mechanism for each buyer having a budget constraint but no demand constraint,
with values independently drawn from discrete distribution, running in time polynomial in
the input.

7. CONCLUSION

In this work, we study the optimal mechanism design issues for the multi-item auc-
tion problem with correlated valuations v; = v;q;. We focus on two demand models,
the relaxed demand and the sharp demand models. We develop optimal (revenue) mech-
anisms for the seller. In addition, for the budget-constrained model (without demand
constraints), we develop a 2-approximate truthful mechanism. We prove that the solution
is polynomial time solvable. Our results have potential application to a wide range of
areas, such as sponsored search or TV advertising. Moreover, the sharp demand model
is related to interesting applications such as sponsored search market for rich media
ad pricing. Our work serves as a modest step toward an efficient algorithmic mecha-
nism design and can be further investigated to deal with applications in more compli-
cated settings.

A major open problem is to find a constant approximation scheme when both the
demand constraints and the budget constraints apply simultaneously. For discrete distri-
butions, Alaei (2011) and Bhattacharya et al. (2010) suggested a constant approximate
mechanism for multi-unit auctions with budget and relaxed demand constrained buy-
ers. However, their approach based on solving an associated linear program cannot be
extended to the continuous distribution case. Of course, another direction is to improve the
approximation ratio for budget constrained cases.
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