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Abstract. The Vapnik-Chervonenkis (V-C) dimension is an important combinatorial tool in the analysis of 
learning problems in the PAC framework. For polynomial learnability, we seek upper bounds on the V-C 
dimension that are polynomial in the syntactic complexity of concepts. Such upper bounds are automatic for 
discrete concept classes, but hitherto little has been known about what general conditions guarantee polynomial 
bounds on V-C dimension for classes in which concepts and examptes are represented by tuples of real numbers. 
In this paper, we show that for two general kinds of concept class the V-C dimension is polynomially bounded 
in the number of real numbers used to define a problem instance. One is classes where the criterion for 
membership of an instance in a concept can be expressed as a formula (in the frst-order theory of the reals) 
with fixed quantification depth and exponentially-bounded length, whose atomic predicates are polynomial 
inequalities of exponentially-bounded degree. The other is classes where containment of an instance in a 
concept is testable in polynomial time, assuming we may compute standard arithmetic operations on reals 
exactly in constant time. 
Out results show that in the continuous case, as in the discrete, the real barrier to efficient learning in the 
Occam sense is complexity-theoretic and not information-theoretic. We present examples to show how these 
results apply to concept classes defined by geometrical figures and neural nets, and derive polynomial bounds 
on the V-C dimension for these classes. 
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1. Introduct ion 

This  paper  is concerned  with induct ive  concept  learning, and in particular, bounds  on 

the sample  size required to guarantee that a consis tent  hypothesis  drawn f rom a g iven  

class wil l  ach ieve  rel iable  general izat ion.  We work  within the Probably  Approx ima te ly  

Cor rec t  (PAC) f r amework  introduced by Valiant (1984,1985).  

W h e r e  concepts  are discrete entities (representable using words  over  a finite alphabet)  

the results o f  B l u m e r  et al. (1987) p rov ide  bounds in terms of  the descr ipt ion length 

o f  the hypothesis .  M o r e  generally,  B l u m e r  et al. (1989) show related bounds on the 

sample  size requi red  in terms of  the Vapnik-Chervonenkis dimension of  a concep t  class. 

Consequen t ly  it is o f  interest  to establish bounds on the Vapnik-Chervonenkis  d imens ion  

o f  non-discre te  concept  classes, which is what  we  are concerned  with  here. 
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This paper is organized as follows. In section 1.1 we define the learning model and con- 
sider the theoretical background of this work. In section 1.2 we discuss the significance 
of our results, their relationship to previous work, and their applicability. Section 2.1 
gives the main theorems and proofs for upper bound results, and in section 2.2 we iden- 
tify lower bounds by considering specific concept classes. In section 3 we consider two 
application areas, namely neural networks and geometrical learning problems. 

1.1. Preliminary Definitions 

In this paper, we consider the Vapnik-Chervonenkis dimension as it applies to the 
distribution-free PAC learning model. We give here the basic definitions involved; read- 
ers interested in the main results of the theory are referred to recent textbooks such as 
those by Natarajan (1991) and Anthony and Biggs (1992) which provide this background. 

In PAC learning, the set of all objects that may be presented to the learner is called 
the instance domain, usually denoted X. .Members  of X (instances) are classified ac- 
cording to membership or non-membership of an unknown subset C of X,  called the 
target concept, and the goal of the learner is to construct a hypothesis H that is a good 
approximation to C. The target concept C is restricted to be a member of a known 
collection C of subsets of X,  called the concept class. Examples are assumed to be 
generated according to a fixed but unknown probability distribution P on X;  we say that 
hypothesis H e-approximates concept C, if the probability that H and C disagree on a 
random instance drawn according to P is at most e. The criterion for successful learning 
is that the hypothesis should reliably classify further instances drawn according to P.  
This criterion is captured in the notion of "learning function." A learning function takes 
positive real parameters e and ~5 (representing error and uncertainty, respectively) and a 
sequence of classified instances of the target concept drawn from the distribution P,  and 
produces a hypothesis that e-approximates the target concept with probability at least 
1 - 6 .  

A learning algorithm - -  i.e., a computational procedure that implements a learning 
function - -  should ideally run in time polynomial in e-1 and 6 - t ,  and the other parame- 
ters of the learning problem. In this paper however, we are not interested in complexity- 
theoretic considerations, but rather on the sample size required for a computationally 
unbounded learner to have enough information to b e  sure that a consistent hypothesis 
is reliable. Blumer et al. (1989) showed that the sample size required in this sense is 
directly proportional to the Vapnik-Chervonenkis dimension of the concept class under 
consideration. The precise statement of their main result is given in the next section. 

The Vapnik-Chervonenkis dimension (which we will subsequently abbreviate to V-C 
dimension) was developed as a statistical tool by Vapnik and Chervonenkis (1971). It is 
defined as follows. 

Definition. Let X be a set and let C be a collection of subsets of X (thus C C_ 2x).  
We say that a subset S C X is shattered by C if for every partition of 5' into disjoint 
subsets St and $2, there exists C E C such that $I  c C and 5'2 73 C = (3. Then the 
Vapnik-Chervonenkis dimension of C is the maximum cardinality of any subset of X 
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shattered by C, or oo if arbitrarily large subsets may be shattered. The V-C dimension 
of concept cläss C will be denoted VCdim(C). 

1.2. Background 

The V-C dimension was studied by Blumer et al. (1989) as a means of analyzing non- 
cliscrete concept classes, in particular classes (typically geometrically motivated) where 
concepts and/or instances are naturally represented using real numbers. (The assumption 
is that one unit is charged for representing and operating on a real number, which is used 
in the neural networks literature, and noted by Valiant (1991) to be typically appropriate 
for geometrical domains.) In these situations, one cannot use counting arguments to show 
that a consistent hypothesis of some limited complexity achieves PAC learning. However, 
Blumer, Ehrenfeucht, Haussler and Warmuth (1989) showed that the V-C dimension of a 
concept class determines how many examples are necessary for a learner to form a PAC 
hypothesis. The following theorem of Blumer et al. shows in particular that uniform 
learnability is characterized by finiteness of the V-C dimension. Here and throughout the 
paper, log denotes logarithm to base 2, and in denotes natural logarithm. 

THEOREM 1.1 (Blumer et aL, 1989) Ler C be a non-trivial, well-behaved 1 concept 
class. 

ii. 

There exists a learning function (not necessarily polynomial-time computable) map- 
ping samples to hypotheses in C if and only if VCdim(C) is finite. 

I f  the V-C dimension of C is d, where d < cx~ then 

a. for 0 < e < 1 and sample size at least 

max ( !  log ~, e8d l°g 13)T/ 

any function mapping such samples to a consistent hypothesis in d is a learning 
function for C (which may not be evaluatable in polynomial time), and 

b. for 0 < e < ½ and sample size less than 

C 1 -~~  ) 
max in d(1 - 2(e(1 - 6) + 6)) 

there is no learning function from such samples to any hypothesis class. 

We may note that in establishing bounds on sample complexity in terms of the V-C di- 
mension, Ehrenfeucht et al. (1989) have improved the above lower bound to f~((1/e) ln(1/6) 
d/6. 

Our interest here is in polynomial learnability, which is achieved when a learning 
algorithm runs in time polynomial in certain parameters of the learning problem. Besides 
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c -i and d~ -1, these are the domain dimension and the syntactic complexity of the target 
concept, which we will denote by n and k respectively. (In the familiar concept classes 
defined by Boolean formulas, n would typically correspond to the number of variables in 
a formula, and k to its length in some encoding.) In a class with infinite V-C dimension, 
we may still have non-uniform polynomial learnability with respect to one or both of 
these parameters, as we shall see momentarily. 

This idea is treated in detail in Blumer et al. (1989) and Linial et al. (1991), but here 
we content ourselves with a simple observation based on theorem 1.1. Suppose that the 
instance domain X is partitioned or "stratified" according to domain dimension n, so that 
X is the disjoint union Un_>z X~. Suppose also that the concept class is further stratified 

according to concept complexity k, so that C = Uk,~>l Ck,~, where Ck,~ C 2 x~, for 
every k. Even though the V-C dimension of C may be unbounded, theorem 1.1 assures us 
that PAC learning of a concept in C~,n is possible from a learning set of size polynomial 
in k and n, provided that the V-C dimension of the Ck,n is bounded by a polynomial in 
k and n, and vice versa 2. 

In short, if the V-C dimension of Ck,n does not grow too rapidly with k and n then there 
is no information-theoretic barrier to efficient PAC learning, though computational in- 
tractability of the consistent hypothesis problem may well provide a complexity-theoretic 
barrier. For this reason it is important to find good general techniques for bounding the 
V-C dimension of stratified concept classes, and that is our goal in this paper. In partic- 
ular, we seek upper bounds on the V-C dimension, as a function of k and n. Whenever 
this bound is polynomial in k and n, we are assured that a polynomial-sized sample 
contains enough information for a consistent hypothesis to achieve PAC-ness, following 
our earlier discussion. 

There have been many previous papers presenting results giving the V-C dimension of 
classes of objects parameterized using real numbers. One result of Wenocur and Dudley 
(1981) is that the V-C dimension of halfspaces of 1tt ~ is n + 1. Blumer et al. (1989) 
give other examples. Related to our work is the paper of Ben-David and Lindenbaum 
(1993), which also uses the theorem of Milnor to obtain quantitative bounds on the V-C 
dimension of continuously parameterized concept classes. They obtain results (motivated 
by computer vision) bounding the V-C dimension of geometrical concept classes defined 
by the set of transformed images of a shape, and also defined by a description of a general 
set of shapes. They show that the bounds they obtain are applicable to distribution- 
specific learning. 

1.3. Summary of Results 

We consider general concept classes whose concepts and instances are represented by 
tuples of real numbers. For such a concept class C, let Ck,~ be C restricted to concepts 
represented by k real values and instances represented by n real values. (So subclasses 
are parameterized by both concept complexity and instance size.) 

Definition. The membership test of a concept class C over domain X takes as input a 
concept C E C and instance a c X,  and returns the boolean value a E C. 
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The membership test of a concept class can be thought of as a formula or algorithm 
taking as input representations of a concept and instance, and evaluating to the boolean 
value indicating membership. For a concept class with concepts or instances of varying 
representational complexity, it is convenient to express the membership test as a family 
of formulas/algorithms indexed by the complexity of the concepts and instances that 
they may take as input. The membership test for Ck,~ as defined above, is assumed to 
be expressed as a formula ¢)k,.~ (in the first-order theory of the reals) with k + n free 
variables representing a concept C and instance a; or as an algorithm A~,~, similarly 
taking k + n real inputs, which uses exact real arithmetic and returns the truth value 
a E C. In this situation we say that dÆ,,~ is defined by ~~,~ or ,Ak,~. 

By way of example, let ra be a positive integer, k = ra(n + 1), and define ~Æ,~~ by 

77~ n 

i=1 j=-i 

This formula defines the concept class whose elements are unions of ra balls in n- 
dimensional Euclidean space: the variables eij parameterize the centers of the ra balls, 
ri their radii, and z j  the Cartesian coordinates of the instance. 

We seek general conditions on ¢)k,~ or Ak,~ which guarantee that VCdim(Ck,,0 be 
polynomial in k and n. This approach is in the same spirit as the work of Laskowski 
(1992), who exhibits a necessary and sufficient condition on a first-order formula ~5 over 
some structure to define a class of finite V-C dimension. Note that a number of authors, 
e.g., Dudley (1978) and Stengle and Yukich (1989), have considered concept classes 
similar to the ones treated here, and shown that the V-C dimension is always finite. 
However, it appears that no attempt was previously made to quantify the V-C dimension 
in terms of natural parameters of the defining formulas. 

For classes of the form defined above, we have the following results: 

1. For a hierarchy of concept classes {C~,~}k,n~N defined by formulas ebÆ,n in the first- 
order theory of the real numbers, having fixed quantification depth, exponentially- 
bounded (in h, n) length and atomic predicates of exponentially-bounded degree, the 
V-C dimension of dk,~ is polynomial in k, n. 

2. For a hierarchy of concept classes {dk,n}k,n6N defined by algorithms .AÆ,n which 
tun in time polynomial in k, n, the V-C dimension of CÆ,~ is also polynomial in 
k, n. The algorithm .Ak,~ is allowed to perform conditional jumps (conditioned on 
equality and inequality of real values) and execute the standard arithmetic operations 
on real numbers exactly in constant time. 

3. The above results can be extended so that k and n are limits on the complexity of 
concepts and examples, rather than the exact complexity. 

Precise statements of these results are in the next section. We conclude this section by 
considering their importance to the area of learning theory. 

The results appear to cover almost all continuously parameterized concept classes one 
might reasonably wish to consider in the context of PAC learning. The conditions seem to 
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rule out only the use of certain non-algebraic functions such as L' J or sine, or "unnatural" 
encodings of an object in terms of real values, such as compressing several real numbers 
into one by interleaving their decimal expansions. 

The results are easy to apply: efficient PAC learning for continuously parameterized 
concept classes is reduced, virtually automatically, to the complexity-theoretic problem 
of efficiently finding a hypothesis consistent with the learning set. 

The results are independent of the way a real number is represented computationally. 
Consider by contrast the following fact: 

Observation: Assume that real numbers are represented using d-digit binary expansions. 
Then VCdim Ck,~ _< kd. 

This follows from the fact that there are at most 2 kd distinct concepts in Ck,n (for any n), 
hence they cannot shatter more than kd instances. This observation is a representation- 
dependent result, and does not depend on any features of the concept class. Hence it is 
unenlightening from the point of view of learnability considerations. 

Out results highlight the importance of the form taken by the membership test on the 
information content of a sample. The second result noted above is particularly significant, 
in providing a polynomial guarantee on the V-C dimension for concept classes where 
recognition of membership of an instance in a concept can be done in polynomial time 
(in the given model of computation). This is rarely a consideration for concept classes 
considered in the literature, but it has been noted to be necessary for a concept classes 
to be predictable. 

The bounds are tight, modulo multiplication by a constant. (Explicit examples for 
lower bounds are constructed in section 2.2.) Hence any upper bounds for particular 
concept classes having a lower order of growth will have to rely on the internal structure 
of the concept class, rather that just the properties identified above. 

2. Main Results 

Throughout this section, Ck,~ will be as defined in section 1.2. A concept C and in- 
stance a will be represented by the sequences of reals (Yl, ..., Yk), and (xl,  ...,x~) re- 
spectively. The symbol e always denotes the base of the natural logarithm. 

2.1. Upper Bounds 

A key theorem that we will use is an upper bound of Warren (1968) on the number of 
consistent sign assignments to a set of multivariate polynomials. A sign assignment to 
polynomial p is one of the (in)equalities p > 0 or p = 0 or p < 0; a sign assignment to a 
set of m polynomials is consistent if all m (in)equalities can be satisfied simultaneously 
by some assignment of real numbers to the variables. A non-zero sign assignment to p 
is one of the inequalities p > 0 or p < 0. Warren's upper bound is the following: 
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THEOREM 2.1 (Warren, 1968) I f  {Pl , . . . ,Pm} is a set of polynomials of  degree at 
most d >_ 1 in n real variables with rn > n, then the number of  consistent non-zero sign 
assignments to the Pi is at most (4edm/n)  ~. 

We have the following corollary: 

COROLLARY 2.1 I f  {Pl, ...,Pro} is a set of  polynomiaIs of  degree at most d >_ 1 in 
n real variables with m > n, then the number of  consistent sign assignments to the Pi 
is at most (8edm/n)  n. 

Proof: Let 79 = {Pl,-..,Pm}- Consider the set of polynomials 

79/_~ {Pl + e, Pl - e, ..., Prn -t- e, Pm -- é}. 

We claim that for sufficiently small e > 0, every sign assignment to 79 corresponds to a 
unique non-zero sign assignment to 79~. 

For each consistent sign assignment to 79, choose n real assignments to their variables 
that satisfy it. Then the Pi evaluate to real numbers, and e > 0 is chosen to be strictly 
less than the absolute value of any of these which are non-zero, for all consistent sign 
assignments. 

Now it may readily be seen that the same collection of sets of values for the n variables 
yield distinct non-zero sign assignments to 7 y .  Hence applying theorem 2.1 to 79~ gives 
the required limit on the number of sign assignments to 79. [] 

We may note in passing that a similar but weaker result follows from a theorem of 
Milnor (1964) which has been used in other works in complexity theory to establish upper 
and lower bounds. Milnor's theorem gives an upper bound on the number of connected 
components of the subset of R s corresponding to any sign assignment. Ben-David and 
Lindenbaum (1993) use the Milnor theorem in obtaining their upper bounds on the V-C 
dimension. We show next that the V-C dimension is at most logarithmic in the number 
of consistent sign assignments for the polynomials involved in the membership test of a 
concept class, which leads to the applicability of the Milnor/Warren bounds. However, 
the Warren bound is more directly applicable since it is really sign assignments that 
we are concerned with. (Each sign assignment corresponds to one or more connected 
components, which is why an upper bound on number of connected components gives 
an upper bound on the number of sign assignments.) 

In what follows, the size of a formula refers to the number of distinct atomic predicates 
that it contains. 

THEOREM 2.2 Ler {Ck,n : k, n E l~ } be a family of  concept classes where concepts 
in Ck,n and instances are represented by k and n real values, respectively. Suppose that 
the membership test for  any instance a in any concept C of  Ck,n can be expressed as a 
boolean formula ~Æ,n containing s = s(k, n) distinct atomic predicates, each predicate 
being a polynomial inequality or equality over k + n variables (representing C and a) 
of  degree at most d = d(k, n). Then VCdim(Ck,n) < 2k log(Seds). 



138 P.W. GOLDBERG AND M.R. JERRUM 

COROLLARY 2.2 Ler Ck,n be as in theorem 2.2. I f  the size s and degree d are both 
at most exponential in Ic and n, then the V-C dimension VCdim(Ck,n) is polynomially 
bounded in tc and n. 

Example: Consider the "union of balls" concept class from the previous section. There, 
the concept class CÆ,n is defined by a formula with rn atomic predicates of degree 2 
involving m ( n  + 1) concept parameters. From theorem 2.2, the V-C dimension of CÆ,~ 
is bounded by 2m(n + 1) log 16em. It is not known if this is tight, but it is certainly 
good - -  we may readily identify m(n  + 1) as a lower bound. [] 

We next prove theorem 2.2. 

Proof: Assume that (I) = ~k,~ is a formula having free variables {xl,  ..., xn} repre- 
senting an instance, and {Yl, ..., Yk} representing a concept. Let s ~- s(k,  n) be the size 
of q?; hence q? contains s distinct polynomials. Let d = d(ic, n) be an upper bound on 
their degree. 

Let v = v(ic, n) be the V-C dimension of Ck,,~, and suppose {al,  ..., av} is a shattered 
set of instances. For each ai let ~5(a~) denote the formula in {Yl, ..., Yk} obtained by 
substituting the values at has for {xl, ..., xn} in ~. Let S be the union over i = 1, ..., v 
of all polynomials contained in aS(a~). So ISI <_ rs.  

For {al,  ..., av} to be shattered, the set S of polynomials taust be able to take 2 ~ 
different sign assignments, for various values of Yl, ..., Yk. From corollary 2.1, the 
number of sign assignments is bounded above by (8edm/ic) Æ where m = vs is the 
number of polynomials, d is their degree, and IC is the number of variables. Hence 
we have the upper bound (8edvs/ic) k on the number of sign assignments. Thus, 2 v _< 
(Sedvs/ic)k; equivalently, taking logs to base 2 on each side, 

v _< Ic log (Sedsv / i c )  = IC lo~(8eds )  + IC log(v/ ic ) .  

Consider the following two cases: 

(i) Suppose 8eds > v/ic; then v < 2IC log(8eds). 

(ii) Otherwise, v < 2IC log(v/ic), implying v < 4IC. 

In either case, v < 2IC log(8eds). 

We next show an interesting development of the foregoing results, by extending them 
to concept classes whose membership tests are programs described by bounded-depth 
algebraic decision trees. A decision tree is a computation tree each of whose leaves 
gives one value of a binary-valued output. The runtime of a program in the model we 
describe becomes the depth of the associated decision tree. For various computational 
problems, Steele and Yao (1982) and Ben-Or (1983) have used Milnor's bound to give 
lower bounds on the depth of any algebraic computation tree that solves them. 

THEOREM 2.3 Let {Ck,n : Ic, n E N } be a set of  concept classes as before, for which the 
test for membership of  an instance a in a concept C consists of  an algorithm Ak,n taking 
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k + n real inputs representing C and a, whose runtime is t = t(k, n), and which returns 
the truth value a E C. The algorithm ~4k,~ is allowed to perform conditional jumps (con- 
ditioned on equality and inequality of real values) and execute the standard arithmetic 
operations on real numbers (+, - ,  ×, / )  in constant time. Then VCdim(Ck,n) = O(kt). 

COROLLARY 2.3 Let Ck,n be as in theorem 2.3. If the runtime of algorithm ~4k,n is 
polynomially bounded in k and n, then so is the V-C dimension of the concept class Ck,n. 

We next prove theorem 2.3. 

Proof: We transform Ak,,~ into a formula ~k,n of the form in theorem 2.2. 
The algorithm A~,~ takes k + n real inputs, {YI, -.-, Yk} representing concept C, and 

{xl, ..., x,~} representing instance a. We assume that each line in .AÆ,~ is of the one of 
the possible forms: 

(i) ve := vj o vk, 

where vj, vk are either inputs or previously computed values, and o is one of the 
standard arithmetic operators. 

(il) if vi ( > or = or < ) 0 then goto line L, 

where v~ is an input or previously computed value, and L is the label of some line 
in Ak,n. 

(iii) output "True" or "False". 

Let t(k, n) be the runtime of Ak,n. Then we claim that any value computed during the 
execution of AÆ,n is a rational function of {Y,, ..., gk, Xl, ..., xn}, with degree bounded 
above by 2 t. (The degree of a rational function p/q, p and q polynomials, is the sum of 
the degrees of p and q. The degee  of a value vi computed during the execution of .AÆ,~ 
is to be interpreted as its degree when viewed as a (minimum degree) rational function 
of the input values.) 

Only steps of type (i) may generate values of higher degree than ortes computed 
previously, and the new value v~ cannot have degree higher than the sum of the degrees 
of vj and vÆ, whatever arithmetic operation is being used. Hence the degree of a value 
computed by Ak,n, expressed as a rational function of the variables defining C and a, 
can at most double at each step of execution. The claim follows. 

The algorithm .Ak,~ can be expressed as an algebraic decision tree with _< 2 t leaves, 
where each node with one child is an instruction of type (i), each hode with two chil- 
dreh is a test in an instruction of type (ii), and each leaf is labeled "True" or "False" 
corresponding to an instruction of type (iii). Each input causes the execution of A~,n 
to take some path through this tree. In order to take a particular path, the inputs taust 
satisfy at most t tests, consisting of (in)equalities of values computed by AÆ,~. So the 
condition for taking a particular path is a conjunction of such (in)equalities. (Note that 
an (in)equality involving two rational functions can be re-expressed as a polynomial 
(in)equality without increasing the degree.) 
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The predicate a Œ C can be expressed as a disjunction over the paths 7r ending in 
"True", of the conditions for taking 7r. Hence the predicate a E C may be expressed 
as a DNF Boolean formula, containing at most 2 t distinct atomic predicates, each of 
degree at most 2 i. Applying theorem 2.2 we see that the V-C dimension is bounded 
above by 2klog(8e x 2 t x 2t), or 2k(2t + log(Se)), which is O(kt) as required. 

Remarks: 

1. Suppose that we want to consider k and n as limits on the complexity of instances 
and concepts, rather than their actual complexity. Then we can extend the above 
corollary to this case. We can construct an algorithm .A ~ that tests membership of k,n 
any example of complexity < n in any concept of complexity < k. This algorithm 
takes k+n real inputs representing the concept and example, and two further numbers 
which give the complexities of the concept and example to be tes ted. .4  ~ checks k,n 
these and calls the appropriate Ak,n. 

2. As mentioned in the introduction, the theorem no longer holds if we may compute 
the L" J function in constant time. Neither does it hold if trigonometric functions 
such as sine are added to the computational model. Indeed the simple concept class 

{{x : s inxy __> 0}:  y c R} 

already has unbounded V-C dimension. Sontag (1992) has used elaborations of this 
counterexample to refute some conjectures concerning the V-C dimension of neural 
nets. 

3. Since the O(kt) bound is tight (see section 2.2) a non-polynomial time algorithm 
Ak,n may define a concept class with more than polynomial V-C dimension. This can 
be viewed intuitively as saying that the amount of information that can be extracted 
from a real value is proportion to the time taken. 

4. Suppose the concepts Ck,n are themselves programs of the same syntactic form as the 
Bk,~ in the statement of the theorem, that take as inputs representations of instances, 
and test them for membership. Then the V-C dimension of Ck,n is polynomial in 
the syntactic complexity of Ck,r~, and its runtime. This follows from theorem 2.3 by 
regarding Ak,n as a "universal" program that takes as input Ck,~ and instance a, and 
runs Ck,~ on a. 

Corollary 2.2 may be extended to an enriched class of membership tests, namely to 
predicates expressible in the first-order theory of the reals, of exponential size and degree 
as before, but with quantification allowed, though only to a uniformly bounded level of 
alternation of quantifiers and polynomially many quantified (i.e., not free) variables. In 
proving this result, the basic idea is that we may use a quantifier-elimination procedure 
of Renegar (1992) to give us a quantifier-free formula of the original form. 
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Using the notation of Renegar (1992), a formula in the first-order theory of the reals 
has the general form: 

(Qlx  [1] 6 Ii~n~) "'" (Qwx [w] ~ ]Rn~)P(y,x [1J, .--,X [w]) 

where the Qi are quantifiers, x[ i] is a vector of ni real quantified variables, and y = 
(Yl, ..., Yz) is a vector of real free variables. P consists of a boolean formula I? having m 
atomic predicates consisting of polynomial equalities or inequalities of degree bounded 
by d (whose variables are in y or the x [i].) 

THEOREM 2.4 (Renegar, 1992) There is a quantißer-elimination procedure which re- 
quires only (rad) 2°(~)lrIk"k operations and (rad) °(z+zk~k) calls to IP. 

The algorithm constructs a quantifier-free formula of the form 

where 

[ J~ 

V A (h~~(y) o~j o), 
i=1 j=1  

I < (rad) 2°(~~zII~~T 

Bi <_ (rnd) 2°(~)n~~~, 

the degree of hij is at most (rnd) 2°(~)H~~k, and oij represents one of the symbols 
{<,_<,=,¢,_>, >}. 

COROLLARY 2.4 Let {Ck,~ : k, n E N} be a set of concept classes as before. Suppose 
that the membership test of a given instance a in a given concept C can be expressed as 
a formula ~k,n in the first-order theory of the real numbers with k + n fTee variables 
representing C and a; suppose further that the number of bound variables in polynomial 
in k and n, that the depth of alternation of quantißers is uniformly bounded, and that 
the atomic predicates are bounded in number and degree by an exponential function o] 
k and n. Then the V-C dimension of Ck,~ is polynomial in k and n. 

Proof: We use the quantifier elimination scheme of Renegar (1992) to reduce ~k,~ to 
a formula @Æ,~ in the form of theorem 2.2. Note that it is the form of the quantifier-free 
formula rather than the time taken to construct it which is of importance. 

The bounds on I and Ji in theorem 2.4 show that the number of polynomials acting as 
atomic predicates is doubly exponential in the depth of quantifier alternation (which we 
require to be constant for a concept class) and exponential in the number of quantified 
variables and the number of free variables. 

Let m(k,  n) be the number of distinct atomic predicates in ~Æ,n, d(k, n) be the de- 
gree of the polynomials therein, b(k, n) the number of quantified variables, and w the 
(constant) number of quantifiers. 

Applying theorem 2.4, we find that ~k,~ is a quantifier-free formula whose size (number 
of distinct atomic predicates) is at most the product of the I and Ji in theorem 2.4, that 
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is: 

(md)2°(~)lU~n~ × (md)2°(~)IIk~k. 

and since I I~nr  _< b(k, n) ~, this quantity is: 

(md)(t+z)(2 °(~)b w). 

The degree of polynomials appearing in õ2k,n is (rad) 2°~~)b~. Hence by theorem 2.2, 
the V-C dimension of the concept class thus defined is O(k  log sd), where s and d are 
the number and the maximum degree of polynomials in ~k,n, which is: 

O (/~(2 + 1)2°(~)b ~ log rad) 

Recall that 1 is the number of free variables, i.e., l = k + n. The result follows. 

2.2. Lower  Bounds  

The "union of balls" example raises the question of how close theorem 2.2 is to being best 
possible. Here, we show how to construct concept classes, parameterized by k, s, and d, 
whose V-C dimension is within a constant factor of the upper bound of theorem 2.2, 
provided only that d >_ 2. We work towards the general construction via some special 
cases. 

First consider the situation k -- d = 1, i.e., the concept class is parameterized by a 
single variable, and all the atomic formulas are linear. Let v ~ IN +, s = 2 v - 1, and 
c~ = aoal . . .  a~+v-1 c {0, 1} s+" be a (non-cyclic) de Bruijn sequence, that is, a binary 
word c~ of length s + v in which each binary word of length v occurs precisely once as 
a subword; such words c~ exist for all choices of v (Hall, 1967, p. 92). Define 

¢~(~, y) = V (x = y + i), 
i :ai=l 

where x and y are, respectively, an instance- and a concept-variable; note that ¢s(x ,  y) 
contains at most s atomic formulas, since at least v of the symbols ai taust be 0. Consider 
the concept class Cs = {{x : Cs (x ,y )}  : y E ]R} defined by es.  Concepts in C~ are 
ù projections" of the de Bruijn sequence c~ onto the real line, which may be translated 
to any desired position by setting the parameter y. (It will be sufficient here to allow 
y to range over the natural numbers only.) It is clear from the definition of de Bruijn 
sequence that the point set {1, 2 , . . ,  v} is shattered by Cs; thus the V-C dimension of Cs 
is at least v = log@ + 1), where s is (an upper bound on) the number of  atomic formulas 
in Os. This example demonstrates that bound given in theorem 2.2 is tight in the special 
case k = d = 1. 

Next  set d = 2, and allow k _> 2 to be arbitrary. Letting s be as before, define 

~Æ,~(x,y) = ~ k ~ ( x l , . . . , x Æ , y l , . . . , Y k )  
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k 

V [:~x,(x, - ~ , -~/ :  o]. 
i:a.,.=l )=1  

The concept class Ck,~ = {{x : ~Æ,~(x,y)} : y e !R k} shatters the set of kv  points 

(instances) of the form ( 0 , . . , 0 ,  u , 0 , . . , 0 )  E IR k, where u E { 1 , 2 , . . , v } .  The 
mechanism through which this is achieved is similar to that described in the case k = 1; 
hefe, the concept-variables yj act independently to select an arbitrary subset of the 
v instances that have non-zero j th coordinate. Hence the V-C dimension of Ck~ is at 
least kv = klog(s  + 1). Thus theorem 2.2 is also tight in the special case d = 2. 

Analogously, when s = 1 but k > 1, we may set d = 2(2 ~ - 1) and define 

e; ,~(x,  y) = e ; , A x ~ , . . ,  ~~, y ~ , . . ,  yk) 

k 

r I  [ ~ x j ( x j  _ yj _ 1)] 
i:ai=l j = l  

= 0 ,  

which formula is equivalent to ~sk,s and hence defines a concept class C ~ of V-C k,d 
dimension at least kv = O(klogd) .  Finally note that the constructions used for ~Æ,~ 
and • / may be combined to provide a tradeoff between s and d. Let 2(2 ~ - 1) < k,d 
sd < 2(2 ~+~ - 1), with d even. Factors with the general form x j  (xj  - yj - i) - -  where 
1 < j < k, and i satisfies ai = 1 - -  may be multiplied together in groups of d/2  to 
yield (at most) s atomic formulas of degree d; the disjunction of these atomic formulas 
then yields a formula ~k,~,d defining a concept class Ck,s,d with V-C dimension at least 
kv = @(k log sd). We thus have: 

THEOREM 2.5 For k, s, d C N + with d > 2, there exists a formula ißk,s,d, over instance- 
variables x l , . .  . , xk and concept-variabIes Yl , .  . . , Yk, and containing s atomic formulas 
o f  degree d, such that the concept class Ck~a defined by q~k,s,d has V-C dimension 
fi(k log sd). 

Note that that the above theorem demonstrates that theorem 2.2 is uniformly best 
possible, except perhaps when d = 1. The parameter n which denotes the number of 
instance-variables has been conspicuously absent from our deliberations, and it is possible 
that more refined bounds involving that parameter could be derived. 

The following concept class shows that the upper bound of theorem 2.3 is also tight, 
modulo big-O notation. 

We define a parameterized concept class Ck,t consisting of concepts defined by a 
sequence of k real values, with instances defined by one real value, and a membership 
testing algorithm with runtime ~. Let a concept C ~ Ck,t be represented by real numbers 
Yl, ..-, Yk, and an instance by a real number x. The following algorithm shatters instances 
represented by numbers of the form 2 - i ,  for i = 1 , . . ,  kt. The shattering set is the set of 
all concepts represented by numbers between 0 and 1 with binary expansions of length t, 
i.e., numbers of the form j 2  - t ,  where j is an integer between 0 and 2 t. 
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For a concept C represented by Yl,.. . ,  Yk, let 

k 

S c  = 
Yi 

2 t ( i _ 1 )  • 
i = 1  

Hence Sc  can be any binary expansion of length Æt, and consists of the concatenation 
of the yi's. 

Consider x and S c  as binary expansions. Let C contain an instance represented by x if 
and only if S c  has a 1 in the same position as the most significant 1 in x. (For elements 
of our shattered set, that is the only 1 in the expansion.) We now have to show that this 
test can be done using an O(t) algorithm. The following search procedure works by first 
finding the block where the most significant bit of x is, and then we search in this block 
(i.e. yi). 

1. Compute 2 t by repeated squaring. 

2. / : = 1  

3. while (x < 2 - t  and i < k) do 

4. x : =  2 t - x ;  i : = i + l ;  od; 

5. /* Now we see if x and Yi have a common l within the first 

6. t positions:*/ 

7. for j := 1 to t 

8. x : = 2 x ;  Y i : :2Yi ;  

9. If x _> 1 and Yi > 1 then õutput "yes" and halt; 

10. I f x _ > l  t h e n x : = x - 1 ;  

11. If Yi _> 1 then Yi := Yi - 1; 

12. next; 

13. Output "no". 

/*time O(Iog t)*/ 

/*time O(k)*/  

/* time O(t) */ 

Note that t is not completely independent of k and n: we assume that ~ _> Æ + n, 
which allows the membership testing algorithm time to read in the values representing 
the concept and instance. Observe that if we represent a concept by the single number 
S c  then (from the theorem) we cannot shatter the instances so quickly: the process of 
extracting the relevant bit in Sc  apparently involves too many subtractions in order to 
extract (say) y~ from Sc .  

To summarize, we have 

THEOP~EM 2.6 For k, n, t c N + with t > k there exists an algorithm ~4~«~ with runtime 
t, which defines a concept class of  V-C dimension ,Q(kt). 

3. Applications 

We consider briefly two kinds of concept class which can be seen to have polynomial 
V-C dimension as a result of the theorems in section 2. 
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3.1. Neural Nets 

Let C = [Jk,~~N Ck,n be a concept class defined by a family of linear threshold, feed- 
forward neural net architectures with n inputs and k real weights. Baum and Haussler 
(1989) show that VCdim(Ck,~) = O(k log k). A fairly direct application of theorem 2.3 
gives VCdim(Ck,.) = O(k2), an admittedly weaker result, but one obtained as a simple 
corollary to the general bound. 

However, theorem 2.3 can be used for more than merely re-deriving old results. For 
example, the above result for linear thresholds can be generalized to many classes of 
networks with non-linear activation functions. One class of interest is networks which 
compute polynomial or piecewise polynomial functions of the inputs, instead of linear 
combinations. Provided these functions can be computed in time polynomial in the size 
of the network (using the usual arithmetic operations), then the output of the network can 
also be computed in polynomial time, and consequently, by corollary 2.2, such networks 
have V-C dimension polynomial in k and n. Polynomial upper bounds have recently 
been shown for bounded depth networks of this kind by Maass (1992); now we see that 
a similar result holds without the restriction to bounded depth. It appears likely that our 
results are applicable to other related classes of networks. 

Note that our results cannot be applied to one of the standard activation functions, 
namely the "sigmoid" 1/(1 + e-X). Using deep results from logic, Macintyre and Son- 
tag (1992) have shown that the V-C dimension of such nets is finite, but no explicit 
bounds have been computed. However, theorem 2.3 does give a polynomial guarantee 
for sigmoid functions such as 

J ' l - 1 / ( 2 x + 2 )  i f x > _ 0  
o(z)  \ 1 / ( 2 - 2 x )  i f x < _ 0  

This function is differentiable and has the appropriate shape, and can be computed in the 
appropriate way required by theorem 2.3. 

3.2. Geometrical Classes 

We have seen that the V-C dimension is already known to be polynomial in concept 
and instance complexity for certain specific concept classes, such as halfspaces or balls 
in Euclidean space. There are however natural concept classes whose concepts are 
apparently more complex, and for which it may not be feasible to evaluate the V-C 
dimension exactly. In this section we look briefly at an example for which the theorems 
of section 2 provide a useful polynomial limit on the growth of the V-C dimension. 

In Goldberg (1992) concept classes are considered whose concepts are sets of geo- 
metrical figures which are in some sense mutually resemblant. The associated learning 
problems are motivated by the problem of learning to recognize an object from a visual 
image of it. The learning examples are visual images, and a positive example is assumed 
to be "close" to some "ideal" image representing the object to be recognized. This is 
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made formal by defining some metric on geometrical figures with the property that two 
figures are close together under the metric if they are in fact similar in some sense. Then 
a concept can be defined as a sphere in this metric space. 

For example, the Hausdorff metric is defined as follows. Let P1, P2 be two sets of 
points in a metric space (5', d), where d is a metric on elements of 5". Then the Hausdorff 
distance between P1 and P2 is 

H(Æ1,P2) = max(  sup { inf {d(pl,P2)}}, SLIp { inf {d(pl,P2)} } } 
L'PlCP1 p2CP2 p2CP2 PlEP1 

So we would take S = ]R 2, assuming that we are considering planar geometrical figures, 
with d the Euclidean distance between two points. The reason why the Hausdorff metric 
reflects geometrical resemblance is that for the distance between two sets of points in 
the plane (such as polygons) to be _< 7" we need every point on each set to be within r 
of some point on the other set. 

If the geometrical figures we are considering are planar polygons, then an instance 
consisting of an n-gon is naturally represented by the 2n coordinates of its vertices. 
The concept of all polygons within distance r of some polygon P may be represented 
by the coordinates of the vertices of P and the value of r. This class should not be 
confused with ones where concepts are polygons (or polyhedra) and instances are points 
contained in them. An instance here is itself a polygon, one that is close under the 
Hausdorff metric to the concept polygon. Note that instance complexity is independent 
of concept complexity, since one can test proximity of polygons with different numbers 
of sides. The Hausdorff metric can be computed on polygons in polynomial time, using 
the algorithm of Alt, Behrends and Blömer (1991). In fact it can be computed in linear 
time for convex polygons (Atallah, 1983). This implies that the membership test for the 
concept class under consideration can be done in polynomial time, allowing us to apply 
corollary 2.3. 

Alt et al. (1991) show that the Hausdorff metric remains polynomial-time computable 
when it is minimized over classes of isometries in the plane. This would correspond 
to a learning problem where the alm is to learn "shape" rather than "shape + position". 
Corollary 2.3 can then be applied in this case. Alternatively, the membership test for the 
concept class could be naturally expressed as a formula of the form indicated in corollary 
2.4, with quantification over variables denoting position (which was the argument used 
in Goldberg (1992) to show that the V-C dimension is polynomial in this case). 

4. Open Problems 

A question of theoretical interest arising from corollary 2.4 is whether in fact the V-C 
dimension would still be polynomial if the number of quantifier alternations may be 
polynomial in n and k. It would be interesting to know if that answer is affected if 
q~~,~ is required to have polynomial length. An optimal quantifier elimination scheme is 
not known, and indeed quantifier elimination elimination in conjunction with the upper 
bound of theorem 2.2 may not yield the best bound on the growth of the V-C dimension. 
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It would  be interest ing to obtain a general izat ion of  theorem 2.3 that ä l lowed a mem-  

bership testing algori thm to evaluate e raised to the power  of a computed value, in uni t  
time. This would  provide an upper bound  for the V-C d imens ion  for neural  nets that 
compute  the s igmoid funct ion er(x) = 1 / (1  + e-X).  
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Notes 

This is a relatively benign measure-theoretic assumption discussed in an appendix in Blumer et al. (1989). 

It is not in fact necessary to restrict the search for a hypothesis to the same "stratum" as the target concept; 
it may be computationally advantageous to use as hypothesis class a higher stratum k, provided k is not 
too large. Blumer et al. (1987) formalize this notion in their definition of "Occam algorithm". 
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