

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 52, No. 2, pp. STOC19-200–STOC19-268

THE COMPLEXITY OF NECKLACE SPLITTING,
CONSENSUS-HALVING, AND DISCRETE HAM SANDWICH∗

ARIS FILOS-RATSIKAS† AND PAUL W. GOLDBERG‡

Abstract. We resolve the computational complexity of three problems known as Necklace
Splitting, Consensus-Halving, and Discrete Ham sandwich, showing that they are PPA-
complete. For NECKLACE SPLITTING, this result is specific to the important special case in
which two thieves share the necklace. These are the first PPA-completeness results for problems
whose definition does not contain an explicit circuit, thus settling the status of PPA as a class that
captures the complexity of such “natural’ problems.

Key words. TFNP, Necklace-Splitting, Computational Complexity, PPA

AMS subject classifications. 68Q15, 68Q17, 68R05

DOI. 10.1137/20M1312678

1. Introduction. The complexity class TFNP was defined by Megiddo and
Papadimitriou [65] and contains total search problems in NP, i.e., problems that al-
ways have polynomial-time checkable solutions. However, the class does not seem to
have complete problems and, moreover, no problem in TFNP can be NP-complete
unless NP=co-NP [64]. Consequently, alternative notions of computational hardness
need to be developed and applied in our effort to understand the many and varied
problems in TFNP that seem to be intractable.

The complexity class PLS defined by Johnson, Papadimitriou, and Yannakakis
[55] and the classes PPAD, PPA, and PPP defined by Papadimitriou [71] are sub-
classes of TFNP associated with various combinatorial principles that guarantee total-
ity. Each principle has a corresponding definition of a computational problem whose
totality applies that principle in the most general way possible and a complexity class
of problems reducible to it. In more detail,

• PLS consists of problems whose totality invokes the principle that every di-
rected acyclic graph has a sink vertex;

• PPAD consists of problems whose totality is based on the principle that given
a source in a directed graph whose vertices have in-degree and out-degree at
most 1, there exists another degree-1 vertex;

• PPA differs from PPAD in that the graph need not be directed; being a more
general principle, PPA is thus a superset of PPAD;

• PPP, based on the pigeonhole principle, consists of problems reducible to
Pigeonhole Circuit.

Of these complexity classes, only PLS, PPAD, and PPP have succeeded in capturing
the complexity of “natural” computational problems. PLS corresponds with a wide
range of local optimization problems [55], including searching for pure equilibria of
congestion games [1]. PPAD corresponds most prominently with Nash equilibrium
computation in general games [19, 24]. Recently, Sotiraki, Zampetakis, and Zirdelis

∗Received by the editors January 16, 2020; accepted for publication (in revised form) October
12, 2021; published electronically February 28, 2022. The present paper is based on two conference
papers [37, 38].

https://doi.org/10.1137/20M1312678
†Department of Computer Science, University of Liverpool, Liverpool, UK (aris.filos-

ratsikas@liverpool.ac.uk, https://www.arisfilosratsikas.com).
‡Department of Computer Science, University of Oxford, Oxford, UK (paul.goldberg@cs.ox.ac.uk,

http://www.cs.ox.ac.uk/people/paul.goldberg/index1.html).

STOC19-200

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1312678
mailto:aris.filos-ratsikas@liverpool.ac.uk
mailto:aris.filos-ratsikas@liverpool.ac.uk
https://www.arisfilosratsikas.com
mailto:paul.goldberg@cs.ox.ac.uk
http://www.cs.ox.ac.uk/people/paul.goldberg/index1.html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-201

[76] identified the first natural problem which is complete for PPP. Prior to this work,
natural PPA-complete problems had not been proven to exist, where “natural” here
has the very specific meaning of problems that do not explicitly contain a circuit in
their definition.1 The importance of identifying such problems was brought up as
early as Papadimitriou’s original paper [71] and was later reiterated in several works
[49, 18, 24, 30].
The contributions of the present paper are twofold:

• We identify the first examples of natural PPA-complete problems, namely,
the Necklace-Splitting problem with two thieves, the approximate
Consensus-Halving problem, and the Discrete Ham Sandwich prob-
lem, dispelling the suspicion that such problems might not exist.

• These problems have been of separate interest from the complexity landscape
of TFNP. As discussed in section 1.2, besides being explicitly raised as open
problems in [71], the complexity of Necklace-Splitting and Discrete
Ham Sandwich has been studied in works dating back to the 1980s.

Below, we provide an overview of the computational classes PPA and PPAD, as well
as the three aforementioned problems and the related work on them.

1.1. The classes PPA and PPAD. The complexity classes PPA and PPAD
were introduced by Papadimitriou [71] in 1994, in an attempt to classify various
natural problems in the class TFNP [65]. PPA is the class of problems reducible to
Leaf (Definition 1.1), and a PPA-complete problem is one that is polynomial-time
equivalent to Leaf.

Definition 1.1 (Leaf). An instance of the problem Leaf consists of an undi-
rected graph G whose vertices have degree at most 2; G has 2n vertices represented
by bitstrings of length n; G is presented concisely via a circuit that takes as input a
vertex and outputs its neighbour(s). We stipulate that vertex 0n has degree 1. The
challenge is to find some other vertex having degree 1.

PPAD has a similar definition, but the (implicit) graph is directed and we are
given a vertex of outdegree 1 (a source) and we are looking for another vertex of
indegree 1 (a sink) or outdegree 1 (another source); the associated canonical problem
for PPAD is called End of Line.

Over the years, various important problems were proven to be complete for the
class PPAD, such as the complexity of many versions of Nash equilibrium [24, 19, 34,
66, 73, 20], market equilibrium computation [23, 17, 79, 21, 74], and others [32, 57, 45].
On the other hand, the problems that are known to be PPA-complete are rather lim-
ited. Some examples include the following. Aisenberg, Bonet, and Buss [2] introduce
the problem 2D-Tucker: suppose we have a coloring of an exponentially fine grid on
a square region, the coloring being concisely represented via a circuit. Tucker’s lemma
[78] (the discrete version of the well-known Borsuk–Ulam theorem [15]) guarantees
that if certain boundary conditions are obeyed, then two adjacent2 squares in the grid
will get opposite colors. 2D-Tucker is the search for such a solution, or alternatively
a violation of the boundary conditions. As it happens, we use 2D-Tucker as the
starting-point for our reductions here. Deng et al. [30] showed PPA-completeness

1The term “natural” as used here is attributed to Grigni [49]. A more intuitive definition of
natural problems is of those that have been defined outside of the context of the subclasses of
TFNP; the problems that we show to be PPA-complete in this paper are natural according to both
definitions.

2Throughout this paper, two regions are considered to be adjacent whenever they meet at a
single point; for example, they do not have to share a facet.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-202 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

for finding fully coloured points of triangulations of various nonoriented surfaces; the
colorings are presented concisely via a circuit. Recently, Deng, Feng, and Kulkarni
[31] showed that Octahedral Tucker is PPA-complete, reducing from 2D-Tucker and
using a snake-embedding style technique that packages-up the exponential grid in
two dimensions, into a grid of constant size in high dimension. Belovs et al. [10]
show PPA-completeness for novel problems presented in terms of arithmetic circuits
representing instances of the Chevalley–Warning theorem and Alon’s Combinatorial
Nullstellensatz. A common characteristic of all of these problems is that they are not
natural in the sense of our earlier criterion, and as noted above, the existence of such
problems was hitherto an open question.

With regard to the connection with topological fixpoint search problems, the
distinction between PPAD and PPA seems to revolve around whether we are searching
for a fixpoint in an oriented topological space or an unoriented one. For example, while
Papadimitriou [71] showed that it’s PPAD-complete to find a Sperner solution in a
three-dimensional cube, Grigni [49] showed that it’s PPA-complete to find a solution
to Sperner’s lemma in a 3-manifold consisting of the product of a Möbius strip and
a line segment. The two-dimensional versions of these results are given in [18, 30].
Goldberg and Hollender [45] show that the search problem corresponding to the hairy
ball theorem—where the space is oriented—is PPAD-complete.

Finally, note that PPA-completeness is at least as strong a notion of computa-
tional hardness as PPAD-completeness, corresponding with PPAD being a subset of
PPA. Despite the apparent similarity between their definitions, there is more progress
in basing the hardness of PPA on standard cryptographic assumptions: Factoring
can be reduced to PPA (with a randomized reduction) [54], while so far, the hard-
ness of PPAD has relied on problems from indistinguishability obfuscation [12, 42] or
from a variant of the Fiat–Shamir transformation [22]. Garg, Pandey, and Srinivasan
[43] make progress in weakening the cryptographic assumptions on which to base the
hardness of PPAD, but these are still less satisfying than in the case of PPA.

1.2. The computational problems. Below we provide details and definitions
for the computational problems that we consider in this paper, as well as informal
statements of our main results.

1.2.1. Necklace-Splitting. We start with the definition of the problem.

Definition 1.2 (Necklace-Splitting). In the k-Necklace-Splitting problem
there is an open necklace with kai beads of color i for 1 ≤ i ≤ n. An “open necklace”
means that the beads form a string, not a cycle. The task is to cut the necklace
in (k − 1) · n places and partition the resulting substrings into k collections, each
containing precisely ai beads of color i, 1 ≤ i ≤ n.

In Definition 1.2, k is thought of as the number of thieves who desire to split the
necklace in such a way that the beads of each color are equally shared. In this paper,
usually we have k = 2 and we refer to this special case as Necklace-Splitting.

The Necklace-Splitting problem was introduced in a 1982 paper of Bhatt and Leis-
erson [11, section 5], where it arose in the context of VLSI circuit design (the version
defined in [11] is the 2-thief case proved PPA-complete in the present paper). In 1985
and 1986, the 2-thief case was shown to have guaranteed solutions (as defined in Def-
inition 1.2) by Goldberg and West [44] and Alon and West [6] and then in 1987, Alon
[3] proved existence of solutions for k thieves as well. Early papers that explicitly
raise its complexity-theoretic status as an open problem are [44] and [4, 5]. Subse-
quently, the Necklace-Splitting problem was found to be closely related to “paint-shop

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-203

scheduling,” a line of work in which several papers such as [67, 70, 69] explicitly men-
tion the question of the computational complexity of Necklace-Splitting. Meunier [67]
notes that the search for a minimum number of cuts admitting a fair division (which
may be smaller than the number (k − 1)n that is guaranteed to suffice) is NP-hard,
even for a subclass of instances of the 2-thief case. (That is a result of Bonsma,
Epping, and Hochstättler [14] for the “paint shop problem with words,” equivalent to
2-thief Necklace-Splitting with two beads of each color.)

The problem for k = 2 was known to be in PPA from [71]; here we prove that it
is PPA-complete. The corresponding theorem is the following.

Theorem 1.3. Necklace-Splitting is PPA-complete when there are k = 2
thieves.

Theorem 1.3 gives a convincing negative answer to Meunier and Neveu’s ques-
tions [69] about possible polynomial-time solvability or membership of PPAD for
Necklace-Splitting; likewise it runs counter to Alon’s cautious optimism at ICM
1990 ([5, section 4]) that the problem may be solvable in polynomial time.

If we knew that k-Necklace-Splitting belonged to PPA for other values of
k, we could of course make the blanket statement “Necklace-Splitting is PPA-
complete.” For numbers of k which are powers of 2, we can extend our PPA-
membership result; we provide more details in subsection 9.1. For more general
values of k, however, the proofs that Necklace-Splitting is a total search problem
for k > 2 [3, 68] do not seem to boil down to the parity argument on an undi-
rected graph, and thus the class PPA does not seem to be the right candidate for
the problem. Interestingly, Papadimitriou [71] (implicitly) also defined a number of
computational complexity classes related to PPA, coined PPA-p, where p denotes a
prime power which is at least 2 (with PPA-2=PPA). Following the conference ver-
sions of the papers associated with this paper, Filos-Ratsikas et al. [40] proved that k-
Necklace-Splitting is in PPA-p, leaving the PPA-p-completeness of the problem as
an important open question. We discuss these classes further in subsection 9.1 as well.

1.2.2. Consensus-Halving. The Consensus-Halving problem involves a set
of n agents each of whom has a valuation function on a one-dimensional line segment
A (the “cake,” in cake-cutting parlance). Consider the problem of selecting k “cut
points” in A that partition A into k+1 pieces, then labelling each piece either “posi-
tive” or “negative” in such a way that each agent values the positive pieces equally to
the negative ones. In 2003, Simmons and Su [75] showed that this can always be done
for k = n; their proof applies the Borsuk–Ulam theorem and is a proof of existence
analogous to Nash’s famous existence proof of equilibrium points of games, proved
using Brouwer’s or Kakutani’s fixed point theorem. Significantly, Borsuk–Ulam is
the undirected version of Brouwer, and already from [71] we know that it relates to
PPA, making Consensus-Halving a candidate for PPA-completeness. As detailed
in Definition 1.4 below, we assume that valuations are presented as step functions
using the logarithmic cost model of numbers.

Definition 1.4 (ε-Consensus-Halving [75]). An instance ICH incorporates, for
1 ≤ i ≤ n, a nonnegative measure µi of a finite line interval A = [0, x], where each µi

integrates to 1 and x > 0 is part of the input. We assume that µi are step functions
represented in a standard way, in terms of the endpoints of intervals where µi is
constant, and the value taken in each such interval. We use the bit model (logarithmic
cost model) of numbers. ICH specifies a value ε ≥ 0 also using the bit model. We
regard µi as the value function held by agent i for subintervals of A.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-204 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

A solution consists first of a set of n cut points in A (also given in the bit model of
numbers). These points partition A into (at most) n+ 1 subintervals, and the second
element of a solution is that each subinterval is labelled A+ or A−. This labelling is a
correct solution provided that for each i, |µi(A+)− µi(A−)| ≤ ε, i.e., each agent has
a value in the range [12 − ε

2 ,
1
2 + ε

2] for the subintervals labelled A+ (hence also values
the subintervals labelled A− in that range).

We assume without loss of generality that in a valid solution, labels A+ and
A− alternate. We also assume that the alternating label sequence begins with la-
bel A+ on the left-hand side (LHS) of A (i.e., A+ denotes the leftmost label in a
Consensus-Halving solution). The Consensus-Halving problem of Definition 1.4
is a computational version of the Hobby–Rice theorem [51].

Most of the effort in this paper is devoted to proving that ε-Consensus-Halving
is PPA-hard, when ε is an inversely polynomial function of the number of agents n;
we note that membership in PPA was already known from [37]. We have the following
theorem.

Theorem 1.5. ε-Consensus-Halving is PPA-complete for some inverse poly-
nomial ε.

With this at hand, we can actually reduce ε-Consensus-Halving to Necklace-
Splitting, to prove the PPA-completeness of the later problem. In fact, in section 8,
we obtain a computational equivalence between generalizations of the two problems.
This kind of relation should not be surprising, seeing as most of the existence proofs for
the Necklace-Splitting problem go via a continuous version that closely resembles
the Consensus-Halving problem. We state the theorem informally.

Theorem 1.6. Necklace-Splitting and ε-Consensus-Halving are compu-
tationally equivalent, when ε is inversely polynomial.

Obviously, Theorem 1.3 then follows from Theorems 1.5 and 1.6. We highlight
some interesting recent results about the complexity of the Consensus-Halving
problem, which appeared after the conference versions of the papers associated with
this work. Filos-Ratsikas et al. [37] showed that the problem is PPAD-hard, even when
ε is constant and one is allowed to use n+ℓ cuts, for some fixed ℓ that does not depend
on the number of agents. The authors of [37] also showed that deciding whether a solu-
tion with n−1 cuts exists is NP-hard. Filos-Ratsikas et al. [39] showed that the PPA-
hardness of the problem is maintained even if we restrict the valuations of the agents
to be piecewise uniform functions with only two valuation blocks. Deligkas, Filos-
Ratsikas, and Hollender [29] studied the complexity of the problem with a constant
number of agents and proved PPA-completeness results and query complexity bounds
when the valuation functions are general or monotone, but not necessarily additive
measures. Deligkas et al. [28] studied the exact version of the problem (when ε = 0)
and showed that it is FIXP-hard, whereas deciding whether such a solution with fewer
than n cuts exists is ETR-complete. The authors also show that the exact version lies
in the newly introduced computational class BU, which captures the complexity of the
exact Borsuk–Ulam problem and conjecture that it is actually BU-complete. Batziou,
Hansen, and Høgh [8] very recently proved that finding a strong approximation of the
problem is complete for the appropriate counterpart of BU, the class BUα.

1.2.3. Discrete Ham Sandwich. The Ham Sandwich theorem [77] is of
enduring and widespread interest due to its colorful and intuitive statement and
its relevance and applications in topology, social choice theory, and computational

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-205

geometry. Roughly, it states that given d measures in Euclidean d-space, there exists
a hyperplane that cuts them all simultaneously in half. Early work on variants and
applications of the theorem focused on nonconstructive existence proofs and mostly
did not touch on the algorithmics. A 1983 paper by Hill [50] hints at possible in-
terest in the corresponding computational challenge, in the context of a related land
division problem. The computational problem (and its complexity) was first properly
studied in a line of work in computational geometry beginning in the 1980s, for exam-
ple [33, 59, 60, 61]. The problem envisages input data consisting of d sets of n points
in Euclidean d-space and asks for a hyperplane that splits all point sets in half.

The problem Discrete Ham Sandwich as named in [71] is essentially this, with
d set equal to n to emphasize that we care about the high-dimensional case; we provide
the definition below.

Definition 1.7 (Discrete Ham Sandwich). In the Discrete Ham Sand-
wich problem, there are n sets of points in n dimensions having integer coordinates
(equivalently one could use rationals). A solution consists of a hyperplane that splits
each set of points into subsets of equal size (if any points lie on the plane, we are
allowed to place them on either side, or even split them arbitrarily).

In Definition 1.7, each point set represents an ingredient of the sandwich, which
is to be cut by a hyperplane in such a way that all ingredients are equally split.

In the work in computational geometry, the emphasis has been on efficient algo-
rithms for small values of d; Lo, Matoušek, and Steiger [60] improve the dependence
on d but it is still exponential, and the present paper shows for the first time that
we should not expect to improve on that exponential dependence. More recently,
Grandoni et al. [48] apply the Generalized Ham Sandwich Theorem to a problem in
multiobjective optimisation and note that a constructive proof would allow a more
efficient algorithm to emerge. The only computational hardness result we know of is
[58], which obtains a W [1]-hardness result for a constrained version of the problem;
[58] points out the importance of the computational complexity of the general prob-
lem. The PPA-completeness result of the present paper is the first hardness result
of any kind for Discrete Ham Sandwich, and as we noted, is a strong notion of
computational hardness. Karthik and Saha [56], showing a form of equivalence be-
tween the Ham Sandwich Theorem and Borsuk–Ulam, explicitly mention the possible
PPA-completeness of Discrete Ham Sandwich as an “interesting and challenging
open problem.”

We prove the PPA-completeness of Discrete Ham Sandwich via a simple re-
duction from Necklace-Splitting. Ours is not the first paper to develop the close
relationship between the two problems: [13] shows a generalization, where multi-
ple agents may share a “sandwich,” dividing it into convex pieces. Further papers
to explicitly point out their computational complexity as open problems include [31]
(mentioning that both problems “show promise to be complete for PPA”), [2], and [10].

Theorem 1.8. Discrete Ham Sandwich is PPA-complete.

The proof of the theorem is included in section 7. A limitation to Theorem 1.8 is
that the coordinates may be exponentially large numbers; they could not be written
in unary. We leave it as an open problem whether a unary-coordinate version is also
PPA-complete. As defined in [71], Discrete Ham Sandwich stipulated that each of
the n sets of points is of size 2n, whereas Definition 1.7 allows polynomial-sized sets.
We can straightforwardly extend PPA-completeness to the version of [71] by adding
“dummy dimensions” whose purpose is to allow larger sets of each ingredient; the
new ingredients that are introduced consist of compact clusters of point masses, each

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-206 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

cluster in general position relative to the other clusters and the subspace of dimension
n that contains the points of interest.

1.3. Further related work. We highlight some rather recent results not di-
rectly related to the classes PPA or PPAD, but rather with other subclasses of TFNP.
Sotiraki, Zampetakis, and Zirdelis [76] identified the first natural problem for the class
PPP, the class of problems whose totality is established by an argument based on the
pigeonhole principle. For the class CLS, both Daskalakis, Tzamos, and Zampetakis
[25] and Fearnley et al. [36] identified complete problems (two versions of the Contrac-
tion Map problem, where a metric or a meta-metric is given as part of the input). In
the latter paper, the authors define a new class, namely, EOPL (for “End of Potential
Line”), and show that it is a subclass of CLS. Furthermore, they show that two well-
known problems in CLS, the P-Matrix Linear Complementarity Problem (P-LCP)
and finding a fixpoint of a piecewise-linear contraction map (PL-Contraction), be-
long to the class. The End of Potential Line problem of [36] is polynomially
equivalent to the End of Metered Line of [53]. In a recent breakthrough paper,
Fearnley et al. [35] showed that in fact CLS = PPAD ∩ PLS and that this class
captures the precise complexity of problems related to Gradient Descent. Their result
was already used by Babichenko and Rubinstein [7] to prove that computing a mixed
Nash equilibrium of a congestion game is PPAD ∩ PLS-complete.

2. Overview of the proof. As we mentioned in the introduction, most of
the work in this paper is toward proving Theorem 1.5, as the PPA-completeness
of Necklace-Splitting then follows from the equivalence results in section 8. In
turn, the PPA-hardness of Necklace-Splitting allows us to establish the PPA-
completeness of Discrete Ham Sandwich as well (section 7). In this section, we
will provide an overview of the proof of Theorem 1.5, but first, we will present some
useful notation and terminology.

Notation. We use the standard notation [n] to denote the set {1, . . . , n}, and we
also use ±[n] to denote {1,−1, 2,−2, . . . , n,−n}. We often refer to elements of ±[n] as
“labels” or “colors.” λ is usually used to denote a labelling function (so its codomain
is ±[n]).

We let A denote the domain of an instance of Consensus-Halving; if that
instance has complexity n, then A will be the interval [0, poly(n)], where poly(n) is
some number bounded by a polynomial in n. Recall by Definition 1.4 that µa denotes
the value function, or measure, of agent a on the domain A, in a Consensus-Halving
instance. We also associate each agent with its own cut (recall that the number of
agents and cuts is supposed to be equal), and we let c(a) denote the cut associated
with agent a. We let pC(n) be a polynomial that represents the number of “circuit-
encoders” that we use in our reduction (see subsection 5.1); we usually denote it pC ,
dropping the n from the notation.

Finally, B denotes the n-cube (or “box”) [−1, 1]n.
Terminology. In an instance of Consensus-Halving, a value-block of an agent

a denotes a subinterval of the domain where a possesses positive value, uniformly
distributed on that interval. In our construction, value-blocks tend to be scattered
rather sparsely along the domain.

2.1. An overview of a simpler reduction. We start with an overview of a
construction which does not quite give us the result that we need, but contains most
of the crucial elements of the reduction and is easier to describe.3

3This reduction was used in our 2018 paper [38], parts of which are contained in this version.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-207

Before presenting this simpler construction, we begin by explaining the ground
covered by Filos-Ratsikas et al. [37] (where PPAD-hardness was established), which
highlights the challenges when moving from PPAD-hardness to PPA-hardness. In [37],
each agent a in a Consensus-Halving instance has a particular cut c(a) associated
with a. In an instance ICH of Consensus-Halving, we refer to the interval A
on which agents have valuation functions, as the domain of ICH . Filos-Ratsikas et
al. [37] established PPAD-hardness by reduction from the PPAD-complete problem
ε-Gcircuit (ε-approximate Generalized Circuit), in which the challenge is to find a
fixpoint of a circuit in which each node computes (with error at most ε) a real value in
the range [0, 1], consisting of a function of at most two other nodes in the circuit; these
may be certain simple arithmetic operations or boolean operations (regarding 0 and 1
as representing false and true, respectively). In [37]’s reduction from ε-Gcircuit
to Consensus-Halving, each node ν of a generalized circuit has a corresponding
agent aν , and the value computed at ν is represented by the position taken by the
cut c(aν). aν ’s valuation function is designed to enforce the relationship that ν’s
value has with the node(s) providing input to ν. Here we reuse some of the circuit
“gate gadgets” of [37], in particular the boolean ones. A cut that encodes the value
computed at a boolean gate is expected to lie in one of two short intervals, associated
with true and false.

To prove PPA-hardness, we will reduce from the computational problem 2D-
Tucker, which was recently shown to be PPA-complete by Aisenberg, Bonet, and
Buss [2]. In moving from PPAD-hardness to PPA-hardness, however, we encounter
a fundamental limitation to the above approach, which is that distinct cuts are con-
strained to lie in distinct (nonoverlapping) regions of A, and collectively, the cuts lie
in an oriented domain —recall our observations toward the end of section 1.1. A new
idea is needed to deal with this issue.

To this end, we construct two special agents (the “coordinate-restricting agents”)
along with two cuts that correspond to those agents, which are less constrained regard-
ing where, in principle, they may occur, in a solution to the resulting Consensus-
Halving instance ICH . These two cuts represent the coordinates of a point on a
triangular region having two sides identified to form a Möbius strip. In terms of the
instance of Consensus-Halving, these cuts are the only ones that lie in a specific
subinterval of the interval A, called the “coordinate-encoding (c-e) region,” and they
are called the “coordinate-encoding cuts.” Identifying two sides in this way is done
by exploiting the equivalence of taking a cut on the LHS of the c-e region and moving
it to the RHS.

The rest of A is called the “circuit-encoding region” R, and the cuts occurring
within R do the job of performing computation on the location of cuts in the c-e region.
The reduction uses a sequence of “sensor agents” to identify the endpoints of intervals
labelled A+ and A− in the coordinate-encoding region and feed this information into
a set of agents called circuit-encoders, which perform computation on those values.
The result of this computation is a label in ±[2], which is appropriately translated
to an assignment of value blocks of the coordinate-restricting agents to either A+

or A−. The assignment is such that the coordinate-restricting agents are satisfied
with the discrepancy between the two values if the set of cuts in the coordinate-
encoding region corresponds to a point that can be traced back to a solution to
2D-Tucker.

Importantly, the freedom regarding where the coordinate-enconding cuts can oc-
cur introduces some new problems, mainly the possibility that one of them may occur
outside of the intended “coordinate-encoding region” of the domain of ICH ; in such a

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-208 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

case, we refer to the cut as a “stray cut.” Stray cuts may interfere with the circuitry
that ICH uses to encode an instance of 2D-Tucker. We deal with this possibility
by making multiple copies of the circuit, so that an unreliable copy is “out-voted” by
the reliable ones. The duplication (we use 100 copies) of the circuit serves a further
purpose reminiscent of the “averaging maneuver” introduced by [24]; we need to deal
with the possibility of values occurring at nodes of the circuit that fail to correspond
to boolean values. The duplication corresponds to a sampling of a cluster of points
on the Möbius strip, most of which get converted to boolean values.

Another potential problem caused by the stray cuts is that they may change the
parity of the labels (the sequence of A+ and A−, potentially affecting the intended be-
havior of the gadgets corresponding to the circuitry. Fortunately, a “double-negative
lemma” guarantees that such a cut is not too harmful, as the effects of this change in
parity “cancel out.” Finally, we establish that when a cut is moved from one end to
the other end of the c-e region, this corresponds to identifying two facets of a simplex
to form a Möbius strip.

2.2. An overview of the actual reduction. Crucially, the approach above
embeds a hard search problem into the surface of a standard two-dimensional Möbius
strip, and hence it is necessary to work at exponentially fine resolution. This imme-
diately requires inverse-exponential ε for instances of ε-Consensus-Halving. While
this is enough for establishing the PPA-completeness of ε-Consensus-Halving in
general, it falls short of our goal of showing PPA-completness for Necklace-
Splitting and Discrete Ham Sandwich, as Theorem 1.6 does not apply unless ε
is inversely polynomial.

To avoid this issue, as the starting-point of the reduction, in section 3 we apply the
snake-embedding technique invented in [19] (versions of which are used in [30, 31] in the
context of PPA) to convert the instance of 2D-Tucker to a grid of fixed resolution,
at the expense of going from 2 to n dimensions. The new problem, Variant High-D
Tucker (Definition 3.3), envisages a 7× 7× · · · × 7 grid. Here, we design the snake-
embedding in such a way that PPA-completeness holds for instances of the high-
dimensional problem that obey a further constraint on the way the high-dimensional
grid is colored, which we exploit subsequently. A further variant, New Variant
High-D Tucker (Definition 3.5), switches to a “dual” version where a hypercube
is divided into cubelets and points in the hypercube are colored such that interiors
of cubelets are monochromatic. A pair of points is sought having equal and opposite
colors and distant by much less than the size of the cubelets.

We then move to the construction of the Consensus-Halving instance. We
encode a point in n dimensions using a solution to an instance ofConsensus-Halving
as follows. Instead of having just two cuts in the coordinate-encoding region (as
in the simpler construction above), suppose we ensure that up to n cuts lie there.
These cuts split this interval into n + 1 pieces whose total length is constant, so
represent a point in the unit n-simplex (in the simpler construction, this was the
unit 2-simplex). This “Möbius-simplex” (Definition 4.12; Figure 16) has the further
property that two facets are identified with each other in a way that effectively turns
the simplex into an n-dimensional Möbius strip. Note that this is the analogue of the
“Möbius triangular region” described in the previous subsection, when generalized to
n dimensions. For the aforementioned cuts in the coordinate-encoding region, we now
construct n coordinate-restricting agents.

In subsection 5.2 we define a crucially important coordinate transformation (see
Figure 17) with the following key properties

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-209

• the transformation and its inverse can be computed efficiently, and distances
between transformed coordinate vectors are polynomially related to distances
between untransformed vectors;

• at the two facets that are identified with each other, the coordinates of corre-
sponding points are the negations of each other; our coloring function (that re-
spects Tucker-style boundary conditions) has the effect that antipodal points
get equal and opposite colours, and no undesired solutions are introduced at
these facets.

This transformation represents a “smooth embedding” of the Möbius-simplex into
Consensus-Halving instances: points in the Möbius-simplex map to sequences of
cuts in the instance, and “smoothness” refers to the polynomial relationship between
corresponding distances.

With the aid of the above coordinate transformation, we divide up the Möbius-
simplex:

• The twisted tunnel (Definition 5.7) is an inverse-polynomially thick strip, con-
necting the two facets that are identified in forming the Möbius-simplex. It
contains at its center an embedded copy of the hypercube domain of an in-
stance IV T of New Variant High-D Tucker. Outside of this embedded
copy, it is “colored in” (using our new coordinate system) in a way that avoids
introducing solutions that do not encode solutions of IV T .

• The Significant Region contains the twisted tunnel and constitutes a some-
what thicker strip connecting the two facets. It serves as a buffer zone between
the twisted tunnel and the rest of the Möbius-simplex. It is subdivided into
subregions where each subregion has a unique set of labels, or colors, from
±[n]. (We sometimes refer to these as “color-regions”.) It is shown that
any solution to an instance of Consensus-Halving constructed as in our
reduction represents a point in the Significant Region.

• If, alternatively, a set of cuts represents a point from outside the Significant
Region, then certain agents (so-called tunnel-boundary sensor agents) will
observe severe imbalances between labels A+ and A−, precluding a solution.
This is achieved via appropriate “feedback” that is provided to the coordinate-
restricting agents, which results in them being dissatisfied with the balance
of A+ and A−.

When working in two dimensions, it is relatively straightforward to integrate
the subset of the two-dimensional Möbius-simplex that corresponds with the twisted
tunnel, with the parts of the domain where the tunnel-boundary sensoragents become
active (ruling out a solution) in a way that avoids introducing solutions that fail to
encode solutions of Tucker. In fact, the construction of the previous subsection
requires only a single tunnel-boundary sensoragent. In n dimensions, that gap has to
be colored-in in a carefully designed way (subsection 5.3, list item 3), and this is the
role of the part of the Significant Region that is not the twisted tunnel. The proofs
that they work correctly (subsections 6.2 and 6.3) become more complicated.

As in the simpler construction, we use multiple copies of the circuit that performs
the computation, each in its own subregion of R. Here we use pC(n) copies where
pC is a polynomial, instead of 100 copies. Each copy is called a circuit-encoder. As
before, the purpose of multiple copies is to make the system robust; a small fraction of
copies may be unreliable, and we have to account for the possibility that one of the c-e
cuts may occur in the circuit-encoding region, rendering one of the copies unreliable.
The “double-negative lemma” of the simpler construction applies here as well, and
again we can ensure that when a cut is moved from one end to the other end of the

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-210 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

c-e region, this corresponds to identifying two facets of the simplex to form a Möbius
strip.

3. Snake embedding reduction. The purpose of this section is to establish
the PPA-completeness of New Variant High-D Tucker, Definition 3.5. The snake
embedding construction was devised in [19], in order to prove that ε-Nash equilibria
are PPAD-complete to find when ε is inverse polynomial; without this trick the result
is just obtained for ε being inverse exponential. We do a similar trick here. We will
use as a starting-point the PPA-completeness of 2D-Tucker, from [2], which is the
following problem.

Definition 3.1 (Aisenberg et al. [2]). An instance of 2D-Tucker consists of
a labelling λ : [m] × [m] → {±1,±2} (which is given implicitly as a labelling boolean
circuit) such that for 1 ≤ i, j ≤ m, λ(i, 1) = −λ(m−i+1,m) and λ(1, j) = −λ(m,m−
j + 1). A solution to such an instance of 2D-Tucker is a pair of vertices (x1, y1),
(x2, y2) with |x1 − x2| ≤ 1 and |y1 − y2| ≤ 1 such that λ(x1, y1) = −λ(x2, y2).

The hardness of the problem in Definition 3.1 arises when m is exponentially-
large, and the labelling function is presented by means of a boolean circuit.

We aim to prove the following is PPA-complete, even when the values mi are all
upper-bounded by some constant (specifically, 7).

Definition 3.2 (Aisenberg, Bonet, and Buss [2]). An instance of nD-Tucker
consists of a labelling λ : [m1]× · · · × [mn] → {±1, . . . ,±n} (which is given implicitly
as a labelling boolean circuit) such that if a point x = (x1, . . . , xn) lies on the boundary
of this grid (i.e., xi = 1 or xi = mi for some i), then letting x̄ be the antipodal point of
x, we have λ(x̄) = −λ(x). (Two boundary points are antipodal if they lie at opposite
ends of a line segment passing through the center of the grid.) A solution consists of
two points z, z′ on this grid, having opposite labels (λ(z) = −λ(z′)), each of whose
coordinates differ (coordinatewise) by at most 1.

It is assumed that λ is presented in the form of a circuit, syntactically constrained
to give opposite labels to antipodal grid points.

Definition 3.3. An instance of Variant High-D Tucker is similar to Defi-
nition 3.2 but whose instances obey the following additional constraints. The mi are
upper bounded by the constant 7. We impose the further constraint that the facets
of the cube are colored with labels from ±[n] such that all colors are used, and oppo-
site facets have opposite labels, and for 2 ≤ i ≤ n it holds that the facet with label i
(respectively, −i) has no grid-point on that facet with label i (respectively, −i).

Theorem 3.4. Variant High-D Tucker is PPA-complete.

Informal description of snake embedding. A snake-embedding consists of a reduc-
tion from kD-Tucker to (k+1)D-Tucker, which we describe informally as follows.
See Figure 1. Let I be an instance of kD-Tucker, on the grid [m1] × · · · × [mk].
Embed I in (k+1)-dimensional space, so that it lies in the grid [m1]×· · ·× [mk]× [1].
Then sandwich I between two layers, where all points in the top layer get labelled
k + 1, and points in the bottom layer get labelled −(k + 1), as in the left part of
Figure 1. We now have points in the grid [m1]× · · · × [mk]× [3], and notice that this
construction preserves the required property that points on the boundary have labels
opposite to their antipodal points.

Then, the main idea of the snake embedding is the following. We fold this grid
into three layers, by analogy with folding a sheet of paper along two parallel lines
so that the cross section is a zigzag line, and one dimension of the folded paper is

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-211

−3

−1, 1,−2, 2

3

Three layers

3
−1, 1,−2, 2

−3

side view before folding

3
−1, 1,−2, 2

3 −3
−1, 1,−2, 2

3 −3
−1, 1,−2, 2

−3

side view after folding

Fig. 1. Snake embedding from two to three dimensions.

one-third of the unfolded version, the other dimension being unchanged (see the RHS
of Figure 1). In higher dimension, suppose that m1 is the largest value of any mi.
Then, we can reduce m1 by a factor of about 3, while causing the final coordinate
to go up from 3 to 9. By merging layers of label k + 1 and −(k + 1), the thickness
of 9 reduces to 7. This operation preserves the labelling rule for antipodal boundary
points.
However, there are two points that need extra care for the reduction to go through:

• First, simply folding the layers such that their cross sections are zigzag lines
may introduce diagonal adjacencies between cubelets that were not present
in the original instance in k-dimensions, i.e., we might end up generating
adjacent cubelets with equal-and-opposite colours; see the left part of Fig-
ure 2 for an illustration. To remedy this, we will “copy” (or “duplicate”) the
cubelets at the folding points, essentially having three cubelets of the same
color, whose cross sections are the short vertical section in the RHS of Fig-
ure 1; see also the RHS of Figure 2 for an illustration. From now on, when
referring to “folding,” we will mean the version where we also duplicate the
cubelets at the folding points, as described above.

• Second, the folding and duplicating operation only works ifm1 is a multiple of
3, as otherwise the (k+1)-dimensional instance may not satisfy the boundary
conditions of Definition 3.2, i.e., we might end up with antipodal cubelets that
do not have equal-and-opposite colors. To ensure that m1 is a multiple of 3
before folding, we can add one or two additional layers of cubelets to m1

(depending on whether the remainder of the division of m1 by 3 is either
2 or 1, respectively). These layers are duplicate copies of the outer layers
of cubelets at opposite ends of the length-m1 direction; if there is only one
additional layer to be added, we can add on either side. Note that this
operation does not generate any cubelets of equal-and-opposite labels that
were not there before and the same will be true for the instance after the
folding operation. See Figure 3 for an illustration.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-212 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

1

2
−1

−2

−2

Side view without duplication

1

1

1

−2

2

Side view with duplication

Fig. 2. Side views of the folding operation with and without duplications of cubelets. On
the left, simply folding generates equal-and-opposite labels diagonally in the shaded cubelets.
On the right, the duplication of the cubelet at the folding position in three copies prevents
this from happening.

2
2
1
−2

2
2
1
−2

2
−1
−2
−2

2
−1
−2
−2

Fig. 3. Extending the coloring to ensure that m1 is a multiple of 3. In the figure, the
case when m1 mod 3 = 1 is shown, i.e., one layer needs to be added at each side.

Formal description of snake embedding. Let I be an instance of kD-Tucker
having coordinates in ranges [m1], . . . , [mk] and label function λ. Select the largest
mi, breaking ties lexicographically. Assume for simplicity in what follows that m1 is
largest.

Fixing the length to a multiple of 3. Let r = m1 mod 3 and let ℓ = 3 − r.
Consider the instance I3 of kD-Tucker having coordinates in ranges [m′

1], . . . , [mk],
with m′

1 mod 3 = 0, constructed from I as follows. For any point x′ = (x′
1, . . . , x

′
k)

in [m′
1] × · · · × [mk], x

′ is mapped to a point x in [m1] × · · · × [mk] and receives a
colour λ′(x′) such that the following hold:

• If ℓ = 0, then x′ is mapped to x = (x′
1, . . . , x

′
k) and λ′(x′) = λ(x), i.e., x′ is

mapped to itself and receives its own label, since m1 is already a multiple of
3.

• If ℓ = 1, then
– If x′

1 ≤ m1, x
′ is mapped to x = (x′

1, . . . , x
′
k) and λ′(x′) = λ(x);

– If x′
1 = m1 + 1, x′ is mapped to x = (m1, . . . , x

′
k) and λ′(x′) = λ(x).

In other words, points for which the first coordinate ranges from 1 to x′
1 are

mapped to themselves and receive their own label, and points for which the
first coordinate is m1+1 are mapped to the points where the first coordinate
is m1, receiving the label of that point. This essentially “duplicates” the
layer of cubelets on the right endpoint of the m1-direction. See Figure 3 for
an illustration.

• If ℓ = 2, then
– if x′

1 = 1, x′ is mapped to x = (1, . . . , x′
k) and λ′(x′) = λ(x);

– if 2 ≤ x′
1 ≤ m1 + 1, x′ is mapped to x = (x′

1 − 1, . . . , x′
k) and λ′(x′) =

λ(x). This is similar to the mapping and labelling in the previous case,
except for the fact that we need to “shift” the labels of the points,
since we essentially introduced a copy of the layer of cubelets on the left
endpoint of the m1-direction. See Figure 3 for an illustration.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-213

Note that by the operation of adding ℓ layers as above, we do not introduce any
cubelets with equal-and-opposite labels that were not present before. To avoid com-
plicating the notation, in the following we will use m1 to denote the maximum size
of the first coordinate (instead of m′

1) and we will assume that m1 is a multiple of 3.
We will also use I to denote the instance of kD-Tucker where m1 is a multiple of 3,
instead of I3 as denoted above.

From k to k + 1 dimensions. Starting from an instance I of kD-Tucker, we
will construct an instance I ′ of (k + 1)D−Tucker as follows. Let x = (x1, . . . , xk)
be a point in [m1]× · · · × [mk] with labelling function λ. We will associate each such
point with a corresponding point x′ in

[
m1

3 + 2
]
× · · · × [mk]× [7] and a label λ′(x′)

as follows:
• If x1 ≤ m1

3 , then x is mapped to x′ = (x1, . . . , xk, 2), and λ′(x′) = λ(x).
• If x1 = m1

3 + 1 (the first “folding” point), then x is mapped to the following
three points in I ′ and receives the following colors (see the shaded cubelets
at the RHS of Figure 2):

– x′ = (m1

3 + 1, . . . , xk, 2) (the original cubelet) and λ′(x′) = λ(x);
– x′ = (m1

3 + 1, . . . , xk, 3) (the first copy) and λ′(x′) = λ(x);
– x′ = (m1

3 + 1, . . . , xk, 4) (the second copy) and λ′(x′) = λ(x).

• If m1

3 +2 ≤ x1 ≤ 2m1

3 −1, then x is mapped to x′ = (2m1

3 +2−x1, x2, . . . , xk, 4)
with λ′(x′) = λ(x).

• If x1 = 2m1

3 (the second folding point), then x is mapped to the following
three points in I ′ and receives the following colors:

– x′ = (2, . . . , xk, 4) (the original cubelet) and λ′(x′) = λ(x);
– x′ = (2, . . . , xk, 5) (the first copy) and λ′(x′) = λ(x);
– x′ = (2, . . . , xk, 6) (the second copy) and λ′(x′) = λ(x).

• If 2m1

3 +1 ≤ x1 ≤ m1, then x is mapped to x′ = (x1 +2− 2m1

3 , x2, . . . , xk, 6)
with λ′(x′) = λ(x).

• Set λ′(1, . . . , 1) = −k, along with any point x connected to it via a path of
points that have not been labelled by the above procedure.

• Set λ′(m1

3 +2,m2, . . . ,mk, 7) = k, along with any point x connected to it via
a path of points that have not been labelled by the above procedure.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. First, it is not hard to check that the composition of O(n)
snake-embeddings is a polynomial-time reduction, where by “composition” here we
refer to the implicit composition based on the labelling circuits. Also note that, by
the way the high-dimensional instance is constructed, we have not introduced any
adjacencies that did not already exist, i.e., if there is a pair of adjacent cubelets with
equal-and-opposite labels in the instance I ′ of the high-dimensional version, this pair
is present in the instance I of the two-dimensional version as well, and it is easy to
recover it in polynomial time. Therefore, it suffices to show how to obey the additional
constraint of Variant High-D Tucker, namely that for i ≥ 2, a side having label
i has no grid-points with label i, and similarly for −i.

We begin by taking the original two-dimensional instance I, of size m ×m, and
extend to an instance of size 3m×3m as follows. The original instance is embedded in
the center of the new instance. Each region R to the sides (of size m×m) are labelled
by copying the edge of I facing R, along an adjacent edge of R, and connecting these
two edges with paths that have two straight sections and connect two points of the
same label, and points along that path have that label. The outermost path then
labels a side of the new instance of length m, so these two opposite sides get opposite

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-214 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

2 1 -2 -2

1 -2 -2 -2

-2 -2 -1 -1

2 2 -1 -2

2

2

2

2

2

11

1

1

1

1

1

-2-2

-2

-2

-2

-2

-2

-2

-22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

-1

-1

-1

-1

-1

-2

-2

-2

-2

-2

2

2

2

2

1

1

1

1

1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2 -2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-1

-1

-1

-1

-1

-1

-2

-2

-2

-2

-2

-2

-1

-2

-2

-2

-2

-2

Fig. 4. The extension from an m × m instance of 2D-Tucker to a 3m × 3m instance, where
opposite sides have equal-and-opposite labels.

labels. We may assume (by switching 1’s and 2’s if needed) that these new opposite
sides are labelled ±2. See Figure 4.

The S-fold approach shown in Figure 1 can be checked to retain this property.
When we sandwich a cuboid between two layers of opposite (new) colors (call them
c and −c), as shown in Figure 1, we label the new facets thus formed with −c and c,
respectively. We label the other facets with their original labels (each of these facets
has acquired the labels c and −c, and no other labels). The folding operation has a
natural correspondence between the facets of the unfolded and folded versions of the
cuboid. It can be checked that the set of colors of a facet before folding is the same
as the set of colors of the corresponding facets after folding.

It is convenient to define the following problem, whose PPA-completeness follows
fairly directly from the PPA-completeness of Variant High-D Tucker.

Definition 3.5. An instance of New Variant High-D Tucker in n dimen-
sions is presented by a boolean circuit CV T whose input consists of coordinates of a
point in the hypercube B = [−1, 1]n and whoose output is a label in ±[n] (assume
CV T has 2n output gates, one for each label, and is syntactically constrained such
that exactly one output gate will evaluate to true), having the following constraints
that may be enforced syntactically:

1. Dividing B into 7n cubelets of edge length 2/7 using axis-aligned hyperplanes,
all points in the same cubelet get the same label by CV T .

2. Interiors of antipodal boundary cubelets get opposite labels.
3. Points on the boundary of two or more cubelets get a label belonging to one

of the adjacent cubelets.
4. Facets of B are colored with labels from ±[n] such that all colors are used,

and opposite facets have opposite labels. For 2 ≤ i ≤ n it also holds that
the facet with label i (respectively, −i) does not intersect any cubelet having
label i (respectively, −i). Facets colored ±1 are unrestricted (we call them the
“panchromatic facets”).

A solution consists of a pair of points that lie within an inverse polynomial dis-
tance δ(n) of each other (for concreteness, assume δ(n) = 1

100n). Those points should
receive equal and opposite labels by CV T .

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-215

4. Some building-blocks and definitions. Here we set up some of the general
structure of instances of Consensus-Halving constructed in our reduction. We
identify some basic properties of solutions to these instances. We define the Möbius-
simplex and the manner in which a solution encodes a point on the Möbius-simplex.
The detailed encoding of the circuitry is covered in section 5.

Useful quantities. We use the following values throughout the paper.
• δtiny is an inverse-polynomial quantity in n, chosen to be substantially smaller

than any other inverse-polynomial quantity that we use in the reduction,
apart from ε (below).

• δT is an inverse-polynomial quantity in n, which is smaller than any other
inverse-polynomial quantity apart from δtiny and is larger than δtiny by an
inverse-polynomial amount. The quantity δT denotes the width of the so-
called “twisted tunnel” (see Definition 5.7).

• phuge denotes a large polynomial in n; specifically, we let phuge = n/δtiny. The
quantity phuge represents the number of sensor agents for each circuit encoder
(see Definition 4.5).

• plarge denotes a large polynomial in n, which is, however, smaller than phuge

by a polynomial factor. The quantity plarge will be used in the definition of
the tunnel-boundary sensor agents (see Definition 4.6) and will quantify the
extent to which the cuts in the coordinate-encoding region (Definition 4.1)
are allowed to differ from being evenly spaced, before the tunnel-boundary
sensor agents become active (see section 4). The choice of plarge controls the
value δw of the radius of the Significant Region (see Proposition 4.15), with
larger plarge meaning larger δw.

• ε is the precision parameter in the Consensus-Halving solution, i.e., each agent
i is satisfied with a partition as long as |µi(A+) − µi(A−)| ≤ ε. Henceforth,
we will set ε = δtiny/10.
Given the above, we have the following qualitative relations between these
quantities:

ε ≪ δtiny ≪ δT ≪ plarge ≪ phuge.

4.1. Basic building-blocks. We consider instances ICH of the Consensus-
Halving problem that have been derived from instances IV T ofNew Variant High-
D Tucker in n dimensions. The general aim is to get any solution of such an instance
ICH to encode a point in n dimensions that “localizes” a solution to IV T , by which
we mean that from the solution of ICH , we will be able to find a point on the IV T

instance that can be transformed to a solution of IV T in polynomial time and fairly
straightforwardly.

We start with the definition of the coordinate-encoding region and the corre-
sponding agents.

Definition 4.1. Coordinate-encoding region (c-e region). Given some instance
of Variant High-D Tucker in n dimensions, the corresponding instance of
Consensus-Halving has a coordinate-encoding region, the interval [0, n], a (pre-
fix) subinterval of A (see Figure 5).

The valuation functions of agents in an instance ICH of Consensus-Halving
obtained by our reduction from an instance of New Variant High-D Tucker in
n dimensions will be designed in such a way that either n − 1 or n cuts (typically
n) must occur in the coordinate-encoding region, in any solution. Furthermore, the

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-216 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

coordinate-encoding region [0, 4]

x1 x2 x3 x4 x5

c-
r
ag
en
ts

t-
b
se
n
so
r
ag
en
ts

fo
r
C

1

se
n
so
r
ag
en
ts

fo
r
C

1

a1

...

a4

b1,1

b1,2

b1,3

s1,1

s1,2

...

s1,phuge

t-
b
se
n
so
r
ag
en
ts

fo
r
C

2

se
n
so
r
ag
en
ts

fo
r
C

2

b2,1

b2,2

b2,3

s2,1

s2,2

...

s2,phuge

cu
t

δtiny
δtiny

pC

cu
t

δtiny
δtiny

pC

cu
t

δtiny
δtiny

pC

cu
t

δtiny
δtiny

pC

Fig. 5. Sensor illustration: example of n = 4 c-e cuts representing five coordinates
summing to 1 (a typical point in the Möbius-simplex). Vertical lines depict the cuts, resulting
in labels that alternate between A+ and A−, starting with A+. Shaded blocks over agents’ lines
indicate value-blocks of their value functions. We only depict sensors for circuit-encoders C1

and C2.

distance between consecutive cuts must be close to 1 (an additive difference from 1
that is upper-bounded by an inverse polynomial), shown in Proposition 4.15.

Definition 4.2. Coordinate-restricting agents (c-r agents). Given an instance
of New Variant High-D Tucker in n dimensions, the corresponding instance of
Consensus-Halving has n coordinate-restricting agents denoted {a1, . . . , an} (see
Figure 5). Each of the c-r agents has—for each of the pC copies of the circuit—two
value-blocks of value 1/(2pC) outside the c-e region and inside the circuit-encoding
region, in positions that overlap with the value-blocks of the outputs of the simulated
circuit; see subsections 5.1.2 and 5.1.4 for the details.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-217

The n coordinate-restricting agents have associated n coordinate-encoding cuts
(Remark 4.3). It will be seen that the c-e cuts typically occur in the c-e region.
The c-r agents do not have any value for the coordinate-encoding region; their value
functions are only ever positive elsewhere. In particular, they have blocks of value
whose labels A+/A− are affected by the output gates of the circuitry that is encoded
to the right of the c-e region.

Remark 4.3. Coordinate-encoding cuts (c-e cuts). We identify n cuts as the
coordinate-encoding cuts. In the instances of Consensus-Halving that we con-
struct, in any (sufficiently good approximate) solution to the Consensus-Halving
instance, all other cuts will be constrained to lie outside the c-e region (and it will be
straightforward to see that the value functions of their associated agents impose this
constraint). A c-e cut is not straightforwardly constrained to lie in the c-e region, but
it will ultimately be proved that in any approximate solution, the c-e cuts do in fact
lie in the c-e region.

Recall that phuge = n/δtiny, which implies that the c-e region can be divided into
phuge intervals of length δtiny (see also Figure 5).

Circuit-encoders. Recall that the circuit-encoding region (detailed in section 5)
contains pC circuit-encoders, which we describe in this subsection. Before we do that,
we introduce some useful gadgets, the bit-detection gadgets.

Bit detection gadgets. The ability to detect the position of the cuts in the c-
e region and feed this information to the circuit will lie in the presence of gadgets
developed in [37], which we refer to as bit detection gadgets. A bit detection gadget
consists typically of two thin and dense valuation blocks of relatively large height and
relatively small length, situated next to each other (e.g., see the rightmost set of value-
blocks in Figure 6). These value-blocks constitute most of the agent’s valuation over
the related interval. The point of these gadgets is that if the discrepancy between
A+ and A− is (significantly) in favor of one against the other, there will be a cut

c-e region
x1

x2 x3 x4 x5

a1

a2

a3

a4

sensor

A+ A− A+ A− A+ · · · A+ A−

Fig. 6. An example of how the input of a sensor agent is processed into a boolean value
that will be used by the encoding of the circuit. One of the two value-blocks on the RHS of
the picture (the bit-detection gadget) is intersected by the cut corresponding to the sensor,
depending on whether the value-block on the LHS is labelled A+ or A−. In the figure, the
block is labelled A− and therefore the cut intersects the rightmost value-block on the RHS.
The other (unused) option is depicted by a red dashed line.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-218 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

intersecting one of the two valuation blocks; which block is intersected will correspond
to a 0/1 value, i.e., a bit that indicates the “direction” of the discrepancy in the two
labels. These gadgets are used in several parts of the reduction.

Each circuit encoder Ci will consist of the following sets of agents:
• The sensor agents Si that are responsible for extracting the positions of the

cuts in the c-e region, which will be used as inputs to the other circuit-
encoding agents. These agents have value in the c-e region, as well as in a
region Ri of the circuit-encoding region, which does not overlap with any
other region Rj for any other circuit-encoder.

• The tunnel-boundary sensor agents (or simply tunnel-boundary sensors), re-
sponsible for detecting large discrepancies between the balances of the two
labels A+ and A− in the c-e region, preventing a solution in such a case.
These agents will also have value in the c-e region and in the region Ri.

• The gate agents Gi that implement the labelling circuit CV T ofNew Variant
High-D Tucker.

Definition 4.4. σ-shifted version. Given a value function f (or measure) on
the c-e region [0, n], we say that another function f ′ on the c-e region is a σ-shifted
version of f , when we have that f ′((x− σ) mod n) = f(x).

Now we are ready to define the sensor agents.

Definition 4.5. Sensor agents. Each circuit-encoder Ci, i = 1, . . . , pC , has a
set Si of sensor agents, Si = {si,1, . . . , si,phuge}, where the si,j are defined as follows.
When i = 1, s1,j has value 1

10 uniformly distributed over the interval[
(j − 1)δtiny, (j − 1)δtiny +

δtiny

pC

]
.

For i > 1, si,j is a 1
pC (i− 1)δtiny-shifted version of s1,j.

Each sensor agent si,j also has valuation outside the c-e region, in nonoverlapping
intervals of the circuit-encoding region Ri (see subsection 5.1). This valuation consists
of two valuation blocks of value 9

20 each, with no other valuation block in between, i.e.,
a bit-detection gadget.

This value gadget for si,j causes the jth input gate in the circuit-encoder Ci to be
set according to the label received by si’s block of value in the c-e region, i.e., jump to
the left or to the right in order to indicate that the corresponding value-block of si in
the c-e region is labelled A+ or A−. See Figure 6 for an illustration.

According to the definitions above, C1 has a sequence of (a large polynomial
number of) sensor agents that have blocks of value in a sequence of small intervals
going from left to right of the c-e region (see Figure 5). For 1 < i ≤ pC , Ci has a
similar sequence, shifted slightly to the right on the c-e region (by δtiny(i−1)/pC). For
j ∈ [phuge], the intervals defined by the value-blocks of the sensor agents s1,j , . . . , spC ,j

(for C1, . . . , CpC) partition the interval [(j − 1)δtiny, jδtiny].

Remark. Note that a c-e cut may divide one of the above value-blocks held by a
sensor agent in the c-e region, and in that case the input being supplied to its circuit-
encoder is unreliable. However, only n sensor agents may be affected in that way, and
their circuit-encoders will get out-voted by the ones that receive valid boolean inputs.
This is part of the reason why we use pC circuit-encoders in total. More details on
this averaging argument are provided in section 5.

Notes on the sensor agents. Looking a bit ahead, here we provide some additional
intuition on the operation of the sensor agents. Each such agent of Si has a small

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-219

value-block (of value 1/10) in the c-e region and its remaining value (9/10) lies in
the circuit encoding region, and particularly, in the subregion Ri (as we explain in
subsection 5.1, the circuit-encoding region R is partitioned into subregions Ri, one
for each circuit encoder Ci, where most of the gadgetry of the encoder lies). In
particular, the sensor agent has two thin blocks of value 9/20 in the c-e region and
this is precisely the bit detection gadget of the agent. If the value-block on the LHS
(in the c-e region) is labelled A−, then the cut on the RHS intersects the rightmost
value-block (i.e., jumps to the right) and if it is A+, then it jumps to the left. This
information is then passed on to the next level of circuit encoding agents, those that
implement the circuit. These inputs are then “propagated” through the encoding of
the circuit CV T , to produce the appropriate labels at the output gates gj , j ∈ ±[n],
as described in subsection 5.1.2.

Next, we define the tunnel-boundary sensors.

Definition 4.6. Tunnel-boundary sensor agents. Each circuit-encoder Ci shall
have n− 1 tunnel-boundary sensor agents bi,2, . . . , bi,n.

1. In C1, for each j = 2, . . . , n, tunnel-boundary sensor agent b1,j has value 1/10
distributed over [j − 2, j] (see Figure 5). This value consists of a sequence[

(j − 2), (j − 2) +
δtiny

pC

]
, . . . ,

[
j − δtiny, j − δtiny +

δtiny

pC

]
of 2/δtiny = 2phuge/n value-blocks, each of length δtiny/pC and of value 1

10 ·
(δtiny/2).

2. In each Ci, 1 < i ≤ pC , and for each j = 2, . . . , n, the value function of bi,j

that lies in the c-e region is an (i− 1) δ
tiny

pC -shifted version of b1,j.

3. The remaining value 9/10 of each bi,j consists of three value-blocks of width
δtiny lying in a subinterval Ii,j of the circuit-encoding region Ri (see subsec-
tion 5.1), such that

- the value-blocks have values

9(1− κ)

20
,

9κ

10
,

9(1− κ)

20
,

respectively, where κ = (1
10

δtiny

2)plarge;
- Ii,j contains also value-blocks of agents for each gate that takes the value
of bi,j as input (the feedback gadgetry; see subsection 5.1.2).

For an illustration, see Figure 7. The structure of the tunnel-boundary sensor
agents in the c-e region is shown in Figure 5.

Notes on the tunnel-boundary sensors. Each tunnel-boundary sensor agent bi,j
has an associated cut c(bi,j) that lies in the subinterval Ii,j . Agent bi,j “monitors” an
interval of length 2, namely, the interval [j−2, j] within which the sequence of 2/δtiny

value-blocks lie. If, in this interval, the number of these value-blocks labelled A+

exceeds the number labelled A− by at least plarge (recall that plarge is a large polyno-
mial which is however polynomially smaller than phuge), then (in any ε-approximate
solution to ICH , where, recall, ε = δtiny/10), the cut c(bi,j) in Ii,j lies in either the
right-hand or the left-hand value-block; otherwise, it lies in the central value-block.
Note that these three possible positions may be converted to boolean values that
influence circuit-encoder Ci.

The tunnel-boundary sensor agents use very similar bit detection gadgets to those
of the sensor agents in their outputs (i.e., in their value-blocks in region Ri), but be-
tween their thin and dense value-blocks, they have an additional small value-block

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-220 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

c-e region
x1

x2 x3 x4 x5

Ii,j

a1

a2

a3

a4

t-b
sensor

A+ A− A+ A− A+ · · · A+ A−

Fig. 7. An example of how the tunnel-boundary sensor agents provide input to the circuit
for their monitored intervals. Depending on the balance in labels for the value-blocks on the
LHS, the bit-detection gadget of the tunnel-boundary sensor agent on the RHS assumes the
leftmost, middle, or rightmost position. In this particular example, the number of value-
blocks on the LHS for each label is balanced, and therefore the cut on the RHS (shown in
blue) intersects the middle value-block of the bit-detection gadget. In this case, the tunnel-
boundary sensor is not active. The other two possible positions for the cut on the RHS, when
the tunnel-boundary sensor is active, are depicted by dashed red lines.

(the block of value 9κ/10 in Definition 4.6). This is because the tunnel-boundary
sensor agents need to be able to assume three states: “excess of A+,” “excess of A−,”
and “(approximately) balanced labels.” The latter option corresponds to the cut as-
sociated with the tunnel-boundary sensor agent intersecting the middle value-block
(therefore not jumping to either side), whereas the other two options correspond to
the cut jumping to either the right or the left side, where the choice depends on
the overrepresented label and the parity of the index of the tunnel-boundary sensor
agent. It is straightforward (as before) to interpret these positions as boolean values.
The main idea is that if the tunnel-boundary sensor agents are active (Definition 4.7
below), then this information will override the circuit CV T and generate an imbal-
ance of labels in the feedback provided to the coordinate-restricting agents directly,
essentially bypassing the output gates of CV T . Since we have many tunnel-boundary
sensor agents, however, extra care must be taken to make sure that no artificial so-
lutions are introduced when coloring the domain. The details on how the input from
the tunnel-boundary sensors affects the feedback to the coordinate-restricting agents
are presented in subsection 5.1.3.

Definition 4.7 (active tunnel-boundary sensor). We say that tunnel-boundary
sensor bi,j is active if bi,j in fact observes a sufficiently large label discrepancy in the
c-e region, that c(bi,j) lies in one of the two outer positions, left or right, and not in
the central position. In particular, following Definition 4.6, a tunnel-boundary sensor

agent will be active when at least phuge/n + plarge value-blocks of volume 1
10 · δtiny

2
in an interval monitored by the tunnel-boundary sensor agent receive the same label.
We say that bi,j is active toward A+ if A+ is the overrepresented label, with similar
terminology for A−.

When tunnel-boundary sensor agent bi,j is active, it provides input to Ci that
causes Ci to label the value held by aj and controlled by Ci, to be either A+ or A−;

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-221

the choice depends on the overrepresented label in [j−2, j] and the parity of the index
of the tunnel-boundary sensor agent. The precise feedback mechanism to the c-r agent
aj by the tunnel-boundary sensor bi,j is described in subsection 5.1.3.

When no tunnel-boundary sensors are active, the sequence of c-e cuts encodes a
point in the Significant Region (Definition 4.14).

The advantage of using a polynomial sequence of value-blocks is that we can argue
that in all but at most n circuit-encoders, the tunnel-boundary sensor agents have
value-blocks that are not cut by the c-e cuts, so we can be precise about how big of a
disparity between blocks labelled A+ and A− causes a tunnel-boundary sensor to be
active, and for at most n circuit-encoders, we regard them as having unreliable inputs
(see Definition 4.10 and Observation 4.11).

The gate agents. In this subsection, we will design the agents that will be re-
sponsible for encoding the labelling circuit CV T of New Variant High-D Tucker.
These agents will eventually provide feedback (in terms of a discrepancy of labels A+

and A−) to the coordinate-restricting agents (see subsection 5.1.2 for the details on
the feedback mechanism). We start with the definition of the boolean gate gadgets,
developed originally in [37].

Boolean gate gadgets. Consider a boolean gate that is an AND, an OR, or a NOT
gate, denoted g∧, g∨, and g¬, respectively. Let in1, in2, and out be intervals such that
|in1| = |in2| = |out| = 1. We will encode these gates using the following gate-gadgets.

g¬(in1, out) =


0.25 if t ∈ in1,

7.5 if t ∈ [ℓ(out), ℓ(out) + 1/20],

7.5 if t ∈ [r(out)− 1/20, r(out)],

0 otherwise,

g∨(in1, in2, out) =


0.125 if t ∈ in1 ∪ in2,

6.25 if t ∈ [ℓ(out), ℓ(out) + 1/20],

8.75 if t ∈ [r(out)− 1/20, r(out)],

0 otherwise,

g∧(in1, in2, out) =


0.125 if t ∈ in1 ∪ in2,

8.75 if t ∈ [ℓ(out), ℓ(out) + 1/20],

6.25 if t ∈ [r(out)− 1/20, r(out)],

0 otherwise.

Note that the gadget corresponding to the NOT gate only has one input, whereas
the gadgets for the AND and OR gates have two inputs. In the interval out, each
gadget has two bit detection gadgets—in the case of the NOT gate these are even,
but in the case of the AND and OR gates, they are uneven (see Figure 8). Also
note that for the inputs, as well as the output of the NOT gate, the label on the
LHS of the cut is A+ and the label on the RHS will be A−, whereas for the out-
puts to the OR and AND gate, the label on the LHS of the cut is A− and the label
on the RHS is A+. This can be achieved with the appropriate use of parity gad-
gets.

Observation 4.8. The boolean gate gadgets described above encode valid boolean
NOT, OR, and AND operations.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-222 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

G¬(in1, out)

in1 out

A+ A+ A+A+

G∨(in1, in2, out)

in1 in2 out

A+

A+

A+A+ A−A−

G∧(in1, in2, out)

in1 in2 out

A+

A+

A+A+

A−

A−

Fig. 8. The boolean gate gadgets encoding the NOT, OR, and AND gates. For visibility,
the valuation blocks are not according to scale. For the NOT gate, the input has value 0.25
and the output blocks have volume 0.375 each. For the OR (respectively, AND) gate, the input
blocks have value 0.125 each and the output blocks have value 0.3125 and 0.4375 (respectively,
0.4375 and 0.3125). The cuts corresponding to pairs or triples of inputs and outputs have the
same color, and the labels on the left-side of these cuts are shown and color-coded in the same
way. For the NOT gate, when the input cut sits of the left (the blue cut), then the output cut
must sit on the right (the blue cut), to compensate for the excess of A− and oppositely for
when the input cut sits of the right (the red cut). For the OR and AND gates, again the cuts
corresponding to two inputs and one output have the same color. For the OR gate, when both
input cuts sit on the left (the blue cuts), the output cut sits on the left as well, to compensate
for the excess of A− (notice that the LHS of the output cut is labelled A−). When one input
sits on the left and the other one on the right, the inputs detect no discrepancy in the balance
of labels and the output jumps to the right, because the output blocks are uneven (the red
cuts). The operation of the AND gate is very similar; here the cases shown are those where
the inputs are 0 and 0 and the ouput is 0 (the blue cuts) and where the inputs are 0 and 1
and the output is still 0 (the red cuts).

Proof. These gadgets encode the boolean gate operations in the following way:
We will interpret the position of a cut c relatively to ℓ(in1), ℓ(in2), and ℓ(out) as
the input or the output to the gates, respectively. Specifically, for j ∈ {1, 2}, if
c ∈ [ℓ(inj), ℓ(inj) + ε], the input will be 0, and if c ∈ [r(inj) − ε, r(inj)], the input
will be 1. Similarly, if c ∈ [ℓ(out), ℓ(out) + 1/20], the output will be 0 and if c ∈
[r(out) − 1/20, r(out)], the output will be 1. If the inputs or the outputs lie on any
other point in the corresponding intervals, the gate inputs and outputs are undefined,
but it will be enforced by our construction that in a solution to ICH , this will never
happen.

For g¬, let’s assume that the cut in in1 lies in [ℓ(in1), ℓ(in1)+ε], which means that
a total value of approximately 0.25 is assigned to A− in the interval in1 (recall that all
cuts have an A+ label on their LHS). To compensate, since the agent only has further
value in out, the cut would have to lie in [r(out)− 1/20, r(out)], and therefore by the
interpretation of the inputs above, we can see that when the input is 0, the output is
1 and the gate constraint is satisfied. If the cut in in1 lies in [r(in1)− ε, r(in1)], then
the value in the interval in1 has been labelled A+, and for the same reason, the cut
in out has to lie in [ℓ(out), ℓ(out) + 1/20], which encodes the case when the input is 1
and the output is 0. The arguments for the g∨ and g∧ gadgets encoding the OR and
AND gates, respectively, are very similar (noting that the cut intersecting out will
have A− on its LHS). See Figure 8 for an illustration.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-223

Parity gadgets. A parity gadget is an agent αpar that has a single valuation block
(i.e., an interval where the agent has a constant, nonzero value) of sufficiently small
height and width, in a region between two such distinct valuation blocks of some other
agent or agents (where we need the parity switch to take place), and furthermore, no
other agent has any value in that interval. Since we are only allowed to use n cuts,
in a solution to ICH , only αpar’s cut c(αpar) may lie in the region and therefore
intersect this valuation block; obviously the cut has to lie close to the midpoint of the
valuation block interval and it will switch the parity of the cut sequence. Throughout
the reduction, we will not explain how to explicitly place the parity gadgets in the
instance of ICH but rather we will assume without loss of generality that the LHSs
of the cuts are labelled A+, unless stated otherwise.

Implementing the circuit using the gate gadgets. For the circuits, at a high level,
we will simulate the gates by gate agents, using the boolean gate gadgetry presented
above. In particular, for any two-input gate, g of the circuit with inputs in1, in2, agent
αg will have a bit detection value gadget that will encode the output of the gate, and
furthermore, it will have value in some intervals Rk and Rℓ, where the values of in1

and in2 lie, respectively, where in1 and in1 can either be the outputs of some gates
g1, g2 of some previous level, or the outputs of the sensor agents, if g is an input gate
of CV T . For an illustration, see Figure 9. The case of g being a single-input gate is
similar. The construction will make sure that agent αg will only be satisfied with the
consensus-halving solution if the gate constraint is satisfied.

Concretely, we will use the gate gadgets that will encode the gates of the circuit.
For each gate of the circuit-encoder C1 (see also subsection 5.1), we will associate a
gate agent αg

1, . . . , α
g
|C1| with valuation given by the gadget

µag
i
(t) =

{
gT (in

i
1, in

i
2, out

i) if T ∈ {∨,∧},
gT (in

i
1, out

i) if T = ¬,

where ini
1, ini

2, and outi are nonoverlapping intervals that depend on whether agi
corresponds to an input gate, an output gate, or an intermediate gate of the circuit.
In particular, the following hold:

Rin
1 Rmed

1 Rout
1

Fig. 9. The basic idea behind the gate-agents encoding the gates of C1. The picture
denotes a simplified case where two input bits from the sensor agents are supplied to an
enconding of an input AND gate of Ci and the output bit of this gate is in turn supplied to
the encoding of a NOT output gate of Ci. Note that if, for example, the sensor agents detect
the values 1 and 0, respectively (the blue cuts), then the output of the AND gate is 0 (i.e., the
blue cut sits at the left of the AND gate agent’s bit detector) and the output of the circuit is
1 (again, see the blue cut that sits on the rightmost valuation block of the NOT gate agent).
Similarly, if the sensor agents detect values 1 and 1 (the red cuts), then the output of the
AND gate is 1 and the output of the circuit is 0.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-224 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

• If agi corresponds to an input gate of the circuit, ini
1 and ini

2 are the intervals
in Ri from which the outcomes of the sensor agents are read (via the position
of the cuts); see the RHS of Figure 6. outi is another interval of Ri, which
will be the same interval from which the input of the gate of the next level of
the circuit will be read; see Figure 9.

• If agi corresponds to an intermediate gate of the circuit, then ini
1 and ini

2 are
the intervals corresponding to the outputs of the gates of the previous level.
We can assume without loss of generality that the labelling circuit operates
with gates of fan-in at most 2, as any circuit can be converted to such a circuit
at the expense of a logarithmic increase in depth. Again, outi will correspond
to another interval, which will also be an input interval for a gate of the next
level.

• If agi corresponds to an output gate of the circuit, then again ini
1 and ini

2 are
the intervals corresponding to the outputs of the gates of the previous level,
but outi will be intervals for which the coordinate-restricting agents will have
positive value. In fact, the circuit will have 2n output gates, which will label
value-blocks of the corresponding coordinate-restricting agent (two for each
such agent) by A+ or A− (assuming that the circuit operates as intended),
depending on the label in ±[n] of the point in the domain “read” by the
sensor agents Si. The details of the feedback mechanism are postponed for
subsection 5.1.2.

We remark here that we have abstracted a few details regarding the design of the
circuit-encoder C1, when stating that the gate agents actually implement the circuit
CV T of New Variant High-D Tucker. A more precise statement would be that
it implements the circuit CV T , together with a preprocessing circuit which performs
the coordinate-transformation mentioned in the high-level overview of section 2, as
well as a simple XOR circuit, which takes the exclusive-or of the output of CV T and
the first sensor agent (the reference agent) s1,1. The latter operation is necessary
for the disorientation of the domain, which allows us to identify points when moving
cuts from one endpoint of the c-e region to the other. See subsection 5.1 for more
details.

4.2. Features of solutions. The main result of this section is Proposition 4.15,
that in a solution to approximate Consensus-Halving as constructed here, the
sequence of cuts in the c-e region are “evenly spaced” in the sense that the gap
between consecutive cuts differs from 1 by at most an inverse-polynomial.

Observation 4.9 (at most n cuts in the c-e region). Given an instance ICH derived
by our reduction from an instance of New Variant High-D Tucker in n dimen-
sions, any inverse-polynomial approximate solution of ICH has the property that at
most n cuts lie in the coordinate-encoding region.

This is because the following two properties hold:
• every agent besides the coordinate-restricting agent has at least 9/10 of their
value strictly to the right of the c-e region, and

• the value blocks of those agents do not overlap or overlap “minimally” for
more than a single such agent to be “satisfied” by a single cut.

In particular, the construction ensures that for any agent besides the coordinate-
restricting agent, this agent requires a distinct cut to balance her value in a solu-
tion, and therefore the cuts corresponding to those agents cuts cannot lie in the c-e
region.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-225

Definition 4.10 (reliable input). We will say that a circuit-encoder receives
reliable input if no coordinate-encoding cut passes through value-blocks of its sensor
agents.

Observation 4.11. At most n circuit-encoders fail to receive reliable input (by
Observation 4.9 and the fact that sensors of distinct circuit-encoders have value in
distinct intervals).

When a circuit-encoder receives reliable input, it is straightforward to interpret
the labels allocated to its sensors, as boolean values, and simulate a circuit computa-
tion on those values, ultimately passing feedback to the coordinate-restricting agents
via value-blocks that get labelled according to the output gates of the circuit being
simulated. This is done via the gate agents and the use of the appropriately designed
gate gadgets of the previous section.

Definition 4.12. The Möbius-simplex. The Möbius-simplex in n dimensions
consists of points x in Rn+1 whose coordinates are nonnegative and sum to 1. We
identify every point (x1, . . . , xn, 0) with the point (0, x1, . . . , xn) for all nonnegative
x1, . . . , xn summing to 1. We use the following metric d(·, ·) on the Möbius-simplex,
letting L1 be the standard L1 distance on vectors:

d(x,x′) = min
(
L1(x,x

′), min
z,z′:z≡z′

(L1(x, z) + L1(z
′,x′))

)
,(4.1)

where (0, x1, . . . , xn) ≡ (x1, . . . , xn, 0).

How a consensus-halving solution encodes a point in the Möbius-simplex. Let ICH

be an instance of Consensus-Halving, obtained by reduction from New Variant
High-D Tucker in n dimensions, hence having c-e region [0, n]. Note that, by
Observation 4.9, at most n cuts may lie in the c-e region. A set of k ≤ n cuts of the
coordinate-encoding region splits it into k + 1 pieces. We associate such a split with
a point x in Rn+1 as follows. The first coordinate is the distance from the LHS of the
consensus-halving domain to the first cut, divided by n, the length of the c-e region.
For 2 ≤ i ≤ k + 1, the ith coordinate of x is the distance between the i− 1st and ith
cuts, divided by n. Remaining coordinates are 0.

If there are n− 1 cuts in the c-e region, suppose we add a cut at either the LHS
or the RHS. These two alternative choices correspond to a pair of points that have
been identified as the same point, as described in Definition 4.12. (Observation 5.5
makes a similar point regarding transformed coordinates.)

Observation 4.13. Each circuit-encoder reads an “input” representing a point in
the Möbius-simplex (as specified by the position of the cuts in the c-e region). Any
circuit-encoder Ci (i ∈ [pC]) behaves like C1 on a point xi, for which (for all i, j ∈ [pC])
d(xi,xj) ≤ δtiny (recall d is defined in 4.1). Consequently, their collective output (the
split between A+ and A− of the value held by the coordinate-restricting agents) is
the output of a single circuit-encoder averaged over a collection of pC points in the
Möbius-simplex, all within δtiny of each other.

This follows by inspection of the way the pC circuit-encoders differ from each
other: their sensor-agents are shifted but their internal circuitry is the same.

Definition 4.14. The Significant Region of the Möbius-simplex D. The Signif-
icant Region of D consists of all points in D where no tunnel-boundary sensors are
active (where “tunnel-boundary sensors” and “active” are defined in Definition 4.7).

Remarks. Looking ahead, certain points in the Significant Region encode New
Variant High-D Tucker (namely, the ones in the “twisted tunnel,” Definition 5.7).

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-226 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

The Significant Region contains the twisted tunnel, being a somewhat wider one-
dimensional “tunnel” of inverse-polynomial width at most 1/pw(n), whose central
axis is the set of points (α, 1/n, . . . , 1/n, 1/n− α), where the endpoints are identified
together (noting Definition 4.12). Topologically, the Significant Region is a high-
dimensional Möbius strip.

Proposition 4.15. There is an inverse-polynomial value δw such that all points
x = (x1, . . . , xn+1) in the Significant Region have coordinates xi that for 2 ≤ i ≤ n
differ from 1/n by at most δw if x is encoded by the c-e cuts of an ε-approximate
solution to one of our instances of Consensus-Halving. (Recall that ε = δtiny/10.)

Thus, if an instance ICH of Consensus-Halving (obtained using our reduction)
has a solution SCH , then all the c-e cuts in SCH have the property that the distance
between two consecutive c-e cuts differs from 1 by at most some inverse-polynomial
amount.

Before we proceed with the proof of the proposition, we will state a few simple
lemmas that will be used throughout the proof. The following definitions will be
useful later.

Definition 4.16 (cut δ-close to integer point). For ℓ ∈ {0, . . . , n}, we will say
that a cut c is δ-close to integer point ℓ if it lies in [ℓ− δ, ℓ+ δ]. We will say that cut
c is δ-close to an integer point if there is some integer ℓ ∈ {0, . . . , n} such that c is
δ-close to integer point ℓ.

Definition 4.17 (monochromatic interval of label Aj). An interval I is called a
monochromatic interval if it is not intersected by any cuts (thus it receives a single
label). If for Aj ∈ {A+, A−}, I is labelled with Aj, then we will say that I is a
monochromatic interval of label Aj.

By Definition 4.6, a tunnel-boundary sensor agent will be active when a large
enough fraction of the interval that it monitors receives the same label. In more
detail, the valuation of a tunnel-boundary sensor agent in the c-e region consists of

a set of 2phuge/n value-blocks (of volume 1
10 · δtiny

2 each; see Figure 7), and it will be
active when at least phuge/n+plarge of those blocks receive the same label. What this
means for a monitored interval [j − 2, j] is that its tunnel-boundary sensor agent will
be active if subintervals of length 1+nplarge/phuge get the same label, and equivalently
if subintervals of length 1 + δtinyplarge get the same label. Let

δ = nδtinyplarge.

Based on the relative sizes of δtiny and plarge, we can assume δ < 1
2n . With this defini-

tion of δ, if any monitored interval [j− 2, j] has a larger than 1+ δ/n monochromatic
subinterval, then tunnel-boundary sensor agents bi,j are active.

Lemma 4.18. For ℓ ∈ {0, n − k} with k > 1, consider the interval I = [ℓ, ℓ + k]
of length k and suppose that there are at most k − 2 cuts in this interval. Then for
any i ∈ pC , at least one of the tunnel-boundary sensors bi,ℓ+2, . . . , bi,ℓ+k monitoring
the subintervals in I will be active.

Proof. In I, there are at least k−1 intervals monitored by tunnel-boundary sensor
agents and we only have at most k − 2 cuts at our disposal. With k − 2 cuts, we can
partition an interval of length k in at most k− 1 intervals, the largest of which, call it
Imax, will have length at least 1 + 1/k. Since δ < 1/2n, the length of Imax is actually
larger than 1 + δ. The lemma follows then from the fact that, from the way that the
monitored intervals cover the interval I, Imax will contain a monochromatic interval

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-227

0 1 2 3 4 5 0 1 2 3 4 5

Fig. 10. The case of an interval of length k being intersected by k − 2 (left) or k − 1 (right)
cuts, here k = 5. The monitored subintervals are depicted in blue. On the left, an interval of length
5 is cut by only three cuts. The interval defined by the second and third cuts is of length larger
than 1 + 1/k = 6/5. On the right, an interval of length 5 is cut by four cuts. It is possible to
achieve an approximately balanced partition, but only if all cuts are δ-close to integer coordinates
and specifically to midpoints of the monitored subintervals, which is indicated by the red cuts. A
case where this does not happen is indicated by the green cuts, where the tunnel-boundary sensor
agent of interval [2, 4] is active. Note that while in the figure, in both cases, the interval of length
k contains only full monitored intervals, the same arguments go through if it contains half intervals
instead, e.g., considering the interval [1, 5] and 2 cuts (left) and three cuts (right).

of length at least 1 + δ, which will be entirely contained in some monitored interval,
and the corresponding tunnel-boundary sensor agent will be active.

Lemma 4.19. For ℓ ∈ {0, n − k} with k > 1, consider the interval I = [ℓ, ℓ + k]
of length k and suppose that there are k − 1 cuts in this interval. Recall that we let
δ = nδtinyplarge. Then either

- each of the k−1 cuts in I will be δ-close to a different integer point and these
integer points will be the midpoints of the monitored subintervals contained
entirely in I or

- for any i ∈ pC , at least one of the tunnel-boundary sensors bi,ℓ+2, . . . , bi,ℓ+k

monitoring the subintervals in I will be active.

Proof. Assume ℓ = 0 and we have the interval [0, k]; the other case is similar.
By the pigeonhole principle, some unit interval [j − 1, j] has no cuts (for j ∈ [n]).

So the entirety of that interval gets a single label. Then a fraction at least 1− δ/n of
the adjacent unit intervals [j − 2, j − 1] (for any j > 1) and [j, j + 1] (for any j < k)
must get the opposite label (if not, the tunnel-boundary sensor monitoring [j − 2, j]
or [j−1, j+1] will be active). Inductively, for an interval [j′, j′+1] with j′′ = |j− j′|,
that interval must receive a fraction 1 − j′′δ/n of the opposite label to its neighbors
(to avoid activating a tunnel-boundary sensor). This requires all cuts to lie within δ
of the integer points 1, . . . , k − 1, in order to achieve this alternation of labels. See
Figure 10.

We are now ready to proceed with the proof of Proposition 4.15.

Proof of Proposition 4.15. First, recall that by Observation 4.9, at most n cuts
can lie in the c-e region. Also recall that from Definition 4.6, for the circuit encoder
C1, the tunnel-boundary sensor agent b1,j , j ∈ {2, . . . , n} has valuation only in the
interval [j − 2, j] of the c-e region, i.e., it monitors the interval [j − 2, j]. The tunnel-

boundary sensor agent bi,j for i ∈ {2, . . . , pC} is a (i−1) δ
tiny

pC -shifted version of b1,j . We
will make the argument for the tunnel-boundary sensor agents of the circuit-encoder
C1; the argument for any Ci, with i ̸= 1 is very similar.

It suffices to prove that if consecutive cuts are too far apart or too close together,
some tunnel-boundary sensor agent will be active. In what follows, again let δ =
nδtinyplarge, which as noted earlier is an inverse-polynomial in n.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-228 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

Case 1: The cuts are too far apart. First, consider the case when two consecutive
cuts are too far apart (by more than 1 plus some inverse-polynomial amount 2δ).
More formally, assume that there are two cuts c1 and c2 such that c2 > c1 and
c2 − c1 > 1 + 2δ. Then, as we explain below, there is some j ∈ {2, . . . , n} such that
some subinterval Ij = [j1, j2] ⊆ [j−2, j] with j2−j1 > 1+δ will receive a single label,
either A+ or A−. In particular, we have the following cases:

• There is a j such that [c1, c2] ⊆ [j − 2, j]. In that case, [c1, c2] is such a
monochromatic subinterval.

• There is a j such that [j − 2, j] ⊆ [c1, c2]. In that case, the whole monitored
subinterval [j − 2, j] is such a monochromatic subinterval.

• For all j, the interval [j− 2, j] is intersected by at most one cut cℓ, ℓ ∈ {1, 2}.
Obviously, both cuts will intersect some interval, since they lie in the c-e
region. Consider cut c1 and let [j − 2, j] be an interval that is intersected by
c1. If c1 lies in [j − 2, j − 1], then, since there exists no other cut between c1
and c2 and since c2 does not intersect [j − 2, j] by assumption, the interval
[c1, j] will be a monochromatic interval of length at least 1 + δ and we are
done. If c1 lies in [j − 1, j], then first observe that j ̸= n, as otherwise both
cuts c1 and c2 would have to lie in [n − 2, n], violating the assumption of
the case. Therefore, we can look at the interval [j − 1, j + 1] and notice that
again by the assumption of the case, since cut c1 does intersect the interval
[j − 1, j + 1], we must have that c2 > j + 1. This is either impossible (when
j = n − 1) or otherwise [c1, j + 1] is a monochromatic interval of length at
least 1 + δ, and we are done.

Case 2: The cuts are too close together. Now consider the case when two con-
secutive cuts are too close together, closer than 1− 2nδ. More formally, assume that
there are two consecutive cuts c1 and c2 in the c-e region such that c2 > c1 and
c2 − c1 < 1− 2nδ. Since the cuts are close together, there exists a monitored interval
that is intersected by both c1 and c2 and let [j− 2, j] be such an interval. Notice that
if there exists no other cut that intersects [j−2, j], then [j−2, c1]∪ [c2, j] is a union of
subintervals of length at least 1+δ that receive the same label, and we are done. There-
fore, there must exist at least three cuts that lie in [j− 2, j]. We consider three cases.
There are five or more cuts in [j − 2, j]. This is an easy case to argue, as if that
happens, there will be some interval, either [0, j − 2] or [j, n] of length k, that is only
intersected by at most k − 2 cuts. By Lemma 4.18, some tunnel-boundary sensor
agent will be active and we are done.

There are four cuts in [j − 2, j]. Consider the intervals [0, j − 2] and [j, n]. If
either [0, j − 2] is intersected by at most (j − 2)− 2 cuts or [j, n] is intersected by at
most n− j−2 cuts, then by Lemma 4.18, some tunnel-boundary sensor will be active
and we are done. Note also for completeness that if j = 2 (respectively, j = n), it
is necessarily the case that [j, n] (respectively, [0, j − 2]) is intersected by n − 4 cuts
and Lemma 4.18 again applies. Therefore, we can assume that j ∈ {3, . . . , n− 1} and
that there are exactly (j − 2)− 1 cuts in [0, j − 2] and n− j − 1 cuts in [j, n].

Consider the interval [j, n] without loss of generality, as the argument for [0, j−2] is
symmetric. By Lemma 4.19, we know that the cuts in [j, n] are δ-close to integer points
and particularly, they are δ-close to the midpoints of the monitored intervals [j, j +
2], . . . , [n−2, n]. This implies that in the monitored subinterval [j, j+2], the subinter-
val [j, j+1−δ] will be a monochromatic interval of label Aj for some Aj ∈ {A+, A−},

In turn, this implies that [j − 1, j] has a monochromatic subinterval of length at
least 1− δ that receives the label A−j , where A−j ∈ {A+, A−} is the complementary
label to Aj , for the tunnel-boundary sensor agent to not be activated, which is only

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-229

possible if one of the four cuts in [j − 2, j] is δ-close to the integer point j. Propa-
gating the effect of this cut sequence/labelling into the monitored interval [j− 2, j] in
question, we obtain that [j−2, j−1] also contains a monochromatic interval of length
at least 1− δ and label Aj , as otherwise tunnel-boundary sensor agent b1,j would be
active. From this discussion, it follows that

- all the cuts in [j−2, j] are δ-close to integer coordinates within the interval and
- there is at least one cut in [j − 2, j] that is δ-close to the midpoint j − 1 of
the monitored interval, one cut that is δ-close to the right endpoint j of the
monitored interval, and at least one cut that is δ-close to the left endpoint
j − 2 of the monitored interval,

where the very last statement follows from the symmetric argument to the one devel-
oped above for the interval [0, j − 2]. See Figure 11 for an illustration.

Now, we consider three cases with respect to the positions of the four cuts in
[j − 2, j], illustrated in Figure 12. From the discussion above, we know that three of
the cuts will be δ-close to the left-endpoint, midpoint, and right-endpoint of [j− 2, j],
respectively, so it suffices to consider the cases depending on the position of the fourth
cut. Henceforth, we use c1, c2, c3 to denote these three cuts, from left to right in terms
of their position within the interval and c̃ to denote the aforementioned fourth cut.

1. c̃ is δ-close to j − 1. In that case, assuming without loss of generality
that c̃ < c2, due to the parity of the cut sequence, the union of intervals
[c1, c̃]∪ [c2, c3] contains monochromatic intervals of the same label and length
at least 1 + δ, and therefore tunnel-boundary sensor b1,j will be active. See
the LHS of Figure 12.

2. c̃ is δ-close to j. In that case, it is possible that [j − 2, j] does not contain a
union of monochromatic intervals of the same label of length at least 1 + δ.

0 1 2 3 4 5 6 7 8 9 10

2 cuts here 4 cuts here

Fig. 11. The case in which there are four cuts in the interval [j− 2, j] (shown in red), here for
j = 5. The three cuts that lie within distance δ from the left endpoint, midpoint, and right endpoint of
[j−2, j] are depicted with thick dashed red lines. The other cut in the interval (based on the position
of which the different cases are considered) is depicted by a thick dashed blue line, and in this
particular case, it is shown to be δ-close to the midpoint of the interval. Notice that the positioning
of the cuts in [0, 3] and in [5, 10] is such that the cuts are δ-close to integer coordinates which are
the midpoints of the monitored subintervals. If that was not the case, then some subintervals would
be sufficiently imbalanced and the corresponding tunnel-boundary sensor agent would be active.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-230 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

j − 3 j − 2 j − 1 j j + 1 j − 3 j − 2 j − 1 j j + 1

A+ A− A− A+

A+

A+ A− A+ A+ A−

A−

Fig. 12. The two subcases of the case when there are four cuts in the interval [j − 2, j]. The
three cuts c1, c2, and c3 that are δ-close to the integer points j − 2, j − 1, and j in the interval are
shown in red; the other cut c̃ is shown in blue. On the left, when c̃ is δ-close to the midpoint j − 1
of the interval, most of [j − 2, j] is colored with the same label, here A−, by the parity of the cut
sequence. On the right, c̃ is δ-close to the right endpoint j of the interval, which means that, by the
parity of the cut sequence, most of [j− 1, j+1] receives the label A+, since if there is another cut in
the interval, it is constrained by the arguments of the proof to be δ-close to the right endpoint j + 1
(shown in red here).

However, by the parity of the cut sequence, in the interval [j − 1, j + 1], now
most of the interval [j− 1, j+1] will receive the same label, and [j− 1, j+1]
will contain a union of monochromatic intervals of the same label of total
length at least 1 + δ, activating the tunnel-boundary sensor b1,j+1. See the
RHS of Figure 12.

3. c̃ is δ-close to j − 2. This case is symmetric to case 2 above.
There are three cuts in [j − 2, j]. Again, considering the intervals [0, j − 2] and

[j, n] as we did in the case of four cuts in [j−2, j], we can now observe that one of the
intervals will be intersected by at most k−1 cuts, where k ∈ {j−2, n−j} is its length.
Furthermore, if it is intersected by fewer than k−1 cuts, by Lemma 4.18 some tunnel-
boundary sensor agent will be active and we are done. Therefore, we will consider
the case when one of the intervals is intersected by exactly k− 1 cuts and let [j, n] be
that interval, without loss of generality, as the argument for [0, j − 2] is symmetric.

Following exactly the same arguments as in the second and third paragraph of
the case of four cuts above, we can establish a very similar statement, namely, that

• all the cuts in [j−2, j] are δ-close to integer coordinates within the interval and
• there is at least one cut in [j − 2, j] that is δ-close to the midpoint j − 1 of
the monitored interval and one cut that is δ-close to the right endpoint j of
the monitored interval.

Again, letting c1 and c2 denote the two cuts mentioned in the second item above from
left to right in terms of their positions, we will consider some cases depending on the
position of the third cut, which we will denote by c̃.

1. c̃ is δ-close to j − 2. In that case, considering the intervals [c̃, c1] and [c1, c2],
we observe that since the cuts c̃, c1, and c2 are δ-close to the integer points
j − 2, j − 1, and j, respectively, both intervals have length at least 1 − 2δ.
However, this contradicts the assumption of the case, namely, that there ex-
ists two cuts in [j − 2, j] that are within distance at most 1 − nδ from each
other. See Figure 13, LHS.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-231

j − 3 j − 2 j − 1 j j + 1 j − 3 j − 2 j − 1 j j + 1

j − 3 j − 2 j − 1 j j + 1

A+ A− A+ A− A− A− A+

A+

A− A+ A+ A−

A−

Fig. 13. The three subcases of the case when there are three cuts in the interval [j − 2, j].
The two cuts c1, c2 that are delta-close to the integer points j − 1 and j in the interval are shown
in red, the other cut c is shown in blue. On the left, when c̃ is δ-close to the left endpoint j − 2
of the interval, at least one of the subintervals defined by the cuts will have length at least 1 − 2δ,
contradicting the assumption of the case. On the right, c̃ is δ-close to the midpoint j − 1 of the
interval [j − 2, j] and by the parity of the cut sequence, most of the interval receives the same label,
here A−. Finally, at the bottom, c̃ is δ-close to the right endpoint j of the interval, which means
that, by the parity of the cut sequence, most of [j − 1, j + 1] receives the label A+, since if there is
another cut in the interval, it is constrained by the arguments of the proof to be δ-close to the right
endpoint j + 1 (shown in red here).

2. c̃ is δ-close to j − 1. In that case, similarly to case 1 for the case of four
cuts, the parity of the cut sequence is such that most of [j − 2, j] will receive
the same label and in particular [j − 2, j] will contain a union of monochro-
matic intervals of the same label with total length at least 1 + δ, activating
tunnel-boundary sensor b1,j . See Figure 13, middle.

3. c̃ is δ-close to j. Again, similarly to case 2 for the case of four cuts, it is
possible that [j − 2, j] does not contain a union of monochromatic intervals
of the same label of length at least 1 + δ. However, by the parity of the cut
sequence, in the interval [j − 1, j + 1], now most of the interval [j − 1, j + 1]
will receive the same label, and [j−1, j+1] will contain a union of monochro-
matic intervals of the same label of total length at least 1 + δ, activating the
tunnel-boundary sensor b1,j+1. See Figure 13, RHS.

This completes the proof.

5. Reducing from New Variant High-D Tucker to Consensus-Halving.
In subsection 5.1 we give an overview of aspects of how we construct an instance
ICH of ε-Consensus-Halving (in poly-time) from an instance of New Variant

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-232 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

High-D Tucker, for inverse polynomial ε. Subsection 5.2 describes the new coordi-
nate system for the Möbius-simplex D and establishes key properties. Subsection 5.3
presents a coloring function of D in terms of the coordinate system of subsection 5.2.
Subsection 5.4 describes how to construct a purported solution to n-dimensional New
Variant High-D Tucker from a solution to ε-Consensus-Halving. In section 6
we prove that a solution to New Variant High-D Tucker that is obtained by
reducing to ε-Consensus-Halving, solving it, and converting that solution to a so-
lution to n-dimensional New Variant High-D Tucker really is a valid solution.

5.1. Overview of the construction of an instance of the ε-Consensus-
Halving problem from an instance of New Variant High-D Tucker. We
define the reduction from New Variant High-D Tucker (Definition 3.5) to ε-
Consensus-Halving.

Let IV T be an instance of New Variant High-D Tucker in n dimensions;
let CV T be the boolean circuit that represents it. ICH will be the corresponding
instance of Consensus-Halving. We list ingredients of ICH and give notation to
represent them, as follows. A is the consensus-halving domain, an interval of the form
[0, poly(n)]. Any agent a has a measure µa : A −→ R represented as a step function
(thus having a polynomial number of steps).

• ICH has n coordinate-restricting agents a1, . . . , an (Definition 4.2). See Fig-
ure 14.

• The consensus-halving domain A of ICH has a coordinate-encoding region (c-e
region) (Definition 4.1) consisting of the interval [0, n].

• ICH has pC circuit-encoders C1, . . . , CpC (see subsections 5.1.1 and 5.1.4).
– Each Ci has a set Ai of agents (see Figure 14) which includes Ci’s sensor

agents, also circuit-encoding agents (below).
– Each Ci has an associated circuit-encoding region Ri of A; each Ri is

an interval of polynomial length, and the Ri do not intersect with each
other or with the coordinate-encoding region.

– Ai contains a polynomial number of circuit-encoding agents (one for each
gate of CV T), having value in Ri.

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

...

. . .c-e region R1 R2 RpC

R

c-r agents

a1

an

A1

A2

ApC

Fig. 14. An overview of ICH , denoting all the different regions and the agents of
C1 . . . , Cn, as well as the coordinate-restricting agents. The highlighted areas denote that
the corresponding agent has nonzero value on these regions.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-233

– Each Ci has phuge sensor agents as defined in Definition 4.5, each of
which has a block of value 1/10 in a small subinterval of the c-e region
as specified in Definition 4.5, and further value in region Ri.

– Each Ci has n− 1 tunnel-boundary sensor agents as in Definition 4.6.
Remarks. We associate one cut with each agent; let c(a) be the cut associated

with agent a. The cuts c(a) for coordinate-restricting agents are called the c-e cuts.
A straightforward consequence of Proposition 4.15 is that in any solution, either all n,
or n− 1, of the coordinate-encoding cuts must lie in the coordinate-encoding region.
All other cuts must lie in the regions Ri; indeed, every cut, other than the c-e cuts,
is constrained by the value of its associated agent, to lie in a small interval that does
not overlap any other such intervals. In the event that a c-e cut lies outside the c-e
region, we refer to it as a “stray cut,” and while such a cut may initially appear
to interfere with the functioning of the circuitry, a “double-negative” lemma ensures
that the duplication of the circuit using pC circuit-encoders allows the circuitry to be
robust to this problem.

5.1.1. Construction of C1. Recall CV T is the boolean circuit in the instance
IV T of New Variant High-D Tucker.

• We assume that CV T has 2n output gates g1, . . . , gn and g−1, . . . , g−n having
the property that exactly one of them will take value true (this may be
enforced syntactically). gi getting value 1 (true) means that the point at
coordinates represented by the input gets colored i.

• CV T has n ·polylog(n) input gates, representing the coordinates of a point in
B = [−1, 1]n, each represented with inverse-polynomial precision.

We describe how circuit-encoder C1 is derived from CV T . The subsequent circuit-
encoders can then be specified in terms of C1. Each gate g of CV T is simulated using
a gate agent a(g), as detailed in subsection 4.1, in the corresponding subsection. a(g)’s
cut c(a(g)) occupies a right position, or a left position, representing true or false,
as a function of the cut(s) that represent boolean inputs to g.

The circuit-encoding agents A1 of C1 thus include 2n gate agents whose cor-
responding cuts simulate the values of the output gates of CV T , provided that the
input represented by the c-e cuts lies in the Significant Region (Definition 4.14). The
positions of these cuts affect the labels of blocks of value held by the n coordinate-
restricting agents, as detailed in subsection 5.1.2.

Definition 5.1. Reference sensor-agent. Noting from Definition 4.5 that the
sensor agents for Ci are denoted Si = {si,1, . . . , si,phuge}, we let s1,1 be the refer-
ence sensor-agent: Outputs produced by the circuit Ci are taken with reference to the
value4 s1,1, in the sense that after simulating CV T we take the exclusive-or with s1,1.

This crucial technique of Definition 5.1 performs the task of disorienting the
domain while at the same time ensuring continuity when we move a cut from the LHS
of the c-e region to the RHS. Note that the XOR operation can be implemented using
a rather simple subcircuit based on our boolean gate gadgets.

Preprocessing, prior to simulating CV T . For each Ci, we take all p
huge input bits,

which appear in up to n + 1 blocks of consecutive 1’s and 0’s, and convert them
into the coordinates of a point in the Möbius-simplex (Definition 4.12). As noted
earlier (Observation 4.11) at most n circuit-encoders may receive ill-defined inputs
caused by c-e cuts cutting through value-blocks in the c-e region that belong to their
sensor agents; we simply assume that the output of those agents is unreliable, indeed
adversarially chosen.

4We are using s1,1 to denote the boolean value taken by s1,1 as well as the sensor itself.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-234 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

We then perform a coordinate transformation described in subsection 5.2. A
subset of points in the Möbius-simplex maps to a copy of the domain B of the instance
IV T (recall Definition 3.5). These points get their coordinates passed directly to a
copy of CV T , and the outputs of CV T are used to provide feedback to the c-r agents
as described in subsection 5.1.2 (and discussed in Observations 4.11 and 4.13). Other
points get colored in a manner that avoids allowing bogus solutions to ICH (i.e., ones
that do not encode solutions to IV T).

5.1.2. The output gates of C1 and the feedback they provide to the
coordinate-restricting agents. CV T has output gates gj , j ∈ ±[n], with the prop-
erty that when inputs are well-defined, exactly one output gate evaluates to true.
A circuit-encoder simulates CV T using the gate gadgets introduced in subsection 4.1.
Let xREF ∈ {true, false} be the negation of the value of the reference sensor (Def-
inition 5.1). We use additional gates g′j , j ∈ ±[n], where

• if gj = g−j = false, then g′|j| = true and g′−|j| = false;

• if j > 0 and gj = true (so g−j = false), then g′j = g′−j = true⊕ xREF ;
• if j < 0 and gj = true (so g−j = false), then g′j = g′−j = false⊕ xREF .

Each of the c-r agents a1, . . . , an has two value-blocks of value 1/(2pC) in region
R1, and each gate g′j of C1 is able to select the label of one of these value-blocks.
(Recall that the boolean value at a gate is represented by two positions that may
be taken by the corresponding cut, so that a block of value lies between these two
positions.) Figure 15 shows an example of how this feedback works.

5.1.3. How C1’s tunnel-boundary sensors affect the feedback mecha-
nism. Let Aj ∈ {A+, A−} and let A−j ∈ {A+, A−}, A−j ̸= Aj be the complemen-
tary label. The tunnel-boundary sensor agents b1,2, . . . , b1,n affect the output of the
circuit-encoders as follows:

1. If none are active, the 2n outputs of C1 are computed as described in subsec-
tion 5.1.2.

2. If j is odd and b1,j is active in direction Aj , then the output gates g′j , g
′
−j are

both set to the value that causes c-r agent aj to observe more Aj .
3. If j is even and b1,j is active in direction Aj , then the output gates g′j , g

′
−j

are both set to the value that causes c-r agent aj to observe more A−j .
Rules 2 and 3 override rule 1, which allocates values that directly encode values

output by CV T . Note that the gadgetry of the circuit can ensure that either an excess
of A+ or an excess of A− can be shown to the corresponding c-r agent as feedback,
as the circuit can convert the input value encoded by the value gadget of the tunnel-
boundary sensor agent in R1 to either a “right” or “left” output position, depending
on the parity of the index. Also, if more than one tunnel-boundary sensor agent
is active, they all affect their corresponding gates. The reason for requiring tunnel-
boundary sensors of different parities to feedback different labels to the c-r agents is
to be consistent with the definition of “consistent colours”; see Definition 6.8.

Note that we do not define the behavior of the tunnel-boundary sensor agents
in terms of the reference sensor. They essentially look for an imbalance between
A+ and A− within some interval of length 2, and when they find a sufficiently large
imbalance, they force the circuit C1 to show their associated c-r agent more of the
overrepresented or underrepresented label, depending on their parity. This is done via
the bit-detection gadgets on their RHS, which, as explained in subsection 4.1, jump
to the right or to the left, depending on which label is in excess, or remain in the
middle if the two labels are approximately balanced; see Figure 7.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-235

c-e region
x1

x2 x3 x4 x5

a1

a2

a3

a4

a

a′

A+ A− A+ A− A+ · · · A+

v ¬v
A−

A+ A− A+ A− A+ A− A+ A− A+ A−

v

T F

v′

T F

v ∧ v′

T F

¬(v ∧ v′)

T F

a1

a2

a3

a4

a

a′

Fig. 15. Example showing gate simulation: n = 4; agents a and a′ have corresponding
propositional variables v and v′ that are two inputs to a circuit. v = false since a’s sensor-
value lies in a region labelled A−; similarly v′ = true since a′’s sensor-value lies in a
region labelled A+. Gate-encoding blocks have cuts (shown in red) at two possible positions
corresponding to true and false; a dashed-line shows the alternative position (not taken) by
the cut (itself shown as a solid line). c-r agent a1 receives feedback based on the conjunction
of two input bits.

Comment. Consider the operation of moving a cut from near the LHS of the c-e
region to the RHS, which corresponds to two points in the Möbius-simplex that are
close to each other via a path through the facets that have been identified according
to Definition 4.12. Suppose also that within the c-e region, we do not change the
label of any point. Then the tunnel-boundary sensor agents behave the same way: if
some tunnel-boundary sensor agent sees an excess of A+ in its interval, then it will
continue to see an excess of A+. Regarding the non-tunnel-boundary sensor agents,
our reduction will make them “want” to produce opposite outputs, but due to the
flipping of xREF , the reference sensor value and the final output values produced by
g′j , j ∈ ±[n], are the same, and we will have continuity across this facet.

5.1.4. Construction of circuit-encoders C2, . . . , CpC . We next describe how
the pC circuit-encoders differ from each other. Each Ci has a set of circuit-encoding

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-236 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

agents Ai, which contains Ci’s sensor agents Si. For i ∈ [n] let Ai be the agents
ai,1, . . . , ai,p for some polynomial p.

• For all i, j, µai,j
(x) = µa1,j

(y), where x and y are corresponding points in Ri

and Rj . By “corresponding points” here we mean points that lie in the same
distance from the left-endpoint of the respective intervals Ri and Rj .
More concretely, we define a correspondence function hRA,RB

: RA −→ RB ,
mapping points of an interval RA to an interval RB in the most straightfor-
ward way: For t ∈ RA, let hRA,RB

(t) = t− ℓ(RA) + ℓ(RB). In other words,
any two points x ∈ RA and y ∈ RB such that x − ℓ(RA) = y − ℓ(RB) are
corresponding points with regard to the two subregions.

• For all i, j, all x in the c-e region, µai,j (x), is specified in Definition 4.6.
The second of these items says that in the c-e region, the valuation function of

the agents that make up Ci differ from those of C1 by having been shifted to the right
by δtiny(i−1), where this shift wraps around in the event that we shift beyond n (the
right-hand point of the c-e region). In other respects, Ci is an exact copy of C1, save
that Ci’s internal circuitry lies in Ri rather than R1.

For each Ci, the c-r agents have a further 2n value-blocks of value 1/(2pC) in
region Ri, whose labels are governed by the outputs produced by Ci in the same way
as for C1. Consequently, we have the following observation.

Observation 5.2. The value that is labelled A+ held by any c-r agent aj is the
average of the output values that the Ci’s allocate to aj . If, say, all the Ci receive
inputs representing a point in the Significant Region with label ℓ, then aℓ observed
an imbalance between A+ and A−, but aj for j ̸= ℓ will have g′j output the opposite
value to g′−j , resulting in aj ’s value-blocks receiving opposite labels.

5.2. An alternative coordinate system for the Möbius-simplex. Recall
that the Möbius-simplex D is the n-simplex consisting of points (x1, . . . , xn+1) whose
components are nonnegative and sum to 1. Furthermore, a typical point in D is
directly encoded via the positions of n cuts in the c-e region.

Here we specify a transformed coordinate system that is needed in order to encode
instances of New Variant High-D Tucker. We will embed the hypercube-shaped
domain of an instance of New Variant High-D Tucker in a hypercube in the
transformed coordinates and then use properties of the transformed coordinate system
to extend the labelling function to the rest of the domain in a way that does not
introduce bogus solutions (i.e., fixpoints of the extended function that lie outside the
hypercube and do not encode solutions of New Variant High-D Tucker).

Let F0 be the set of points in D of the form (0, x2, . . . , xn, 0); thus F0 is a (n−2)-
face of D. See Figure 16. For τ ∈ [0, 1], let xτ be the point

xτ := τ(1, 0, . . . , 0) + (1− τ)(0, . . . , 0, 1) = (τ, 0, . . . , 0, 1− τ).

(So, x0 and x1 are the endpoints of the one-dimensional edge ofD that is not contained
in F0.) Let Dτ be the (n − 1)-simplex consisting of convex combinations of F0 and
xτ . Thus D0 and D1 are the two facets of D that have been identified together as in
Definition 4.12.

Dτ contains the point 0τ = (τ/n, 1/n, . . . , 1/n, (1−τ)/n), which we regard as the
origin of Dτ . The set of points {0τ : 0 ≤ τ ≤ 1} will be referred to as the axis; it will
transpire that all solutions must lie within an inverse polynomial distance from the
axis (in particular, they will be in the Significant Region).

We then refer to points in Dτ by means of the coordinates in a coordinate system
that itself is a linear function of τ . With respect to any fixed τ ∈ [0, 1] we define

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-237

00

0τ

01

axis

x0

(0, . . . , 0, 1)

xτ

x1

(1, 0, . . . , 0)

D0

D1

Dτ

F0

F0 is points
of the form
(0, x2, . . . , xn, 0)

Fig. 16. Subspaces of the Möbius-simplex D: D0 is the triangle spanned by x0 and F0,
and 00 is its center, and similarly for Dτ and D1.

n−1 vectors (dτ2 , . . . , d
τ
n) as follows. A key feature is that (dτ2 , . . . , d

τ
n) form a basis of

Dτ (so that with respect to the origin 0τ , any point in Dτ has unique coordinates).
The other key feature (Observation 5.5) is that at τ = 0 the coordinate/directions are
“equal and opposite” to the coordinates at τ = 1. Also, the coordinate system varies
suitably smoothly.

As a warm-up we start by considering dτ2 :

dτ2 := (1− τ)(0, 1,−1, 0, . . . , 0) + τ(−1, 1, 0, . . . , 0).

dτ2 consists of increasing the second coordinate at the expense of its neighbors. For
small τ we increase mainly at the expense of the third coordinate, and as τ increases,
we increase the second coordinate more at the expense of the first. Notice in particular
that at τ = 1

2 we have dτ2 = (− 1
2 , 1,−

1
2 , 0, . . . , 0).

Generally, for 2 ≤ i ≤ n we define

dτi := (1− τ)(0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
n−i

) + τ(0, . . . , 0︸ ︷︷ ︸
i−2 zeroes

,−1, 1, 0, . . . , 0︸ ︷︷ ︸
n−i+1

).(5.1)

Thus, again this consists of the ith coordinate increasing at the expense of its neigh-
bors, and we have in particular

d
1
2
i =

 0, . . . , 0︸ ︷︷ ︸
i−2 zeroes

,−1

2
, 1,−1

2
, 0, . . . , 0

 .

For i = 2, . . . , n, define

dτ−i := −dτi .(5.2)

Observation 5.3 makes the important point that by linearity, the vectors dτi , i =
2, . . . , n, can be used as a coordinate system to refer to points in Dτ .

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-238 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

Observation 5.3. Any point x in Dτ can be uniquely expressed as a sum

x = 0τ +

n∑
i=2

αid
τ
i .(5.3)

To see this, note first that D0 is points in D of the form (0, x2, . . . , xn+1), and D1

is points of the form (x1, . . . , xn, 0). Note that the observation certainly works for
τ = 0 or τ = 1. To see that it works for intermediate τ , note that the vectors dτi are
linearly independent, and the reason why they span Dτ is that any vector dτi is equal
to (1 − τ) multiplied by a vector in D0, added to τ multiplied by an equal-length
vector in D1. So these vectors do indeed lie in Dτ .

Definition 5.4. For a point x ∈ Dτ as in (5.3) we say that the transformed
coordinates of x are (α2, . . . , αn). More generally, a point x ∈ D can be expressed as
(τ ;α2, . . . , αn), where τ is chosen such that x ∈ Dτ . We use the following metric d̃(·, ·)
on transformed coordinate vectors, where similarly to (4.1), L1 denotes the standard
L1 distance on vectors.

d̃(x,x′) = min
(
L1(x,x

′), min
z,z′:z≡z′

(L1(x, z) + L1(z
′,x′))

)
,(5.4)

where (0;α2, . . . , αn) ≡ (1;−α2, . . . ,−αn).

Observation 5.5. With regard to Definition 5.4, let us consider two points x =
(0;α2, . . . , αn) and x′ = (1;−α2, . . . ,−αn) that have been equated with each other.

Assume these points are near the axis, specifically |αj | < 1/10n for all j. Notice
that

• the cuts in the c-e region for x and x′ partition the c-e region in the same
way;

• (with reference to Figure 17) when we move from a point in D1−ε to a nearby
point in Dε, for any j ∈ {2, . . . , n}, the direction of increasing αj segues
smoothly to the direction of decreasing αj .

Our assumption that |αj | < 1/10n ensures that cuts are fairly evenly spaced, and
movement in any of the directions dτj does not cause the cuts to cross each other.

Proposition 5.6 says that if we perturb a point x ∈ D that lies close to the axis,
then the total perturbation of the transformed coordinates of x is polynomially related
to the total perturbation of the untransformed coordinates; d and d̃ are polynomially
related.

Proposition 5.6 (polynomial distance relation). There is some polynomial p(n)
such that for all x,x′ ∈ D within Euclidean distance 1/10n2 of the axis, letting x̃
and x̃′ be their transformed coordinates, and letting d, d̃ be the metrics defined as in
(Equations (4.1), (5.4)), we have

1

p(n)
≤ d(x,x′)

d̃(x̃, x̃′)
≤ p(n).

Proof. In subsection 5.2.1, we show that for points near the axis (i.e., within
Euclidean distance 1/10n2 of the axis), the computation of the coordinate
transformation—and its inverse—have the property that small perturbations of the
input values lead to inverse-polynomial upper bounds on the resulting perturbations
of the output values. Since we have this for both the transformation and its inverse,

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-239

coordinate-encoding region [0, 4]

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

dτ2
dτ3

dτ4

Dτ

(τ ≈ 0)

Dτ

(small τ)

Dτ

(τ ≈ 1
2)

Dτ

(large τ)

Dτ

(τ ≈ 1)

x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5

x1 x2 x3 x4

Fig. 17. The diagram shows (for n = 4) sets of cuts (in red) that correspond to points
on the axis, for various values of τ . It also shows how movements of the cuts correspond to
movement of a point in D away from the axis. For example, for small τ , a move in direction
dτ2 corresponds to moving the second cut to the right and the first only slightly to the left.
Generally, a movement in direction dτi tends to increase xi at the expense of xi’s neighbors
xi−1 and xi+1. As τ increases, the movement in direction dτi tends increasingly to moving the
cut to the left of interval xi to the left, as opposed to moving the cut to the right of interval
xi to the right. In the limit as τ approaches 0 from above, the direction dτi approaches the
negative of the limit approached by dτi when τ approaches 1 from below.

it follows that there are also inverse-polynomial lower bounds on the resulting pertur-
bations of the output values.

The identification of transformed coordinates (0;α2, . . . , αn), (1;−α2, . . . ,−αn) is
of course equivalent to the identification of untransformed coordinates (0, x1, . . . , xn)
and (x1, . . . , xn, 0) in (4.1). If, say, x and x′ are very close together due to being linked
via z, z′ for which z ≡ z′, then the transformed versions z̃, z̃′ would cause d̃(x̃, x̃′) to
be very close. So the polynomially related result for this space in which these two

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-240 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

facets have not been identified with each other carries over to a polynomially related
result in which they have been identified with each other.

Note that a similar result would hold if in the definitions of the metrics d and d̃,
we replace the L1 metric with, say, L2 or L∞, since these are polynomially related to
L1. Note that Proposition 5.6 does not hold for all points in D; the restriction to a
neighborhood of the axis is needed. For points on F0, all values of τ are equivalent, and
for points close to F0, perturbed versions of them could result in large perturbations
of τ .

We show in the next section that the coordinate transformation, and its inverse,
can be computed in polynomial time, for points in D that are within some inverse
polynomial distance from the axis.

5.2.1. Computation of the transformation and its inverse. We verify here
that (for points in the vicinity of the axis), our transformation may be performed effi-
ciently and that small perturbations of inputs lead to small perturbations of the out-
puts (in either direction). The easy direction is the computation of (x1, . . . , xn+1) from
(τ ;α2, . . . , αn). Recall that a point x on the original domain can be expressed in terms
of the transformed coordinates (τ ;α2, . . . , αn) and the origin 0τ = (τn ,

1
n , . . . ,

1
n ,

1−τ
n)

as x = 0τ +
∑n

i=2 αid
τ
i . Therefore, we have

x1 =
τ

n
− τ.α2,

x2 =
1 + τ

n
+ (1− τ)α2 − τα3 − x1,

x3 =
2 + τ

n
+ (1− τ)α3 − τα4 − (x1 + x2),

...

xn =
n− 1 + τ

n
+ (1− τ)αn −

n−1∑
i=1

xi,

xn+1 = 1−
n∑

i=1

xi.

In the other direction, given (x1, . . . , xn+1) we first compute the value of τ for the
transformed coordinate system: Note that (x1, . . . , xn+1) must be a convex combina-
tion of xτ and F0 (where recall that xτ = (τ, 0, . . . , 0, 1 − τ) and F0 is points of the
form (0, x2, . . . , xn, 0)); therefore, τ can be computed as the solution to the equation

τ

1− τ
=

x1

xn+1
.

Note that the dependence of τ on x1 and xn+1 is not excessively sensitive near
the axis, since x1+xn+1 is close to 1/n. Having computed τ ∈ [0, 1], we could simply
solve the equations above (the ones used to compute x1, . . . , xn+1) for α2, α3, and so
on successively, using the derived formulas for αi for the computation of αi+1, and
express each αi as a function of only τ and the values x1, x2, . . . xn+1. However, in
the extremal cases of τ = 0 and τ = 1, some of the αi values might “disappear”; for
example, for τ = 0, expressing α3 in terms of only τ , x1, and x2 is not possible, since
for τ = 0 we do not obtain a formula for α2 to substitute into the equation for x2. To
remedy this, we consider two cases:

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-241

Case 1: τ ≥ 1
2 . We compute α2, . . . , αn as follows:

α2 =
1

n
− 1

τ
· x1,

α3 =
1 + 1/τ

n
+

(1− τ)

τ
· α2 −

1

τ
· (x1 + x2),

...

and so on for α4, . . . , αn.

Case 2: τ ≤ 1
2 . We compute α2, . . . , αn starting at the opposite end:

αn = −n− 1 + τ

n(1− τ)
+

∑n
i=1 xi

1− τ
,

αn−1 =
τ

1− τ
· αn − n− 2 + τ

n(1− τ)
+

∑n−1
i=1 xi

1− τ
,

...

and so on for αn−2, . . . , α2.
Note that inverse polynomial-size perturbations of the xi lead to inverse pertur-

bations of the transformed coordinates of polynomial size. As a sanity check, note
that at the boundary (points with τ = 0 are the same as points with τ = 1), if we
move a cut at the LHS to the RHS (so (0, x2, . . . , xn+1) becomes (x2, . . . , xn+1, 0)), it
can be checked that the αi get negated.

Note that these computations should be done with a precision (or rounding error)
polynomially smaller than δtiny.

5.3. A (poly-time computable) partial colouring function. This section
defines a partial function f : D → {−1, 0, 1}n (D being the n-dimensional Möbius-
simplex (Definition 4.12)). f is constructed in polynomial time based on an instance
IV T of New Variant High-D Tucker in n dimensions, defined using circuit CV T .
f is defined in the Significant Region (Definition 4.14), which is the set of points where
no tunnel-boundary sensor agents (Definition 4.6) are active, and thus it includes the
twisted tunnel T (Definition 5.7). f is computable by a circuit C, which is used to
define the operations of the circuit-encoders in a derived instance of Consensus-
Halving. Within the Significant Region, f determines the outputs of the circuit-
encoders.

The function f maps a point x in the Significant Region to a vector of length n,
ef (x), where ef (x)j = 1 means that the point receives color j, ef (x)j = −1 means
that the point receives color −j, and ef (x)j = 0 means that the point does not receive
color j or −j. In general, ef (x) may have multiple nonzero entries. We will use the
term the color of x for points that only receive a single color (and therefore their
outputs are vectors with only one nonzero entry).

The function f will have a corresponding vector-valued function f ′ (subsec-
tion 6.1) that more closely represents choices of labels A+/A− that the circuit shows
to the c-r agents. We will do this in such a way that no bogus solutions result from
the transition to parts of D where tunnel-boundary sensor agents are active. By con-
struction, there are no solutions where tunnel-boundary sensor agents are active, so
all solutions occur where f is defined.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-242 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

In subsection 6.1 we then define a vector-valued “Borsuk–Ulam-style” function F
in terms of f . Letting IV T be an instance of New Variant High-D Tucker, F (x)
will be approximately zero iff given x, we can derive an approximate consensus-halving
solution to IV T . It will be shown that approximate zeroes of F provide solutions to
IV T .

Recall that D is the set of points (x1, . . . , xn+1) whose components are nonneg-
ative and sum to 1. And, the Significant Region (Definition 4.14) of D consists of
points (x1, . . . , xn+1) for which coordinates xi (2 ≤ i ≤ n − 1) differ from 1/n by
at most an inverse polynomial δw = 1/pw(n) (Proposition 4.15). (δw represents an
upper bound on the thickness of the Significant Region.)

Let B be the n-dimensional “box” associated with IV T (recall IV T is represented
by circuit CV T that maps points in B to ±[n]). We embed a copy of B in D as follows.
Recall the way facets of B are colored in Definition 3.5. Let (x1, . . . , xn) denote a
typical point in B, and assume that the facets of B with maximum and minimum
x1 (i.e., x1 = 1 and x1 = −1, respectively) are the panchromatic facets of B (as
in Definition 3.5), and for i ≥ 2 the facet of B with maximum xi (xi = 1) consists
of points that do not have color i, and the facet of B with minimum xi (xi = −1)
consists of points that do not have color −i.

Definition 5.7. The twisted tunnel T is defined as follows. The axis of T is the
set of all points 0τ as defined in subsection 5.2. The twisted tunnel is the set of all
points with transformed coordinates (τ ;α2, . . . , αn) such that for all i, |αi| < δT . Note
that δT is an inverse polynomial quantity sufficiently small that T is a subset of the
Significant Region; this is achieved since by definition, δT is polynomially smaller than
δw of Proposition 4.15. Thus, T has (with respect to the transformed coordinates) a
(n− 1)-cube-shaped intersection with any Dτ .

We define the behavior of f over the Significant Region (Definition 4.14) in three
stages, as follows.

1. Embedding B in D (recall B = [−1, 1]n).
A point x = (x1, . . . , xn) in B is mapped to a point g(x) in D as follows.
g(x) lies in Dτ , where we choose τ = 1

2 + δT · x1. Then (noting (5.3)) we
set g(x) equal to 0τ +

∑n
i=2 δ

T · xid
τ
i (i.e., g(x) has transformed coordinates

(12+δTx1; δ
Tx2, . . . , δ

Txn)). g(x) will receive a single color; the color of g(x)—
i.e., the nonzero entry of f(g(x))—is set equal to the color allocated to x in B
by IV T . (Notice that the center of B is mapped to (1/2n, 1/n, . . . , 1/n, 1/2n),
which is the origin of D 1

2
, and the center of the Significant Region. This point

has (recalling Definition 5.4) transformed coordinates (12 ; 0, . . . , 0), where the
first entry is the value of τ .)

2. Extending f to be defined on T .
We also color other points in T as follows—these will also receive single colors.
Suppose y belongs to Dτ , where τ < 1

2 − δT or τ > 1
2 + δT . According to

(5.3), y = 0τ+
∑n

i=2 αid
τ
i , and y has transformed coordinates (τ ;α2, . . . , αn).

Suppose all the αi lie in the range [−δT , δT]. Then if τ < 1
2 − δT , we set the

color of y to the color of a point y′ = (12 −δT ;α2, . . . , αn). Thus y
′ ∈ D 1

2−δT ,

and the other transformed coordinates (Definition 5.4) are the same for y
and for y′. We do a similar thing for points in Dτ for τ > 1

2 + δT . That is, if
y has transformed coordinates (τ ;α2, . . . , αn), where τ > 1

2 + δT and the αi

are all at most δT in absolute value, then y gets the same color as a point y′

whose transformed coordinates are (12 + δT ;α2, . . . , αn).

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-243

3. Extending f to the Significant Region.
The Significant Region (Definition 4.14) is points in D where no tunnel-
boundary sensor agents are active, a subset of points that are close to the
axis in the sense of Proposition 4.15. Consider x ∈ D \ T with transformed
coordinates (τ ;α2, . . . , αn).
(a) For each j ∈ {2, . . . , n} if αj > δT , then x gets color −j.
(b) For each j ∈ {2, . . . , n} if αj < −δT , then x gets color j.
(c) These are not mutually exclusive; x gets at least one color, possibly

more.
Notice that (within the subspace Dτ) the side(s) of the twisted tunnel T
closest to x is guaranteed not to be opposite to any color of x.
For a subset S of colors, let R(S) be the region with colors in S. We call
these the “outer regions.”

Proposition 6.11 notes that when color-regions meet each other at opposite ends of
T (which have been identified with each other according to the definition of the
Significant Region), they will have equal and opposite colours.

5.4. How to compute a solution to New Variant High-D Tucker from
a solution to Consensus-Halving. Suppose we have a solution SCH to an instance
ICH of Consensus-Halving, derived by our reduction from an instance IV T of New
Variant High-D Tucker.

Let x be the point in the Möbius-simplex represented by the c-e cuts of SCH .
Proposition 4.15 already tells us that x must lie within some inverse-polynomial dis-
tance of the axis, since if not, some tunnel-boundary sensor agent will be active. We
prove in section 6 that x must lie within, or very close to, the twisted tunnel.

From this we identify two color-regions that have equal and opposite colours, as
follows. Let x have transformed coordinates (τ ;α2, . . . , αn), which can be computed
with inverse-polynomial precision from the c-e cuts.

If x occurs within the embedded copy of B (subsection 5.3), then identify two
circuit-encoders Ci and Ci′ that both receive reliable inputs and have equal and
opposite outputs. The proof of Proposition 6.7 tells us that this is always possi-
ble.

Now we have two points x′ and x′′ within distance δtiny of each other that lie in
oppositely colored cubelets. With respect to transformed coordinates, x and x′ are
within some distance δ̃tiny that we can assume by Proposition 5.6 to be much smaller
than the widths of the cubelets and other color-regions. So these two cubelets are
adjacent and we are done.

If x lies in T but not in the embedded copy of B, then we similarly find two
distinct color-regions that are adjacent and with opposite colors. Since these color-
regions are just extensions of the cubelets that lie on the panchromatic facets of
the embedded instance of New Variant High-D Tucker, we are done. Formally,
if SCH represents a point with transformed coordinates (τ ;α2, . . . , αn), where τ >
1
2 + δT , we take the point (12 + δT ;α2, . . . , αn), and similarly, if SCH represents a
point with transformed coordinates (τ ;α2, . . . , αn), where τ < 1

2 − δT , we take the
point (12 − δT ;α2, . . . , αn).

6. Establishing the correctness of the reduction. Let IV T be an instance
of New Variant High-D Tucker in n dimensions, given in terms of circuit CV T ;
suppose Consensus-Halving instance ICH is derived from it by our reduction. Re-
call that ε = δtiny/10. We show that any ε-approximate solution SCH to ICH allows
a solution to IV T to be recovered using subsection 5.4.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-244 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

In SCH , only the c-e cuts may lie in the c-e region (Observation 4.9), and every
other cut c(a) for a not a c-r agent must lie in some interval outside the c-e region
(in order for a’s value to be evenly split). It follows from Proposition 4.15 that at
least n − 1 c-e cuts must lie in the c-e region, and they are evenly spaced (the gaps
between them differ from 1 by an inverse polynomial). The remaining cut may occur
elsewhere, and in that case, we refer to it as a “stray cut.”

Definition 6.1 (stray cut). In a solution H of ICH , a c-e cut will be called a
stray cut if it occurs outside of the c-e region.

A stray cut may have two effects on H.
1. It intersects the circuit-encoding region Ri of some circuit encoder Ci for

i ∈ {1, . . . , pC}.
2. It flips the parity of the circuit encoders Ci with Ri < c, where c is the

position of the stray cut in Ri−1. In other words, if the first cut in Ri was
expecting to see A+ on its LHS, it now sees A− and vice versa.

The first effect is not much of a problem; we simply deem this circuit unreliable.

Definition 6.2 (reliable copy). We will say that a copy Ci of the circuit C
(i ∈ {1, . . . , pC}) is reliable if none of the c-e cuts intersect Ri. A copy Ci of the
circuit is unreliable if it is not reliable.

Since there is only one stray cut, there is at most one unreliable circuit Ci. The
error that this copy will introduce to the volumes of the labels A+ and A− for the
c-r agents (see subsection 5.1.2) will be relatively small due to the fact that there are
many reliable points that receive good inputs. This follows from the presence of pC

copies of the circuitry and the averaging argument over the outputs of these circuits;
see subsection 5.1.4 and Observation 4.13. Effectively, since every circuit-encoder
reads an input which represents a point in the Möbius-simplex (see Observation 4.13)
and outputs the label of the point, an unreliable copy can cause one point to be
mislabelled. However, since the pC points are close enough, this is not enough to
prevent a solution, as there will be other points close by that will be correctly labelled,
since their corresponding copies are reliable.

The second effect from the ones above is potentially more troublesome, since the
parity flip could alter the outputs of the sensor agents. This problem, however, is
actually being taken care of by the reference sensor agent and the value xREF . If
the outputs of the sensor agents are flipped, the circuit actually inputs the bitwise
complements of what it would input before the flip; these consist of binary strings
that encode the positions of the cuts. The effects of these flips cancel out and the
circuit outputs exactly the same label, which is then flipped by the XOR subcir-
cuit to ensure that the c-r agents receive the same feedback. We have the following
lemma.

Lemma 6.3 (double-negative lemma). Consider a solution H of ICH and a
circuit-encoder Ci. If a stray cut is placed in (1, ℓ(Ri)) (i.e., to the right of the c-e
region and to the left of Ri), then the c-r agents see exactly the same balance of A+

and A− in Ri as they did before the insertion of the stray cut.

Proof. Consider the operation of adding a cut between the c-e region and Ri.
This effectively causes the output bits of the sensor agents of Ci to flip, as the cut
in the output interval for every sensor agent si,j ∈ Si is now “seeing” A+ on its
LHS, rather than A−. In other words, the sensor agents now output the complement
of the bit value that they would have produced, if they were seeing A+ on their
LHS.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-245

In particular, the first sensor agent s1,j now sees A− on its LHS, rather than A+,
and produces the complement of its original value. Note, however, that this agent
is actually the reference sensor agent and recall that xREF ∈ {true, false} is the
complement of the value that it produces; in this case, this its original value, before
the flip.

If we were to use the output of CV T
i directly to provide feedback to the c-r agents,

then the following undesired effect would take place. Comparing the situations before
and after the stray cut, the balance of A+ and A− shown to the c-r agents in Ri

would flip, because (i) the output of CV T
i is unaffected by the flip but (ii) the stray

cut changes the parity of the label sequence, causing the parts of Ri (which are value
blocks of the c-r agents) that were labelled A+ to now be labelled A− and vice versa.
That would introduce a false discrepancy of the balance of A+ and A− for one of the
c-r agents, or more precisely, the correct “amount” of discrepancy but in the wrong
direction.

However, as explained in subsection 5.1.2, the output gates g′j are designed via
the appropriate combination of the actual value of the gate gj and xREF . In par-
ticular, let gj be the gate that is set to true by the circuit. For any other gate
gh, we will have g′|h| = g′−|h| as before, so the balance of A+ and A− that the

c-r agents see are the same as before. If j > 0, then g′j and g′−j will be set to
true⊕ xREF and they will have the opposite value compared to what they had be-
fore the flip. For example, if xREF was true before the flip, then gj and g′j would
be false before the flip, forcing the corresponding cuts to lie on the RHS of the
value blocks of the corresponding c-r agent. After the flip, since xREF has the op-
posite value (e.g., false), gj and g′j will assume the opposite value (e.g., true),
forcing the corresponding cuts to lie on the oppose side (e.g., the LHS) of the value
blocks of the corresponding agent. However, since a flip on the parity of labels has
also taken place, the corresponding c-r agent receives exactly the same feedback as
before.

This is the “double-negative” effect of the lemma.

Recalling Observation 4.13, the c-e cuts of SCH encode a collection of pC points
x1, . . . ,xpC in the Möbius-simplex, where d(xi,xj) ≤ δtiny (d is the metric defined in

(4.1)). In transformed coordinates we have d̃(xi,xj) ≤ δ̃tiny (d̃ as in (5.4)), and by

Proposition 5.6, δ̃tiny is much smaller than other inverse-polynomial quantities that
we work with. Recall also that at most n of these points are incorrectly labelled since
all but n of the circuit-encoders receive reliable inputs. Alternatively (if there is a
stray cut), up to n−1 circuit-encoders receive unreliable input and one circuit-encoder
is affected by the stray cut. We proceed by case analysis with respect to the location
of the points x1, . . . ,xn. Note that there is an inverse-polynomial gap between the
twisted tunnel and the boundary of the Significant Region, which is much larger than
δtiny. So the cases to consider are as follows:

• The points x1, . . . ,xn lie in the Significant Region. In this case, Proposi-
tion 6.7 shows that some of them must lie in the twisted tunnel, and the
procedure of subsection 5.4 identifies a solution to New Variant High-D
Tucker; see subsections 6.1 and 6.2.

• Some but not all of the points are outside the Significant Region. In that
case we are far from the twisted tunnel, and subsection 6.3 argues that no
solution is possible here.

• All points are outside the Significant Region. In this case a solution can
be straightforwardly ruled out, since various tunnel-boundary sensor agents

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-246 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

will be active, and the points are so close together (within δtiny) that the
directions in which they are active cannot cancel.

6.1. A Borsuk–Ulam-style function F : D → [−1, 1]n. Recall that D
denotes the n-dimensional Möbius-simplex (Definition 4.12). We start by defining
a function f ′ : D → [−1, 1]n based on f defined as in subsection 5.3. f ′ simulates
the effect of the tunnel-boundary sensor agents as described in subsection 5.1.3. Let
x ∈ D.

1. When no tunnel-boundary sensor agents are active at x. Here we are in the
Significant Region.

• In T , f ′ behaves like f in the sense that if f assigns the color i to x
(recall that it assigns a single color to points in T), then set f ′(x) := ei
if i > 0, f ′(x) := −e|i| for i < 0.

• Outside T , in outer region R(S), f ′(x) :=
∑

i∈S,i>0 ei +
∑

i∈S,i<0 −e|i|.
2. When one or more tunnel-boundary sensor agents are active. If the jth

tunnel-boundary sensor agent of C1, b1,j is active toward A+ (respectively,
A−), then the jth entry of f ′(x) is set to 1 if j is odd and to −1 if j is
even (respectively, to −1 if j is odd and 1 is j is even). This is done for all
active tunnel-boundary sensor agents, and thus f ′(x) can contain multiple
1’s and −1’s.

The following points are similar to Observation 4.13.

Observation 6.4. Suppose that circuit-encoder Ci (some i ∈ [pC]) of ICH receives
reliable inputs. (Observation 4.11 tells us that at most n of them fail to receive
reliable inputs.) Then Ci computes f ′ at a point within distance δtiny from the x ∈ D
encoded by the c-e cuts, in the sense that the value observed by each c-r agent aj that
is labelled by A+, minus the amount labelled A−, restricted to that part of aj ’s value
that lies in Ri and so is governed by the output of Ci, is the jth component of f ′.

This follows from the construction of subsection 5.1.2 and the association of bool-
ean values true, false with the labels A+ and A−. For x ∈ D, F (x) is the average
of the outputs of the Ci; Proposition 6.5 provides the details.

Proposition 6.5. ICH computes a function F in the following sense. Let x be
the point encoded by the c-r agents. Suppose all agents other than the c-r agents have
error (i.e., discrepancy between A+ and A− that they observe) at most ε. Then the
error of the c-r agents is within additive distance 1/n2 from the average value of f ′,
averaged over a set of points all within δtiny of x.

Proof. We put together various observations about the way ICH is constructed.
Observation 4.13 told us that the values observed by the c-r agents are the average
of a set of points all within distance δtiny of each other. The additive distance 1/n
results from the existence of up to n circuit-encoders that either fail to receive good
inputs (Observation 4.11) or are affected by the stray cut, taken in conjunction with
the fact that we average over pC points, where pC can be taken to be at least 2n3.

Proposition 6.6. δtiny can be chosen to be sufficiently small (but still inverse-
polynomial) such that given a set of pC points x1, . . . ,xpC ∈ D within distance δtiny

of each other, when we compute their transformed coordinates y1, . . . ,ypC , we have
the following:

Every pair of points y,y′ ∈ {y1, . . . ,ypC} has the property that they
either lie in the same color-region, adjacent color-regions (where a
“color-region” is one of the monochromatic regions of subsection 5.3),
or one of the outer regions.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-247

Proof. Recall the coloring of the Significant Region as defined in subsection 5.3,
and recall the color-regions are part of the Significant Region. This means that any
point that lies in these regions should be within an inverse-polynomial quantity δw of
the axis. Since δw can be chosen to be smaller than 1/10n2, Proposition 5.6 establishes
that any two points yi and yj are within distance at most p(n) ·d(xi,xj) ≤ p(n) ·δtiny,
where xi and xj are the points of which yi and yj are the points in transformed
coordinates and p(n) is the polynomial of Proposition 5.6. At the same time, the
distance between any two points in two different and nonadjacent color-regions (the
“thickness” of these regions) is lower bounded by some inverse-polynomial quantity
1/q(n), by the way these regions were defined (based on the coloring function) in
subsection 5.3. Essentially, there are various value thresholds (on the coordinate values
of a point y in transformed coordinates) which dictate which color-region a point
belongs to, and these threshold values differ from each other by inverse-polynomial
amounts, with the smallest difference between any of them being inverse-polynomial.
δtiny can be chosen to be sufficiently small such that the distance p(n) ·δtiny is smaller
than 1/q(n), establishing that any two points in the sequence y1, . . . ,ypC must lie in
the same color-region or adjacent color-regions.

Observations on F .
• We call F a Borsuk–Ulam-style function—The suffix “style” is to note that

we define a kind of function that has desirable properties similar to those of
a Borsuk–Ulam function, but, for example, the domain of the function is D
as opposed to a sphere. Also, the function F is “approximately Lipschitz”
rather then truly continuous, which is good enough for our purposes.

• |F (x)| ≤ ε (here, |F | denotes the L∞ or “maximum” norm of F) iff x en-
codes an approximate Consensus-Halving solution. Regarding this point,
F is not simulating a Borsuk–Ulam function, but rather simulating a func-
tion consisting of the difference between the values taken by a Borsuk–Ulam
function, at two antipodal points.

6.2. Encoding the output of F with a Consensus-Halving solution.

Proposition 6.7. Let SCH be an ε-approximate solution to ICH . Suppose that
the c-e cuts of SCH represent a point x for which all points within distance δtiny of x
lie in the Significant Region. Then we can reconstruct a solution to IV T in polynomial
time.

Recall that SCH , ICH , and IV T and ε are as introduced at the start of section 6.

Proof. The general idea is that most circuit-encoders correctly output the color of
a color-region in the vicinity of x, and in order for us to have an approximate solution,
two of these colors must be equal and opposite and represent adjacent color-regions
in the twisted tunnel having opposite colors.

Observation 6.4 tells us that if circuit-encoder Ci receives reliable inputs, it out-
puts the color of a point in the Möbius-simplex that lies within δtiny of x.

The feedback received by the c-r agents in ICH corresponds to the average (over
i ∈ [pC]) of the feedback received by the individual circuit-encoders Ci. In detail,
the ith coordinate of a typical point in B = [−1, 1]n (the vector of error values
of the c-r agents) is obtained by taking c-r agent ai and (given any attempt at a
consensus-halving solution S) subtracting ai’s value for the parts of the consensus-
halving domain labelled A− according to S, from those labelled A+. The resulting
point is at the center (or origin) of B iff the c-r agents have balanced allocations of A+

and A− (as required for a consensus-halving solution), and more generally, a point

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-248 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

in [−1, 1]n is close to the center of B iff the c-r agents have approximately balanced
allocations of A+ and A−.

Observation 4.11 tells us that at most n circuit-encoders fail to receive reliable
input. For each c-r agent, its total discrepancy between A+ and A− is at most ε at a
solution. Among all pC circuit-encoders, at most n of them receive unreliable input,
so if we sum over the reliable circuit-encoders, the total discrepancy should be at most
ε + n

pC . The value of F (as defined in subsection 6.1) needs to be within distance
ε+ n

pC of the center of B.

We argue that to keep the error to at most ε + n
pC (in absolute value) in each

coordinate, some of the circuit-encoders that receive reliable input must in fact give
equal-and-opposite outputs (that can accordingly be easily computed from SCH).

If we sum the feedback vectors from the reliable-input circuit-encoders and there
are no cancellations, then each vector contributes at least 1/pC to the sum of the
absolute values of the entries of their total. Some entry of this total must get absolute
value at least 1

nα, where α ≈ 1 is the fraction of circuits that have reliable inputs.
This quantity is larger than ε+ n

pC , so there must be cancellations. But, could those
cancellations involve a vector xi that lies in the Significant Region but outside the
twisted tunnel? The answer is no, from the way f was defined (see Definition 5.7
and Figure 18) on the outer regions: the colors of any point in the outer regions are
chosen to avoid being opposite to any color of any point of an adjacent color-region.
We also use Proposition 6.6, telling us that points within distance δtiny of each other
must come from the same color-region or adjacent color-regions. To conclude, some of
the pC points represented by SCH must come from color-regions in the twisted tunnel
having opposite colors, representing a solution to IV T .

It remains to rule out the possibility of a “solution” x existing at a greater distance
from the twisted tunnel.

-2,-3 -2,3

-3,2 3,2

-2

2

-3 3

-2 1 -3 -3 -2 3 -2

-3

-1

1

3

2 -3 2 3 3 -1 2

free of 2

free of -2

free of 3 free of -3

tunnel-
boundary
sensor agent
bi,3 active

tunnel-
boundary
sensor agent
bi,3 active

α3

α2

•

axis

Fig. 18. Cross section of the twisted tunnel (for n = 3), with examples of possible labels
of regions. Note that the outer regions of the Significant Region are not adjacent to any
cubelet having an opposite color to that outer region. For example, the left-hand column is
free of cubelets with color 3 and is adjacent to the outer region with color −3.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-249

6.3. No bogus approximate-zeroes of F at boundary of Significant Re-
gion. Proposition 6.7 tells us that ε-approximate zeroes of F (inputs for which F
has value in [−ε, ε]n) within the twisted tunnel T must encode solutions. Around T ,
there are outer regions R(S); note that if i ∈ S, then −i ̸∈ S and, moreover, there
is an inverse-polynomial lower bound on the distance between any pair of points be-
longing to outer regions containing opposite colors. But we have to rule out points
with color j ∈ S being averaged with nearby points that are “colored” −j due to a
tunnel-boundary sensor agent. In more detail, if x ∈ R(S) and x is within δtiny of
x′ for which the jth tunnel-boundary sensor agent is active and provides feedback
corresponding to −j, then we will prove that S contains some other color k ̸= j and
no point in a δtiny-neighborhood of x activates the kth tunnel-boundary sensor b1,k
to provide feedback corresponding to −k.

In the following, we will refer to cuts in the following manner: “cut i” refers to
the ith cut (from left to right) in the c-e region. Also, recall that the width δT of
the twisted tunnel is smaller than any other inverse-polynomial quantities of interest,
apart from δtiny, which itself is smaller than all other inverse-polynomials of interest,
including δT . We provide the following definition of a consistent color.

Definition 6.8 (consistent colour). For x = (τ ;α2, . . . , αn) in the Significant
Region, color j ∈ {±2, . . . ,±n}, let Aj ∈ {A+, A−} be the label that tends to increase
in interval [j−2, j] when the |j|th coordinate αj of x is increased if j > 0 or decreased
if j < 0. (Aj depends on the sign and parity of j.) We say that x has consistent color
j if

1. if j > 0, then αj > 2δT ; if j < 0, then α|j| < −2δT ;

2. at least 1
2 − plarge

2phuge of the interval [j − 2, j] gets the label Aj.

Item 1 says that at x ∈ R(S), color j is a member of S and the corresponding
transformed coordinate is sufficiently far from the twisted tunnel. Item 2 says that
we are at least some (small but significant) distance from triggering the jth tunnel-
boundary sensor in a direction that corresponds to excessive colour −j. In other
words, for the jth tunnel-boundary sensor to become active in direction −j, we would
have to increase A−j by an inverse-polynomial amount.

The following proposition establishes that for points in the outer regions R(S),
consistent colors exist.

Proposition 6.9. Suppose x = (τ ;α2, . . . , αn) belongs to outer region R(S) and
that x is within distance δtiny of the boundary of the Significant Region. Then x has
a consistent color in {±2, . . . ,±n}.

Proof. Let ℓ ∈ argmaxi∈{2,...,n} |αi| be the index of a transformed coordinate with
maximum absolute value. We may assume there is an inverse-polynomial quantity δ+

such that for any point x = (τ ;α2, . . . , αn) within distance δtiny of the boundary of
the Significant Region, we have |αℓ| ≤ δ+. Moreover, the width δT of the twisted
tunnel is chosen to be much smaller that δ+ (by an inverse-polynomial amount) but
much larger than δtiny (by an inverse-polynomial amount), as explained earlier. Let

j =

{
ℓ if αℓ > 0,

−ℓ if αℓ < 0,

and let δ = |αℓ|, so x is displaced distance δ > 0 from the axis in direction dτj . Recall
that Aj ∈ {A+, A−} denotes the label that increases in the c-e region when we move
in direction dτj . Also, let A−j ∈ {+,−}, A−j ̸= Aj , be the complementary label. For

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-250 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

[j − 2, j]

A−j Aj A−j

cu
t
j
−

1

cu
t
j

cu
t
j
−
1

cu
t
j

dτj

dτj−1 dτj+1

I

Fig. 19. Illustration for Proposition 6.9, Case 1. For i ∈ [n], cut i denotes the ith (c-e)
cut from the left. The cuts j − 1 and j colored red correspond to positions encoding part of
0τ . The dashed lines (to the left and to the right of the positions of the red cuts, respectively)
correspond to positions encoding part of point xj, after we have only moved αj in direction
dτj . The cuts colored blue correspond to positions resulting from subsequent movement in
directions dτj−1 and dτj+1, which encode part of x. In the figure, the case where the average
of the movements in dτj−1, d

τ
j , and dτj+1 forces both cuts to move to the right, compared to

their original positions in the encoding of 0τ , is shown.

j > 0, this involves cuts j and j − 1 moving away from each other; for j < 0, this
involves them moving toward each other. We consider two main cases, depending on
the sign of j.

Case 1: j > 0 (i.e., αj > 0). In this case, moving in direction dτj causes cuts j− 1
and j to move away from each other; this is illustrated in Figure 19.

We claim that j is a consistent color for x. Note first that αj > 2δT and therefore
item 1 is satisfied, since j > 0 in this case. αj > 2δT follows from the fact that
j ∈ argmaxi∈{2,...,n} |αi|, we are close to the boundary of the Significant Region,
and the width of Significant Region is polynomially larger than that of the twisted
tunnel. In order to be close to the boundary of the Significant Region, we must have
moved more than 2δT in some direction from 0τ and by the choice of j, it holds that
αj > 2δT .

For item 2, recall first that x has transformed coordinates (τ ;α2, . . . , αn) and
that the origin of Dτ has transformed coordinates 0τ = (τ ; 0, . . . , 0). The (j − 1)st
and jth cuts corresponding to the point 0τ are located at positions j − 2 + τ and
j − 1 + τ , respectively, and are shown in red in Figure 19. Near the axis, where the
cuts are evenly spaced (see Proposition 4.15), movement in direction dτj corresponds
to moving the (j − 1)st and jth cuts (in the c-e region) away from each other. We
will consider moving from 0τ to x via a point xj in which we will only have increased
the transformed coordinate αj .

First, consider moving from 0τ to point xj = (τ ; 0, . . . , 0, αj , 0, . . . , 0) for αj > 0.
In this process, we move the (j − 1)st cut to the left by αj · τ and the jth cut
to the right by αj · (1 − τ); all this takes place within the interval [j − 2, j] (see
Figure 19). Now consider moving from xj to x. In this process, the (j − 1)st cut

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-251

[|j| − 2, |j|]

Aj A−j Aj

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

dτ−|j|

dτ−(|j|−1) dτ−(|j|+1) dτ−(|j|+1)

Fig. 20. Illustration for Proposition 6.9, Case 2b(i). In this case, j is negative and
therefore we use |j| to represent the j-th cut from the left. Moving in direction dτj causes
cuts |j| − 1 and |j| to move towards each other. Again, the red cuts correspond to part of 0τ

and the blue cuts correspond to the encoding of part of x, after averaging over the movement
in directions dτ−(|j|−1), dj = d−|j| and dτ−(|j|+1). The figure shows a case where cut |j| − 1

has moved outside the interval [|j| − 2, |j|] to the left, in which case the whole subinterval
[|j|−2, c(|j|)] (the interval between |j|−2 and the position of the blue cut |j|) receives the label
A−j. Note however that cut |j|+ 1 does not intersect the interval [|j| − 2, |j|] and therefore
there is no additional amount of A−j introduced to the RHS of [|j| − 2, |j|], therefore we are
in Case 2b(i). The increase of A−j due to the movement of cut |j| − 1 to the left is entirely
compensated by the decrease of A−j because of the movement of cut |j| to the left.

moves to the right by αj−1 · (1 − τ) and the (j + 1)st cut moves to the left by
αj+1 ·τ . From the choice of j to be j ∈ argmaxi∈{2,...,n} |αi|, it follows that αj−1 ≤ αj

and αj+1 ≤ αj . Then, there is a subinterval of [j − 2, j] that contains the unit-
length interval I = [j − 2 + τ + αj · (1 − 2τ), j − 1 + τ + αj · (1 − 2τ)], which ends
up colored entirely Aj , implying item 2. Overall, we obtain that j is a consistent
color.

Case 2: j < 0 (i.e., αj < 0). In this case, moving in direction dτj causes cuts
|j| − 1 and |j| to move toward each other; this is illustrated in Figure 20.

Case 2a: τ ∈ [1/2n, 1 − (1/2n)]. In this case, all movements of the cuts, in and
around the Significant Region, are in distances upper-bounded by δw, which by Propo-
sition 4.15 is smaller than 1/2n by an inverse-polynomial amount. This means that if
we start at 0τ and reset individual transformed coordinates to those of x, in any order
(i.e., going through any intermediate point xj , similarly to above), the movement of
the cuts will never force them to cross integer-valued thresholds. In other words, in
moving from 0τ to x, only the relevant cuts j−1 and j will lie in the interval [j−2, j].
This case can be seen in the illustration of Figure 19 if one reverses the direction of
the arrows, switches the labels Aj to A−j and vice versa, and substitutes j by |j| in
the labelling of cuts. The argument establishing the existence of a consistent color is
exactly symmetric to that of Case 1 above.

Case 2b: τ ∈ [0, 1/2n] ∪ [1 − (1/2n), 1]. Here, we consider the case where
τ ∈ [0, 1/2n]; the other case is similar by symmetry. This case is illustrated in
Figure 20; note that the sequence of labels Aj/A−j is switched to make Aj the label
that increases when we move in direction dτj .

Moving in direction dτj causes an increase of the label Aj in the interval [|j|−2, |j|].
For j not to be a consistent color, we should observe an excess of the label A−j in

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-252 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

this interval. In generating cut locations from coordinates of x, the amount of A−j

in [|j| − 2, |j|] can be raised in the following ways (see Figure 20):
• By increasing the transformed coordinate α|j|−1 in the negative direction,
moving in direction dτ−(|j|−1). This causes cuts |j| − 2 and |j| − 1 to move

toward each other and therefore importantly for us here, cut |j| − 1 to move
to the left (toward integer point |j| − 2).

• By increasing the transformed coordinate αj+1 in the negative direction, mov-
ing in direction dτ−(|j|+1). This causes cuts |j| and |j|+1 to move toward each
other.

Note that what may happen in this last case is that cut |j|+ 1, which used to lie
to the right of the integer point |j|+2 before moving in direction dτ−(|j|+1), now lies to

the left of the integer point |j|+ 2 after the movement, therefore increasing the label
A−j at the RHS of [|j| − 2, |j|]. We consider two more cases, depending on whether
or not this is the case.

Case 2b(i): At x, cut |j|+ 1 is to the right of location |j| or at location |j|.

There are two ways to restore the deficit of A−j that resulted from moving
in direction dτj from 0τ to xj . Moving in direction dτ−(|j|−1) moves cut |j| − 1

to the left, and moving in direction dτ−(|j|+1) moves cut |j| to the right. (Note

that the movement of cut |j| + 1 to the left has not changed the balance of Aj

and A−j in the interval [|j| − 2, |j|] any further, by the assumption of the case.)
Since j was chosen to be in argmaxi∈{2,...,n} |αi|, it is easy to verify the follow-
ing:

• Cut |j| − 1 has moved to the left as a result of moving in direction dτ−(|j|−1)

at most as much as cut |j| has moved to the left as a result of moving in
direction dτj (from 0τ to xj).

• Cut |j| has moved to the right as a result of moving in direction dτ−(|j|+1) at

most as much as cut |j| − 1 has moved to the right as a result of moving in
direction dτj (from 0τ to xj).

Therefore, a large enough subinterval of [|j| − 2, |j|] has been colored with Aj ,
which means j is a consistent color.

Case 2b(ii): At x, cut |j|+ 1 is to the left of location |j|. See Figure 21.

In this case, we have α|j|+1 < 0 and movement in direction dτ−(|j|+1) causes cuts

|j| and |j| + 1 to move toward each other. Note also that besides the effect of the
movement in direction dτ−(|j|+1), cut |j|+1 may move to the left due to movement in

direction dτ|j|+2, since such a movement would cause cuts |j|+ 1 and |j|+ 2 to move

away from each other, and therefore, cut |j| + 1 to move to the left. However, the
distance moved in direction dτ|j|+2 is small; it is at most τ · |αj |, which is at most

τ · δ+. Therefore, we need movement at least τ(1− δ+) in direction dτ−(|j|+1) in order
to cover the distance moved in direction dτj .

First, we verify that −(|j|+1) satisfies item 1 of Definition 6.8, i.e., that α|j|+1 <
−2δT (at this point we know that αj+1 is a negative quantity). We consider two
cases, depending on whether τ is “small” or “large” (relatively to the small interval
[0, 1/2n]).

• In the case when τ < 1
4 |αj |, the largest part of the deficit of A−j introduced

by moving from 0τ to xj results from moving cut |j| to the left. However,
letting c(|j| − 1) denote the position of cut |j| − 1 after this movement, the
interval [|j| − 2, c(|j| − 1)] is too small for the movement of cut |j| − 1 in

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-253

[|j| − 2, |j|]

Aj A−j Aj A−j

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

dτ−|j|

dτ−(|j|−1) dτ−(|j|+1) dτ−(|j|+1)

Fig. 21. Illustration for Proposition 6.9, Case 2b(ii). In this case, j is negative and
therefore we use |j| to represent the jth cut from the left. Moving in direction dτj causes
cuts |j| − 1 and |j| to move toward each other. Again, the red cuts correspond to part of 0τ

and the blue cuts correspond to the encoding of part of x, after averaging over the movement
in directions dτ−(|j|−1), dj = d−|j|, and dτ−(|j|+1). The figure shows a case where cut |j| − 1

has moved outside the interval [|j| − 2, |j|] to the left, in which case the whole subinterval
[|j| − 2, c(|j|)] (the interval between |j| − 2 and the position of the blue cut |j|) receives the
label A−j. Additionally, cut |j| + 1 has moved to the left and now intersects the interval
[|j| − 2, |j|] introducing an additional amount of A−j to the RHS of [|j| − 2, |j|]. By the
argument of Case 2b(ii), either −(|j| + 1) will be a consistent color or there will be some
interval [l− 2, l] (l > 0, possibly [n− 2, n]) for which the overlap between [l− 2, l] and the cut
l+1 will be bounded by plarge/2phuge and we will have a consistent color; see also Figure 22.

direction dτ−(|j|−1) to compensate. In other words, even if movement in direc-

tion dτ−(|j|−1) moves cut |j|−1 to the left endpoint of the interval [|j|−2, |j|],
this is not enough to make up for the deficit of A−j introduced from the
movement in direction dτj . This means that cut |j|+ 1 needs to move to the
left as well, and in particular, it needs to move by more than τ/4 to the left
of location j. This is only possible if α|j|+1 < −2δT .

• In the case when τ ≥ 1
4 |αj |, since τ is large enough, cut |j| + 1 needs to

move a substantial distance to the left, in order to end up positioned to
the left of integer position |j|. In particular, it needs to move at least
1
4 |αj | − τ · δ+ to the left. This implies that item 1 is satisfied for color
−(|j|+ 1).

Now consider what needs to happen in order for the second condition to fail. Consider
the interval [|j| − 1, |j|+1] (which is monitored by the (j+1)st tunnel-boundary sen-
sor). Since cut |j|+1 is located to the left of location |j| (the midpoint of this interval),
there exists a subinterval of length at most 1 labelled Aj , within [|j|− 1, |j|+1]. This
means that either

- the color −(|j|+ 1) is a consistent color and we are done or
- there is an additional amount of label Aj within interval [|j| − 1, |j|+ 1] and
the total number of value-blocks labelled Aj outnumbers that of those la-
belled A−j by at least plarge. The only way this can happen is if cut |j| + 2
lies to the left of the integer location |j| + 1, and in fact, it has to lie an

inverse-polynomial distance, at least plarge

2phuge , to the left of |j|+ 1.

In the case when that happens, we move on to consider interval [j, j + 2] and we
apply the same argument. Again, αj+2 is negative, and since cut |j| + 2 is to the

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-254 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

[|j| − 2, |j|]

Aj A−j

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

cu
t
|j
|+

2

[|j| − 1, |j|+ 1]

[|j| − 2, |j|]

Aj A−j Aj

cu
t
|j
|−

1

cu
t
|j
|

cu
t
|j
|+

1

cu
t
|j
|+

2

[|j| − 1, |j|+ 1]

Fig. 22. Illustration for the two cases in the last argument of Proposition 6.9, Case
2b(ii). At the top, there is only one sub-interval labelled Aj in the interval (|j|+ 1, |j|+ 1),
and colour (−|j|+1) is a consistent colour. At the bottom, the label Aj appears again on the
RHS of the interval (|j| + 1, |j| + 1), as a result of the cut |j| + 2 moving to the left of the
integer point |j|+1. In that case, the same argument is applied to the interval (|j|, |j|+2).

left of location j + 1 by a margin plarge

2phuge < 2δT , −(|j| + 2) satisfies item 1 to be

a consistent color. It will also satisfy item 2, unless cut |j| + 3 lies to the left of

location |j| + 2 by an inverse-polynomial distance, at least plarge

2phuge , similarly to be-
fore.

Continuing like this, we will either find a consistent color in some interval [j−2, j]
with j < n, or we will reach interval [n− 2, n]. When we reach interval [n− 2, n], cut
n has had to move to the left of integer location n − 1 in order to prevent −(n − 1)
from being a consistent color (as otherwise we would have identified a consistent color
in some already examined interval). But then −n is a consistent color, since we have

moved an inverse-polynomial distance (at least plarge

2phuge < 2δT) in direction dτ−n (item

1), and at least 1/2 of the interval [n− 2, n] is colored in a way that agrees with this
(item 2).

Corollary 6.10. A solution SCH to ICH cannot encode a point x in the Sig-
nificant Region, within distance δtiny of the boundary (where tunnel-boundary sensor
agent(s) become active).

Proof. Observation 6.4 tells us that the kth component of f ′ is the difference
between A+ and A− observed by c-r agent ak, and Proposition 6.5 tells us that all

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-255

these components, averaged over a set of points within δtiny of x, need to be close to
zero, at a solution.

Proposition 6.9 tells us that x has some consistent color k. All points within
δtiny of x cause two outputs (gates g′k, g′−k as defined in subsection 5.1.2) of the
circuit-encoders to represent color k. This includes points where tunnel-boundary
sensor agents are active, since by the properties of consistent colors, we are at least
an inverse-polynomial distance from any point where any bi,k can be active in the
wrong direction. In subsection 5.1.3 the tunnel-boundary sensor agents are designed
to agree with the definition of consistent color, Definition 6.8. So c-r agent ak observes
a large imbalance between A+ and A−.

6.4. No bogus approximate-zeroes of F due to the connecting facet.

Proposition 6.11. Let x, x′ be points in the Significant Region having trans-
formed coordinates (τ ;α2, . . . , αn) and (1 − τ ;−α2, . . . ,−αn), respectively, for τ <
1
2 − δT . Then f(x) = −f(x′).

Proof. The proposition extends Observation 5.5. The points x and x′ have been
colored according to item 2 of subsection 5.3, and they belong to two long thin color-
regions that extend the cubelets that lie on the panchromatic facets of the cube
embedded at the center of T , all the way to the ends of T . From the boundary
conditions on the colouring of box B in New Variant High-D Tucker, and the
way f is constructed above, their colors are equal and opposite.

Remark. The x, x′ in Proposition 6.11 will “approach each other” as τ → 0. That
is, they correspond to sequences of Consensus-Halving cuts where the left-hand cut
in the c-e region “wraps around” to the RHS of the c-e region. Proposition 6.11 may
thus seem to create Borsuk–Ulam directions that are in conflict with each other as we
cross from facet D0 to D1, but in fact the flip of labels in Consensus-Halving that
occurs when we move from D0 to D1 will mean that they are in agreement with each
other.

We consider the case where the set of pC points in D represented by the solution
SCH to ICH contains points on opposite sides of the facets of D that have been
identified with each other. Proposition 6.11 tells us that color-regions are adjacent
to color-regions having the opposite color. We need to verify that for a pair x,x′ of
points that are close together but have opposite colors (due to lying in such a pair of
color-regions) the same (and not opposite) feedback is provided to the c-r agents (in
contrast with a pair of opposite-color points that represent a solution, whose feedback
to the c-r agents cancel each other out).

In reasoning about these elements x,x′ ∈ D, it is helpful to depart from our
convention that the label-sequence begins with A+, and suppose that for x′, the
label-sequence begins with A−. Suppose x,x′ have corresponding circuit-encoders
Ci, Ci′ and assume that Ci and Ci′ receive reliable inputs, recalling that only n circuit-
encoders may fail to receive reliable inputs. Notice that if x causes a tunnel-boundary
sensor agent bi,j to be active in direction A+, then x′ typically causes bi′,j to be active
in direction A+ also (the overrepresented label is fed back to c-r agent aj).

In the case that no tunnel-boundary sensor agents are active, if x,x′ receive
opposite colors from Ci, Ci′ , then, reverting to our convention that the shared label-
sequence begins with A+, we note that their reference-sensor agents get opposite
labels, which causes Ci and Ci′ to agree with each other.

Remark. For intuition, it is possibly helpful to think about the move from x to
x′ in terms of operations on the coordinate-encoding cuts. At x, there is a cut on

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-256 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

Table 1
An inventory of the most crucial parts of the reduction and where they can be found within the

text.

2D-Tucker is PPA-complete [2]

Variant High-D Tucker is PPA-complete Section 3

Elements of the Consensus-Halving Instance

General construction of the instance Subsection 5.1

c-e region, c-r agents, and c-e cuts Definition 4.1, Definition 4.2, Remark 4.3

How the c-r agents receive “feedback” from the circuit Subsection 5.1.2

Sensor agents Definition 4.5

How the sensor agents detect the positions of the cuts Subsection 4.1, Figure 6

Reference sensor agent Definition 5.1

Tunnel-boundary sensors agents Definition 4.6

When tunnel-boundary sensor agents are active Definition 4.7

How inactive tunnel-boundary sensors restrict the cuts in the c-e region Proposition 4.15, Lemma 4.18, Lemma 4.19

Effect of the tunnel-boundary sensors on the feedback mechanism Subsection 5.1.3

No bogus solutions due to the tunnel-boundary sensors Subsection 6.3, Proposition 6.9

Simulation of the Tucker circuit Subsection 4.1

Preprocessing Subsection 5.1.1

The output gates Subsection 5.1.2

The Domain and the Coloring Function

The Mobius-Simplex Domain Definition 4.12

How solutions to Consensus-Halving encode points in the domain Subsection 4.2, Subsection 5.4

The Significant Region Definition 4.14

An alternative coordinate system Subsection 5.2

Coordinate transformations in polynomial time Subsection 5.2.1

The twisted tunnel and the coloring of the domain Definition 5.7

Solutions to Consensus-Halving encode points in the twisted tunnel Proposition 6.7

No solutions outside the Significant Region Subsection 6.3, Corollary 6.10

No bogus solutions due to the connecting facet Subsection 6.4, Proposition 6.11

Robustness and Averaging

Polynomially many copies Subsection 4.1, Definition 4.4, Subsection 5.1.4

Reliable input Definition 4.10, Observation 4.11

Reliable copies Definition 6.2

Stray cuts and their effects Definition 6.1, Lemma 6.3

the RHS of the c-e region, and in moving to x′ we move that cut to the LHS. If we
move the cut while leaving the labels of the c-e region unchanged (apart from at the
ends) we expect the circuit to behave as before, but since we have switched the roles
of labels A+ and A−, the feedback to agents a1, . . . , an gets inverted. We reinvert
this feedback by reversing the colour, and hence the output of f ′.

7. PPA-completeness of Discrete Ham Sandwich. In this section, we show
that Discrete Ham Sandwich is PPA-complete.

7.1. PPA-hardness. As it happens, the PPA-hardness result for Discrete
Ham Sandwich follows rather straightforwardly, via a relatively simple reduction
from Necklace-Splitting. The basic idea of Theorem 1.8 of embedding the neck-
lace in the moment curve appears already in [72, 62] and [26, p. 48].

We reduce from 2-thief Necklace-Splitting, which is PPA-complete by The-
orem 1.3. The idea is to embed the necklace into the moment curve, i.e., γ =
{(α, α2, . . . , αn) : α ∈ [0, 1]}. Assume all beads lie in the unit interval [0, 1]. A
bead having color i ∈ [n] located at α ∈ [0, 1] becomes a point mass of ingredient i of
the ham sandwich located at (α, α2, . . . , αn) ∈ Rn. It is known that any hyperplane
intersects the moment curve γ in at most n points (e.g., see [62, Lemma 5.4.2]), and

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-257

therefore a solution to Discrete Ham Sandwich corresponds directly to a solution
to Necklace-Splitting, where the two thieves splitting the necklace take alternat-
ing pieces. (In the k = 2 case, we may assume without loss of generality that they do
in fact take alternating pieces.)

7.2. Membership in PPA. The recent work of [26] provides a proof of the Dis-
crete Ham Sandwich theorem using Tucker’s lemma, and we believe that containment
in PPA is implicit in the proof. For completeness, we sketch a more explicit proof
of containment in PPA, by reducing it to the version of Tucker’s lemma of Freund
and Todd [41]. This reduces the problem to Leaf since the proof in [41] constitutes
a reduction from Tucker to Leaf (indeed, it is referenced in the PPA-membership
result of the former problem in [71]).

Tucker’s Lemma as stated in [41] is the following:
Let the vertices of a special triangulation T of Bn be assigned labels
from {±1, . . . ,±n}. If antipodal vertices of T of Sn−1 receive com-
plementary labels (labels that sum to zero), then T contains a com-
plementary 1-simplex (whose vertices have complementary labels).

In the above statement, Bn denotes the octahedral ball consisting of points in n-
space within L1-distance 1 from the origin. Sn−1 is the “surface” of Bn, points
at L1-distance 1 from the origin. A special triangulation is a centrally symmetric
triangulation of Bn that refines the octahedral subdivision (the hyperplanes normal
to the axes that contain the origin).

In brief, [41] shows how to take such a vertex-labelled triangulation of Bn and
derive from it a “Leaf graph” G as follows. The vertices of G consist of certain
simplices (or faces) of the triangulation. Define a sign vector to be an n-vector whose
entries are from {0, 1,−1}; a sign vector indicates whether each coordinate of some
point is 0, positive, or negative. Given a simplex σ of a special triangulation, points
in the relative interior of σ all have the same sign vector sgn(σ). For a sign vector s,
σ is s-labelled if whenever si is nonzero, σ has a vertex labelled i, and we say that σ
is completely labelled if it is sgn(σ)-labelled. Then the following hold:

• The vertices of G correspond to completely labelled simplices of the triangu-
lation (these are referred to as “happy simplices” in [63], which contains a
nice exposition of Freund and Todd’s proof).

• The presence of an edge between two vertices of G indicates the following:
one of the corresponding simplices is a facet of the other, and the smaller
one has the same set of labels as the larger, or if both simplices lie on the
boundary and are antipodal.

With all this in place, it follows that the graph G (a) has degree at most 2 and
(b) it has a specific vertex with degree 1, namely, the zero-dimensional simplex at the
origin (which has the all-zeroes sign vector, hence is completely labelled). This implies
the existence of a Tucker solution (a complementary 1-simplex) by a path-following
argument, and the constructed graph is effectively an instance of Leaf.

To show that n-dimensional Discrete Ham Sandwich belongs to PPA, we will
construct a special Tucker triangulation based on a set of (exponentially many) candi-
date hyperplanes—these hyperplanes will correspond to vertices of a special triangula-
tion of the (n+1)-dimensional octahedral ball Bn+1 with labels that satisfy the Tucker
property, so they can be converted to an instance of Leaf via the construction of Fre-
und and Todd [41]. Since Theorem 1.8 reduces from 2-thief Necklace-Splitting to
Discrete Ham Sandwich, it follows immediately that 2-thiefNecklace-Splitting
belongs to PPA. (In subsection 9.1 we go a bit further for Necklace-Splitting: we

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-258 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

show that Necklace-Splitting belongs to PPA whenever the number of thieves is
a power of 2.)

Given an instance I of Discrete Ham Sandwich, we show how to construct
a suitable triangulation. I contains n sets of points {S1, . . . , Sn} in n-dimensional
space; we assume coordinates are represented as fractions whose numerators and
denominators are given via standard binary expansions. (Recall that we leave it as
an open problem whether Discrete Ham Sandwich remains PPA-hard for points
presented in unary. Of course, the “in PPA” result follows immediately for that
restricted version.) A hyperplane can be written as

∑
i aixi = bi, where the xi are

the coordinates of a point in n-space. It corresponds with halfspaces
∑

i aixi ≥ bi
and

∑
i aixi ≤ bi. Suppose the halfspace

∑
i aixi ≥ bi is expressed as a vector

(a1, . . . , an, b) whose entries are assumed to be rescaled so that their absolute values
sum to 1. Notice that (a1, . . . , an, b) lies on the surface of the unit L1-norm n-ball
Bn+1. Given a halfspace, label it as follows. Let Si be the most unequally-split point
set from I, breaking ties lexicographically. Label the halfspace with +i if most of the
points of Si belong to it; otherwise label it −i. Crucially, this labelling scheme has
the property that (a1, . . . , an, b) gets the opposite label to (−a1, . . . ,−an,−b).

Based on I, there exists some limited precision for numbers, over which we can
search for a solution. In particular, letting N be the product of the numerators and
denominators of numbers occurring in I, there should be a solution corresponding
to a halfspace 1

N (a1, . . . , an, b) where the ai and b are integers whose absolute values
sum to N . The candidate hyperplanes consist of all such vectors. Two candidate
hyperplanes are adjacent in the triangulation of Bn+1 provided that one of their
representative vectors is obtained from the other by subtracting 1

N from one entry
and adding it to some other entry. We then add the origin to the set of vertices of
the triangulation of Bn+1, give it the label n + 1, and make it adjacent to all other
points (corresponding to all the candidate hyperplanes). The resulting triangulation
is special since it refines the octahedral subdivision (notice that a one-dimensional
edge of the triangulation cannot connect a vertex with positive ith coordinate to one
with negative ith coordinate). Also, antipodal vertices of Sn receive opposite labels
as required. The corresponding instance of Leaf as defined above has a degree-1
vertex that corresponds to the 0-simplex at the origin. Any other degree-1 vertex
must correspond to a simplex in the triangulation containing a complementary 1-
simplex, where two adjacent vertices (candidate hyperplanes) have opposite labels.
The origin itself cannot form part of such a complementary 1-simplex since there is
no other point with label −(n+1), or indeed n+1. Any solution corresponds to two
hyperplanes that differ incrementally, agree on some Si as the most unevenly split,
but disagree on which side most points in Si lie. One of these hyperplanes must be a
solution (recall Definition 1.7 allows us to break ties in our favor if a point lies on a
hyperplane).

8. Equivalence of Consensus-Halving and Necklace-Splitting. In this
section, we prove that approximate Consensus-Halving and Necklace-Splitting
are computationally equivalent, in the sense that they reduce to each other in polyno-
mial time; Theorem 1.6 follows from the results of this section. In fact, we will provide
a stronger result, showing the equivalence between generalisations of the two prob-
lems, in which (a) the number of allowed cuts is ℓ, for some ℓ which is bounded by a
polynomial in n, and (b) the number of thieves in the Necklace Splitting instance and
the number of labels in the Consensus Division instance is k instead of 2. The former
problem is the general Necklace Splitting problem studied by Alon [3], whereas the

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-259

latter problem was referred to as the approximate Consensus-1/k-division problem by
Simmons and Su [75]. We define the problems formally below. Let bi(O) denote the
number of beads in an interval O.

Definition 8.1 ((n, ℓ, k)-Necklace-Splitting).
• Input: k·m beads placed on an interval O with αi ·k beads of color i = 1, . . . , n,
where αi ∈ N+, with k ≤ n.

• Output: A partition of O into k parts O1, O2, . . . , Ok such that for each color
i = 1, . . . , n, it holds that for each j ∈ {1, . . . , k}, it holds that bi(Oj) = αi,
using (k − 1) · ℓ cuts.

Definition 8.2 ((n, ℓ, ε)-Con-1/k-Division).
• Input: The value measures µi : O → R+, i = 1, . . . , n, for n agents and k ≤ n.
• Output: A partition (O1, O2, . . . Ok) with (k − 1) · ℓ cuts such that |ui(Ot)−
ui(Oj)| ≤ ε for all t and j and for all agents i ∈ N .

We will use the terms “Consensus Division” and “Necklace-Splitting” loosely to
refer to these problems without specifying the number of partitions or cuts.

8.1. From approximate Consensus Division to Necklace-Splitting. In
this subsection, we will establish a reduction from (n, ℓ, ε)-Con-1/k-Division to
(n, ℓ, k)-Necklace-Splitting for all ℓ which are bounded by a polynomial in n.
The following facts hold about any instance of (n, ℓ, ε)-Con-1/k-Division:

• All the agents’ valuations are represented as piecewise constant functions.
• The number of pieces of these functions is upper bounded by some pM(n)

where pM is a polynomial.
• The volume of each piece is upper bounded by some pV(n) where pV is a
polynomial.

Theorem 8.3. The (n, ℓ, ε)-Con-1/k-Division problem is polynomial-time re-
ducible to (n, ℓ, k)-Necklace-Splitting, when the number of cuts ℓ is bounded by a
polynomial in n and ε is inverse-polynomial in n.

Proof. Let C be such an instance of (n, ℓ, ε)-Con-1/k-Division. We will con-
struct an instance B of (n, ℓ, k)-Necklace-Splitting as follows: For each agent
i ∈ {1, 2, . . . , n} of C, the following hold:

• Associate a different color ci.
• Repeat for all of agent i’s valuation blocks:

– Let V be the volume of the block and let α be the interval on which
the block is defined. Divide the block into ⌈V/δ⌉ subblocks of volume δ
each, where

δ =
ε

n3[(k − 1)(ℓ+ 1) + pM (n)]
,

except possibly the last subblock, which will have volume δ′ ≤ δ. We
will call such a subblock an imperfect subblock. Let αj denote the corre-
sponding intervals for j = 1, . . . , ⌈V/δ⌉.

– Place a bead of color ci in the middle of each interval αj .
• If the total number bi of beads of color ci placed is not a multiple of k, remove
bi mod k beads of color ci. We will refer to these beads as the parity beads.

Intuitively, each bead “represents” a valuation block of volume δ and some beads
represent the imperfect subblocks of smaller volume. See Figure 23 for an example of
the construction, when k = 2 and ℓ = n = 2. Note that the construction requires to

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-260 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

Agent 1

Agent 2

Color 1

Color 2

Necklace

δ δ δ δ′

δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

Fig. 23. An example of the reduction when k = 2 and ℓ = n = 2. The red (dark) beads
correspond to Agent 1 and the green (light) beads correspond to Agent 2. The pink (lightgray) area
corresponds to the last part of each valuation block, which has volume δ′ ≤ δ. The blue dotted
lines indicate the positions of the cuts; note that while the first cut lies exactly at the boundary of
two subblocks of valuation δ for Agent 1 and in a “value-free” region for Agent 2, the second cut
intersects the interior of a subinterval for both agents.

partition the instance into at most pM(n) · pV(n)/δ intervals and find their midpoints
and therefore runs in polynomial time. Next, we will argue for correctness.

Let S be a solution to B (which uses (k − 1)ℓ cuts); we will prove that having
the same cuts in the same positions precisely gives a solution to (n, ℓ, ε)-Con-1/k-
Division. Consider any agent i and label the beads of color ci with j = 1, . . . , t for
some t ∈ N being the total number of beads of color ci according to the construction
above. Let [dj , dj+1] be the interval defined by two consecutive such beads.

Note that by the construction above, if (i) all subblocks of agent i have volume
exactly δ (i.e., there are no imperfect subblocks), (ii) there are no parity beads and
(iii) each cut in S either doesn’t intersect any valuation block or is placed on the
midpoint (dj + dj+1)/2 of some interval [dj , dj+1] (i.e., at the boundary of one or two
valuation subblocks, e.g., see the first cut in Figure 23), then S is an exact solution to
the consensus 1/k-division problem. However, in addition to the potential existence
of imperfect subblocks and the parity beads, the cuts in S might actually be placed
on different points in [dj , dj+1], because of the presence of beads of different colors
which might be placed inside the intervals (e.g., see the second cut in the interval
between the last two green (dark) beads in Figure 23 for an example).

Note, however, that such a cut will still lie inside [dj , dj+1], as otherwise the
partition of beads would be imbalanced; therefore, the imbalance in volume for such
a cut is at most δ. Since there are at most (k−1)ℓ cuts in total, the overall imbalance
in volume because of the position of the cuts is at most (k − 1) · ℓ · δ. Additionally,
the imbalance in volume from each imperfect subblock is at most δ, and the overall
imbalance in volume because of imperfect subblocks is at most pM(n) · δ. Finally,
the imbalance in volume due to the parity beads is at most (k − 1) · δ, since the

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-261

parity-preserving procedure can remove at most k− 1 beads for each agent. In total,
the overall imbalance is at most (k − 1) · ℓ · δ + pM(n) · δ + (k − 1) · δ, which is less
than ε, by the choice of δ.

8.2. From Necklace-Splitting to approximate Consensus Division. In
this subsection, we prove that the approximate Consensus-Division solution is at least
as hard as Necklace-Splitting; together with the result of the previous subsection, this
establishes the computational equivalence of the two problems.

Theorem 8.4. The (n, ℓ, k)-Necklace-Splitting problem is polynomial-time
reducible to (n, ℓ, ε)-Con-1/k-Division, when the number of cuts ℓ is bounded by a
polynomial in n and ε is inverse-polynomial in n.

Proof. The idea that we will use for the reduction is very similar to the one
presented by Alon [3] for proving that a solution to (discrete) Necklace-Splitting can
be obtained from a solution for the continuous version. The proof in [3] starts from an
(exact) solution to the continuous problem and proves using induction that it can be
transformed into a solution for the discrete version, but appropriately moving some
of the cuts, if needed. Here, we explain how to obtain a solution to Necklace-Splitting
from an approximate solution of the continuous division problem and that this process
runs in time polynomial in the number of beads of the necklace.

The main idea is to design an instance of (n, ℓ, ε)-Con-1/k-Division by represent-
ing beads of color i ∈ {1, 2, . . . , n} of the instance of (n, ℓ, k)-Necklace-Splitting
by uniform valuation blocks of agent i ∈ {1, 2, . . . , n} that have no overlap between
agents. Then, there exists a solution to the Consensus Division problem that does
not cut through the intervals and that solution is a valid partition of the necklace.
Starting from an arbitrary solution (which might have cuts that intersect the valu-
ation intervals), we will move these cuts (if any) to the endpoints of the intervals
one by one, while maintaining the total volume of each portion Oj for j = 1, . . . , k
unchanged.

More concretely, given an instance B of (n, ℓ, k)-Necklace-Splitting we design
an instance C of (n, ℓ, ε)-Con-1/k-Division as follows:

• For every color ci ∈ {1, 2, . . . , n} of B, we associate an agent i.
• For every bead of color ci, we create a valuation block of width δ and height

1/δ for some sufficiently small δ, such that the bead lies in the midpoint of
the interval corresponding to the valuation block. Note that without loss of
generality, we can assume that in B, the beads are sufficiently spread (this
does not affect the solution) and therefore there is no overlap between any
two valuation blocks, and in fact, the distance between any two valuation
blocks is at least β for some sufficiently large β.

Note that by taking β to be larger than 2ε, we can ensure that in any solution S of
C, each cut intersects with at most one valuation block and therefore all agents have
their own designated cuts. In other words, manipulating the positions of the cuts that
intersect some valuation interval [l, r] of one agent does not affect the quality of the
solution for any other agent, as long as the cuts remain within [l− β/2, r+ β/2] (i.e.,
they do not move into other valuation blocks).

Now consider a solution S to C. If for all agents i ∈ {1, 2, . . . , n}, the cuts do
not intersect any valuation blocks, then the solution can be translated verbatim to a
solution to (n, ℓ, k)-Necklace-Splitting by keeping the cuts at the same positions.
However, there might be several cuts that intersect the interior of the valuation in-
tervals; we will refer to those as bad cuts. Let Bi be the set of bad cuts for agent i.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-262 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

We will be able to move these cuts based on the following observation. Consider a
bad cut at e intersecting a valuation block of agent i, defined on an interval [l, r], and
let j1 and j2 be the labels of the pieces on the left side and on the right side of the
cut, respectively, (we can assume that j1 ̸= j2; otherwise we can simply remove the
cut). Let oj1 = vi([l, e]) and oj1 = vi([e, r]) be the volumes of the subblocks in [l, r]
corresponding to each label.

Assume without loss of generality that oj1 > oj2 (the argument of the other case
is symmetric). If oj1 − oj2 ≥ ε, this implies that for the remaining valuation of agent
i (besides oj1 and oj2), there is an excess of volume labelled by j2; otherwise C would
not be an approximate solution to the Consensus Division problem. Then, we can
move the cuts accordingly (by also possibly moving some other cuts in the process)
such that the two excesses cancel out; we explain how to do that below. Note that
since we have started from an approximate solution C of (n, ℓ, ε)-Con-1/k-Division,
after this procedure, bad cuts might still exist, but they will only account for small
discrepancies and can be easily handled; we will refer to those cuts as the inaccuracy
cuts.

Following [3], we will consider a set of multigraphs (one for each agent) Gi =
(Vi, Ei), where Vi = {F1, F2, . . . , Fk}, i.e., we have one vertex for each one of the k
possible labels. Each edge of the graph will correspond to a cut; in particular, there
is an edge (Fa, Fb) for each bad cut between two pieces with labels a and b, and
note that there might be multiple such edges. Note that by the discussion above, if
|vi(Oa) − vi(Ob)| ≥ ε, then the degree of both Fa and Fb is at least 2 and therefore
the graph has at least one cycle.

For each agent i, we will use two subroutines, one to eliminate all cuts in Bi except
for possibly the inaccuracy cuts and the second one to eliminate the remaining bad
cuts. For the first subroutine, we will work with the graph Gi and we will eliminate
cuts in Bi in steps, by removing edges of the graph, i.e., the graph will be evolving.
After each step, the following invariant will be maintained: The total volume of each
partition remains unchanged and the number of bad cuts will be reduced by at least 1.
The subroutine is stated below.

while Gi has a cycle do
Find a cycle (Fj1 , Fj2 , . . . , Fjm)
Cycle resolving: Move all the cuts corresponding to edges on the cycle by the

same amount. For the cut corresponding to the first edge of the cycle, move it in
the direction that increases5 the volume of the label Fj1 and therefore decreases
the volume of the label Fj2 . We will call such a direction increasing for Fj1 and
decreasing for Fj2 . For any other cut corresponding to an edge (Fjh−1

, Fjh) move
it in the direction with the opposite effect of the previous movement with respect
to label Fjh , i.e., if the previous cut was moved in an increasing direction for Fjh ,
the cut will move in a decreasing direction for Fjh . Move the cuts until either of
the following occurs:

• Some cut coincides with another cut. In that case, merge all the coinciding
cuts and remove the labels of the pieces of volume 0.

• Some cut coincides with the endpoint of an interval.
end while

It is clear that at the end of each step of the procedure above, the number of bad
cuts is decreased by at least one, either because the cut was merged with another

5We can also move the cut in the other direction; that will correspond to the same solution with
a permutation of the labels along the cycle.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-263

bad cut or because the cut was moved to the boundary of the interval. Addition-
ally, since all the cuts have been moved by the same amount and for a each vertex
in the cycle, one move was in an increasing direction and one was in a decreasing
direction, the total volume of each portion Oj , for j = 1, . . . , k, remains unchanged.
Finally, at the end of the routine, all cycles have been resolved and the graph Gi is
acyclic.

Note that since the number of steps is at most ℓ and the number of cuts moved in
each round is at most ℓ, the subroutine runs in polynomial time, since the number of
cuts ℓ is bounded by some polynomial pℓ(n). If C was an exact solution, the reduction
would be completed here; however, since we start from an approximate solution to the
Consensus Division problem, we need a second subroutine to deal with the inaccuracy
cuts. The subroutine will essentially transform the approximate solution of C into an
exact solution, which in turn is a solution to B.

This subroutine will be simple: just move each cut to the closest endpoint of the
interval [l, r] whose interior it intersects. Note that the imbalance in volume between
any two labels j1 and j2 is due to a single bad cut; otherwise the graph Gi would
have a cycle. Since each valuation block is constructed to have total volume 1, the cut
must lie in [l, l+ γ]∪ [r− γ, r], where γ < ε · δ and therefore it can unambiguously be
moved to the closest endpoint of [l, r]. Additionally, this sequence of moves produces
an exact solution to C, as otherwise, the original solution would have a discrepancy
larger than ε with respect to at least two partitions Oj1 , Oj2 . Since there are only
polynomially many cuts, the second subroutine also runs in polynomial time. This
completes the proof.

9. Conclusion and further work.

9.1. Necklace-Splitting with k thieves. In this paper, we proved the PPA-
completeness of the Necklace-Splitting problem when the number of thieves is 2.
However, the totality of the problem has been established for any number k of thieves
[3]. Could we hope to prove PPA-completeness for the problem for any number of
thieves? To this end, we extend our PPA membership result to the case when k is a
power of 2 by using the argument of Proposition 3.2 of Alon [3] (here, we take both k
and l to be 2). In particular, we will reduce Necklace-Splitting to 4-Necklace-
Splitting.

Theorem 9.1. k-Necklace-Splitting is in PPA, when k is a power of 2.

Proof. We start from an instance of 4-Necklace-Splitting (with four thieves)
and we regard it as an instance of Necklace-Splitting (with two thieves), which
we solve using an algorithm for the latter problem. The solution is a sequence of
intervals defined by the endpoints of the necklace and n cuts, each belonging to one
of the two collections (corresponding to the two thieves), such that each collection
contains exactly half of the beads of each color. Then, we set the beads that lie in
intervals belonging to each collection aside and form two new instances of Necklace-
Splitting (essentially by “gluing” the different subintervals of the same collection
together); note that each new instance will have an even number of beads of each
color, since the initial number of beads from each color was a multiple of 4. Then we
run the algorithm again on the resulting instances of Necklace-Splitting to obtain
a partition into four collections (two for each individual instance), which consitutes
a partition of the 4-Necklace-Splitting into four collections according to the def-
inition of the problem. If n is the number of colors, the total number of cuts is (at
most) 3n, and therefore this partition is a solution to 4-Necklace-Splitting.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-264 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

The above is a Turing reduction, which can be extended straightforwardly to the
case of k a power of 2. We can convert such a reduction into a many-one reduction
by applying Theorem 6.1 of [16], which shows that PPA and some related complexity
classes are closed under Turing reductions.

What is the computational complexity of k-thief Necklace-Splitting, for k not
a power of 2? As discussed in [68, 27], the proof that it is a total search problem does
not seem to boil down to the PPA principle. Right now, we do not even even know
if it belongs to PTFNP. Interestingly, Papadimitriou [71] (implicitly) also defined a
number of computational complexity classes related to PPA, namely, PPA-p, for a
parameter p ≥ 2. PPA-p is defined with respect to an input bipartite graph and a
given vertex with degree which is not a multiple of p, and the goal is to find another
vertex with degree which is not a multiple of p (it follows that PPA=PPA-2). This was
done in the context of classifying the computational problem related to Chévalley’s
theorem from number theory, and it was proven that for prime p, Chevally mod p
is in PPA-p [71].

It seems very likely that the principle associated with Necklace-Splitting for
k-thieves is the PPA-k principle. Attesting to this are the recent results of [40], which
proved that k-Necklace-Splitting is in PPA-p, for p which is a prime power.
To obtain this result, the authors provided a topological characterization of argu-
ments modulo-p and classified several generalizations of the computational versions
of Tucker’s lemma and the Borsuk–Ulam theorem as PPA-p-complete. The classes
PPA-p were also the subject of very recent work that followed the conference papers
associated with this paper. In particular, [47] proved that an explicit problem asso-
ciated with the Chévalley–Warning theorem is complete for PPA-p, for any prime p.
They also presented several relations between these classes for different values of p.
Similar results of the latter nature, as well as different equivalent definitions of the
classes, were independently established by [52].

What about the computational hardness of the problem? What is the hardness
of the problem with three thieves? At first glance, it seems like a more complicated
problem, but there this is not obvious; for example, there is no way to cause the third
thief to be a dummy agent and therefore a straightforward reduction from the case
of k = 2 is unlikely. However, it is worth mentioning here that the computational
equivalence between ε-Consensus-Halving andNecklace-Splitting that we have
proved in this paper is actually established between the Necklace-Splitting problem
for any k and the corresponding approximate 1/k-Division problem, a generalization
of ε-Consensus-Halving (see [75]); a PPA-k-hardness result for k > 2 for the latter
problem would imply a corresponding result for Necklace-Splitting with k > 2.

A first step in this direction was taken by Filos-Ratsikas et al. [39], who showed
that the approximate 1/3-Consensus-Division problem is PPAD-hard. This result
does not imply any computational hardness for Necklace-Splitting with three
thieves though, because it is only obtained for ε which is inversely exponential, and
hence our computational equivalence of section 8 does not apply. Additionally, the
proof in [39] does not seem to generalize to inverse-polynomial ε or a PPA-3-hardness
result, and entirely new techniques are likely to be needed to obtain these generaliza-
tions.

9.2. Other open problems. We have left open the questions of whether ε-
Consensus-Halving remains PPA-complete for constant ε and whether Discrete
Ham Sandwich remains PPA-complete when coordinates of points are given in unary.
Recall that for the former problem, a PPAD-hardness result is known from [37]; it

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-265

would be quite interesting to settle this, to verify whether it is possible for the precision
parameter to play such an important role in the problem classification.

In classifying a problem as polynomial-time solvable versus NP-complete, this is
usually seen as a statement about its computational (in)tractability. The distinction
between PPAD-completeness and PPA-completeness is one of expressive power: we
believe that PPAD-complete problems are hard; meanwhile, PPA-complete problems
are “at least as hard,” but of course are still in NP. The expressive power of totality
principles that underpin TFNP problems is a topic of enduring interest [9, 46]; note
also the related work on bounded arithmetic discussed by [46]. Our results high-
light the distinction between computational (in)tractability and expressive power. In
analysing the relationships between these complexity classes, it may be fruitful to
focus on expressive power.

Finally, [69] initiates an interesting experimental study of path-following algo-
rithms for 2-thief Necklace-Splitting, obtaining positive results when the number
of bead colors is not too large. However, path-following seems to be inapplicable for,
say, three thieves. The Necklace-Splitting problem may constitute an interesting
class of challenge-instances for SAT-solvers, now that it is known to be a very hard
total search problem.

Acknowledgments. We thank Alexandros Hollender for detailed and insight-
ful proofreading of earlier versions of this paper, also the reviewers for their careful
reading and corrections.

REFERENCES

[1] H. Ackermann, H. Röglin, and B. Vöcking, On the impact of combinatorial structure on
congestion games, J. ACM, 55 (2008), pp. 25:1–25:22.

[2] J. Aisenberg, M. L. Bonet, and S. Buss, 2-D Tucker is PPA complete, J. Comput. System
Sci., 108 (2020), pp. 92–103.

[3] N. Alon, Splitting necklaces, Adv. Math., 63 (1987), pp. 247–253.
[4] N. Alon, Some recent combinatorial applications of Borsuk-type theorems, Algebraic, Extremal

and Metric Combinatorics, M. M. Deza, P. Frankl, and I. G. Rosenberg, eds., Cambridge
University Press, 1988, pp. 1–12.

[5] N. Alon, Non-constructive proofs in combinatorics, in Proceedings of the International Con-
gress of Mathematicians (Kyoto-Japan), Springer, New York, 1990, pp. 1421–1429.

[6] N. Alon and D. B. West, The Borsuk-Ulam theorem and bisection of necklaces, Proc. Amer.
Math. Soc., 98 (1986), pp. 623–628, https://doi.org/10.2307/2045739.

[7] Y. Babichenko and A. Rubinstein, Settling the complexity of Nash equilibrium in congestion
games, in Proceedings of the 53rd ACM Symposium on Theory of Computing (STOC),
2021, https://arxiv.org/abs/2012.04327.

[8] E. Batziou, K. A. Hansen, and K. Høgh, Strong Approximate Consensus Halving and the
Borsuk-Ulam Theorem, preprint, arXiv:2103.04452, 2021.

[9] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, The Relative Complexity
of NP Search Problems, J. Comput. System Sci., 57 (1998), pp. 3–19, https://doi.org/10.
1006/jcss.1998.1575.

[10] A. Belovs, G. Ivanyos, Y. Qiao, M. Santha, and S. Yang, On the polynomial parity argu-
ment complexity of the combinatorial nullstellensatz, in Proceedings of the 32nd Computa-
tional Complexity Conference (CCC), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[11] S. N. Bhatt and C. E. Leiserson, How to assemble tree machines, in Proceedings of the
14th ACM Symposium on Theory of Computing (STOC), 1982, https://doi.org/10.1145/
800070.802179.

[12] N. Bitansky, O. Paneth, and A. Rosen, On the cryptographic hardness of finding a Nash
equilibrium, in Proceedings of the 56th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2015, pp. 1480–1498.

[13] P. V. Blagojević and P. Soberón, Thieves can make sandwiches, Bull. Lond. Math. Soc.,
50 (2018), pp. 108–123.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.2307/2045739
https://arxiv.org/abs/2012.04327
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1145/800070.802179
https://doi.org/10.1145/800070.802179

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-266 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

[14] P. Bonsma, T. Epping, and W. Hochstättler, Complexity results on restricted instances of
a paint shop problem for words, Discrete Appl. Math., 154 (2006), pp. 1335–1343, https:
//doi.org/10.1016/j.dam.2005.05.033.

[15] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math., 20 (1933),
pp. 177–190, https://doi.org/10.4064/fm-20-1-177-190.

[16] S. R. Buss and A. S. Johnson, Propositional proofs and reductions between NP search prob-
lems, Ann. Pure Appl. Logic, 163 (2012), pp. 1163–1182, https://doi.org/10.1016/j.apal.
2012.01.015.

[17] X. Chen, D. Dai, Y. Du, and S. H. Teng, Settling the Complexity of Arrow-Debreu Equilibria
in Markets with Additively Separable Utilities, in Proceedings of the 50th IEEE Symposium
on Foundations of Computer Science (FOCS), 2009, https://doi.org/10.1109/FOCS.2009.
29.

[18] X. Chen and X. Deng, On the complexity of 2D discrete fixed point problem, Theoret. Comput.
Sci., 410 (2009), pp. 4448–4456, https://doi.org/10.1016/j.tcs.2009.07.052.

[19] X. Chen, X. Deng, and S. H. Teng, Settling the complexity of computing two-player Nash
equilibria, J. ACM, 56 (2009), pp. 1–57, https://doi.org/10.1145/1516512.1516516.

[20] X. Chen, D. Durfee, and A. Orfanou, On the complexity of Nash equilibria in anonymous
games, in Proceedings of the 47th Symposium on Theory of Computing (STOC), ACM,
2015, pp. 381–390.

[21] X. Chen, D. Paparas, and M. Yannakakis, The complexity of non-monotone markets, in Pro-
ceedings of the 45th Symposium on Theory of Computing (STOC), ACM, 2013, pp. 181–
190.

[22] A. R. Choudhuri, P. Hubáček, C. Kamath, K. Pietrzak, A. Rosen, and G. N. Rothblum,
Finding a Nash equilibrium is no easier than breaking Fiat-Shamir, in Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 1103–1114.

[23] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye, The complexity of equilibria: Hard-
ness results for economies via a correspondence with games, Theoret. Comput. Sci., 408
(2008), pp. 188–198.

[24] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The complexity of computing
a Nash equilibrium, SIAM J. Comput., 39 (2009), pp. 195–259.

[25] C. Daskalakis, C. Tzamos, and M. Zampetakis, A converse to Banach’s fixed point theorem
and its CLS-completeness, in Proceedings of the 50th Symposium on Theory of Computing
(STOC), 2018, pp. 44–50.

[26] J. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, The discrete yet ubiquitous theorems
of Carathéodory, Helly, Sperner, Tucker, and Tverberg, Bull. Amer. Math. Soc., 56 (2019),
pp. 415–511.

[27] M. de Longueville and R. T. Živaljević, The Borsuk–Ulam-property, Tucker-property and
constructive proofs in combinatorics, J. Combin. Theory Ser. A, 113 (2006), pp. 839–850.

[28] A. Deligkas, J. Fearnley, T. Melissourgos, and P. G. Spirakis, Computing exact solutions
of consensus halving and the Borsuk-Ulam theorem, J. Comput. System Sci., 117 (2021),
pp. 75–98.

[29] A. Deligkas, A. Filos-Ratsikas, and A. Hollender, Two’s company, three’s a crowd:
Consensus-halving for a constant number of agents, in Proceedings of the 22nd ACM
Conference on Economics and Computation (EC), 2021.

[30] X. Deng, J. R. Edmonds, Z. Feng, Z. Liu, Q. Qi, and Z. Xu, Understanding PPA-
completeness, J. Comput. Syst. Sci., 115 (2021), pp. 146–168.

[31] X. Deng, Z. Feng, and R. Kulkarni, Octahedral tucker is PPA-complete., Electronic Collo-
quium on Computational Complexity, 24 (2017).

[32] X. Deng, Q. Qi, and A. Saberi, Algorithmic solutions for envy-free cake cutting, Oper. Res.,
60 (2012), pp. 1461–1476.

[33] H. Edelsbrunner and R. Waupotitsch, Computing a ham-sandwich cut in two dimensions,
J. Symbolic Comput., 2 (1986), pp. 171–178.

[34] E. Elkind, L. A. Goldberg, and P. Goldberg, Nash equilibria in graphical games on trees
revisited, in Proceedings of the 7th Conference on Electronic Commerce (EC), ACM, 2006,
pp. 100–109.

[35] J. Fearnley, P. W. Goldberg, A. Hollender, and R. Savani, The complexity of gradient
descent: CLS = PPAD ∩ PLS, in Proceedings of the 53rd Symposium on Theory of
Computing (STOC), 2021, https://doi.org/10.1145/3406325.3451052.

[36] J. Fearnley, S. Gordon, R. Mehta, and R. Savani, Unique end of potential line, J. Comput.
System Sci., 114 (2020), pp. 1–35.

[37] A. Filos-Ratsikas, S. K. S. Frederiksen, P. W. Goldberg, and J. Zhang, Hard-
ness results for consensus-halving, in Proceedings of the 43rd International Symposium

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.dam.2005.05.033
https://doi.org/10.1016/j.dam.2005.05.033
https://doi.org/10.4064/fm-20-1-177-190
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1016/j.tcs.2009.07.052
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/3406325.3451052

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF NECKLACE-SPLITTING STOC19-267

on Mathematical Foundations of Computer Science (MFCS), Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018, pp. 24:1–24:16.

[38] A. Filos-Ratsikas and P. W. Goldberg, Consensus halving is PPA-complete, in Proceedings
of the 50th Conference on Theory of Computing (STOC), ACM, 2018, pp. 51–64.

[39] A. Filos-Ratsikas, A. Hollender, K. Sotiraki, and M. Zampetakis, Consensus-Halving:
Does it Ever Get Easier?, in Proceedings of the 21st Conference on Economics and Com-
putation (EC), 2020, pp. 381–399, https://doi.org/10.1145/3391403.3399527.

[40] A. Filos-Ratsikas, A. Hollender, K. Sotiraki, and M. Zampetakis, A topological charac-
terization of modulo-p arguments and implications for necklace splitting, in Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 2021, pp. 2615–
2634.

[41] R. M. Freund and M. J. Todd, A constructive proof of Tucker’s combinatorial lemma, J.
Combin. Theory Ser. A, 30 (1981), pp. 321–325.

[42] S. Garg, O. Pandey, and A. Srinivasan, On the Exact Cryptographic Hardness of Finding
a Nash Equilibrium., Cryptology ePrint Archive, Report 2015/1078, 2015.

[43] S. Garg, O. Pandey, and A. Srinivasan, Revisiting the cryptographic hardness of find-
ing a Nash equilibrium, in Proceedings of the 36th International Cryptology Conference
(CRYPTO), Springer, New York, 2016, pp. 579–604.

[44] C. H. Goldberg and D. B. West, Bisection of circle colorings, SIAM J. Algebr. Discrete
Meth., 6 (1985), pp. 93–106.

[45] P. W. Goldberg and A. Hollender, The hairy ball problem is PPAD-complete, J. Comput.
System Sci., 122 (2021), pp. 34–62.

[46] P. W. Goldberg and C. H. Papadimitriou, Towards a unified complexity theory of total
functions, J. Comput. System Sci., 94 (2018), pp. 167–192.

[47] M. Göös, P. Kamath, K. Sotiraki, and M. Zampetakis, On the complexity of modulo-q
arguments and the Chevalley-Warning theorem, in Proceedings of the 35th Computational
Complexity Conference (CCC), S. Saraf, ed., LIPIcs 169, Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2020, pp. 19:1–19:42.

[48] F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen, New approaches to multi-objective
optimization, Math. Programming, 146 (2014), pp. 525–554.

[49] M. Grigni, A Sperner lemma complete for PPA, Inform. Process. Lett., 77 (2001), pp. 255–259.
[50] T. P. Hill, Determining a fair border, Amer. Math. Monthly, 90 (1983), pp. 438–442.
[51] C. R. Hobby and J. R. Rice, A moment problem in L1 approximation, Proc. Amer. Math.

Soc., 16 (1965), pp. 665–670.
[52] A. Hollender, The Classes PPA-k: Existence from Arguments Modulo k, in Proceedings of

the 15th Conference on Web and Internet Economics (WINE), 2019.
[53] P. Hubáček and E. Yogev, Hardness of continuous local search: Query complexity and cryp-

tographic lower bounds, SIAM J. Comput., 49 (2020), pp. 1128–1172.
[54] E. Jeřábek, Integer factoring and modular square roots, J. Comput. System Sci., 82 (2016),

pp. 380–394.
[55] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy is local search?, J.

Comput. System Sci., 37 (1988), pp. 79–100.
[56] C. Karthik and A. Saha, Ham sandwich is equivalent to Borsuk-Ulam., in Proceedings of the

Symposium on Computational Geometry, 2017, pp. 24–1.
[57] S. Kintali, L. J. Poplawski, R. Rajaraman, R. Sundaram, and S.-H. Teng, Reducibility

among fractional stability problems, SIAM J. Comput., 42 (2013), pp. 2063–2113.
[58] C. Knauer, H. R. Tiwary, and D. Werner, On the computational complexity of ham-

sandwich cuts, helly sets, and related problems, in Proceedings of the 28th Symposium
on Theoretical Aspects of Computer Science (STACS), 2011, pp. 649–660.

[59] C. Y. Lo, J. Matoušek, and W. Steiger, Ham-sandwich cuts in Rd, in Proceedings of the
24th Symposium on Theory of Computing (STOC), ACM, 1992, pp. 539–545.

[60] C.-Y. Lo, J. Matoušek, and W. Steiger, Algorithms for ham-sandwich cuts, Discrete Com-
put. Geom., 11 (1994), pp. 433–452.

[61] J. Matoušek, Geometric range searching, ACM Comput. Surveys, 26 (1994), pp. 422–461.
[62] J. Matoušek, Lectures on Discrete Geometry, Grad. Texts in Math. 108, Springer, New York,

2002.
[63] J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combi-

natorics and Geometry, Springer, New York, 2008.
[64] N. Megiddo, A note on the complexity of P-matrix LCP and computing an equilibrium, 1988.
[65] N. Megiddo and C. H. Papadimitriou, On total functions, existence theorems and computa-

tional complexity, Theoret. Comput. Sci., 81 (1991), pp. 317–324.
[66] R. Mehta, Constant rank two-player games are ppad-hard, SIAM J. Comput., 47 (2018),

pp. 1858–1887.

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1145/3391403.3399527

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOC19-268 ARIS FILOS-RATSIKAS AND PAUL W. GOLDBERG

[67] F. Meunier, Discrete splittings of the necklace, Math. Oper. Res., 33 (2008), pp. 678–688.
[68] F. Meunier, Simplotopal maps and necklace splitting, Discrete Math., 323 (2014), pp. 14–26.
[69] F. Meunier and B. Neveu, Computing solutions of the paintshop–necklace problem, Comput.

Oper. Res., 39 (2012), pp. 2666–2678.
[70] F. Meunier and A. Sebő, Paintshop, odd cycles and necklace splitting, Discrete Appl. Math.,

157 (2009), pp. 780–793.
[71] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs

of existence, J. Comput. System Sci., 48 (1994), pp. 498–532.
[72] S. Roy and W. Steiger, Some combinatorial and algorithmic applications of the Borsuk–Ulam

theorem, Graphs Combin., 23 (2007), pp. 331–341.
[73] A. Rubinstein, Inapproximability of Nash equilibrium, SIAM J. Comput., 47 (2018), pp. 917–

959.
[74] S. Schuldenzucker, S. Seuken, and S. Battiston, Finding clearing payments in financial

networks with credit default swaps is PPAD-complete, in Proceedings of the 8th Innovations
in Theoretical Computer Science Conference (ITCS), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[75] F. W. Simmons and F. E. Su, Consensus-halving via theorems of Borsuk-Ulam and Tucker,
Math. Social Sci., 45 (2003), pp. 15–25.

[76] K. Sotiraki, M. Zampetakis, and G. Zirdelis, PPP-completeness with connections to cryp-
tography, in Proceedings of the 59th Symposium on Foundations of Computer Science
(FOCS), IEEE, 2018, pp. 148–158.

[77] A. H. Stone and J. W. Tukey, Generalized “sandwich” theorems, Duke Math. J., 9 (1942),
pp. 356–359.

[78] A. W. Tucker, Some topological properties of disk and sphere, in Proceedings of the 1st
Canadian Mathematical Congress, Montreal, University of Toronto Press, 1945, pp. 286–
309.

[79] V. V. Vazirani and M. Yannakakis, Market equilibrium under separable, piecewise-linear,
concave utilities, J. ACM, 58 (2011).

D
ow

nl
oa

de
d

10
/0

2/
23

 to
 1

63
.1

.8
8.

1
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	The classes PPA and PPAD
	The computational problems
	Necklace-Splitting
	Consensus-Halving
	Discrete Ham Sandwich

	Further related work

	Overview of the proof
	An overview of a simpler reduction
	An overview of the actual reduction

	Snake embedding reduction
	Some building-blocks and definitions
	Basic building-blocks
	Features of solutions

	Reducing from New Variant High-D Tucker to Consensus-Halving
	Overview of the construction of an instance of the -Consensus-Halving problem from an instance of New Variant High-D Tucker
	Construction of C1
	The output gates of C1 and the feedback they provide to the coordinate-restricting agents
	How C1's tunnel-boundary sensors affect the feedback mechanism
	Construction of circuit-encoders C2,…,CpC

	An alternative coordinate system for the Möbius-simplex
	Computation of the transformation and its inverse

	A (poly-time computable) partial colouring function
	How to compute a solution to New Variant High-D Tucker from a solution to Consensus-Halving

	Establishing the correctness of the reduction
	A Borsuk–Ulam-style function F:D[-1,1]n
	Encoding the output of F with a Consensus-Halving solution
	No bogus approximate-zeroes of F at boundary of Significant Region
	No bogus approximate-zeroes of F due to the connecting facet

	PPA-completeness of Discrete Ham Sandwich
	PPA-hardness
	Membership in PPA

	Equivalence of Consensus-Halving and Necklace-Splitting
	From approximate Consensus Division to Necklace-Splitting
	From Necklace-Splitting to approximate Consensus Division

	Conclusion and further work
	Necklace-Splitting with k thieves
	Other open problems

	References

