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a b s t r a c t

Neural networks (NNs) have become the state of the art in many machine learning applications, such
as image, sound (LeCun et al., 2015) and natural language processing (Young et al., 2017; Linggard
et al., 2012). However, the success of NNs remains dependent on the availability of large labelled
datasets, such as in the case of electronic health records (EHRs). With scarce data, NNs are unlikely
to be able to extract this hidden information with practical accuracy. In this study, we develop an
approach that solves these problems for named entity recognition, obtaining 94.6 F1 score in I2B2
2009 Medical Extraction Challenge (Uzuner et al., 2010), 4.3 above the architecture that won the
competition. To achieve this, we bootstrap our NN models through transfer learning by pretraining
word embeddings on a secondary task performed on a large pool of unannotated EHRs and using the
output embeddings as a foundation of a range of NN architectures. Beyond the official I2B2 challenge,
we further achieve 82.4 F1 on extracting relationships between medical terms using attention-based
seq2seq models bootstrapped in the same manner.

Crown Copyright© 2019 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Electronic Health Records (EHRs) are the databases used by
hospital and general practitioners to daily log all the information
they record from patients (Johnson, Fraser, Wyatt, & Walley,
2014). This information typically includes, but is not
limited to: disorders, taken medications, dosages, symptoms,
results from medical tests, and even considerations made by the
doctor when evaluating each patient. In number of subjects (for
example, 50 million patients in the case of European Medical
Information Framework (EMIF)), EHRs are the largest source
of empirical data in biomedical research (Denis, 2017; Jensen,
Jensen, & Brunak, 2012), making them ideal for studying disease
(e.g. Alzheimer’s Perera, Khondoker, Broadbent, Breen, & Stewart,
2014, cardiovascular disease Perera et al., 2017, or associated risk
factors Savova, Ogren, Duffy, Buntrock, & Chute, 2008; Stubbs
& Uzuner, 2015; Uzuner, Goldstein, Luo, & Kohane, 2008) and
evaluating service (e.g. monitoring adverse drug reactions (Iqbal
et al., 2015)). However, most of the information held in EHRs is
in the form of natural language text (i.e. written by the physician
during each session with each patient), making it inaccessible for
research (Jensen et al., 2012; Murdoch & Detsky, 2013). Unlocking
all this information would represent a considerable contribution
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to biomedical research, multiplying the quantity and variety of
scientifically useable data, which is the reason why major efforts
have been relatively recently initiated towards this goal (Denis,
2017; Jackson M.Sc et al., 2014; Jensen et al., 2012; Savova et al.,
2008) as well as being the main motivation behind this work.

The central idea of the paper is to develop an accurate and ro-
bust neural model for information extraction from medical texts,
specifically, we were interested in medical named entity recogni-
tion (NER) and relation extraction (RE) between them. Although
traditional Natural Language Processing (NLP) algorithms, such as
rule systems (Karystianis et al., 2017), can perform this task with
fair accuracy in the simpler situations (well-structured text, large
amounts of labelled data available and many annotated samples),
the challenge remains an unsolved problem in the more complex
cases (badly structured language, few labelled samples) (Cambria
& White, 2014). Unfortunately, data found in EHRs falls under the
second category. Namely, physicians tend to use badly formatted
shorthand and non-widespread acronyms (‘transport pt to OT tid
via W/C’ for ‘transport patient to occupational therapy three times
a day via wheel chair’), while labelled records are scarce (ranging
in the hundreds for a given task and with very few annotated
samples). A reason for this scarcity is that data access is difficult
due to ethical concerns (Entzeridou, Markopoulou, & Mollaki,
2018; Jamshed, Ozair, Sharma, & Aggarwal, 2015; Layman, 2008).
Other reason is that, even with data access granted, medical text
needs to be annotated by field experts (e.g. clinicians), who are
themselves in short supply.
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Table 1
I2B2 datasets used in this study. Third column indicates the total number
of documents in each corpus. Fourth and fifth columns indicate which not
annotated and annotated documents, respectively, were unique, and therefore
added into the common pool of documents used for subsequent analyses and
unsupervised and supervised training.
Year Existing

annotations
Total
documents

Unique documents
(not annotated)

Unique documents
(annotated)

2007 Smoking 2886 926 0
2008 Obesity 1267 1237 0
2009 Medications 1945 991 258
2010 Term relations 696 694 0
2011 Conference 424 188 0
2012 Temporal

relations
671 311 0

Total 7889 4347 258

In the study presented in this paper we address these prob-
lems by: first, using Neural Networks (NN) (LeCun, Bengio, &
Hinton, 2015; Linggard, Myers, & Nightingale, 2012), which are
expected to be more robust to badly structured language than
rules or other traditional techniques (Young, Hazarika, Poria, &
Cambria, 2017); second, rather than training them only on the
objective task, we bootstrap the Neural Networks through trans-
fer learning, by feeding them pretrained word embeddings from a
secondary task on unannotated electronic records. This approach
achieves 94.7 F1 in I2B2 2009 Medical Information Extraction
challenge, 4.3 more than the traditional approach that originally
won the challenge. In addition to the official objectives of I2B2
2009, this approach also obtained 82.4 F1 on extracting the rela-
tionships between medical terms, which are of high importance
in research with EHRs.

2. Methods

2.1. Objective task

Our objective task consisted on automatically locating and
predicting the annotations of I2B2 2009 Medical Information
Extraction challenge (Uzuner, Solti, & Cadag, 2010). These labels
consisted of all mentions of medications where the patient was
the user, plus a number of associated fields per term. These
fields were: medication, dosage, mode, frequency, duration, rea-
son. Medication includes compound name, brand name, generics,
collectives and prescriptions (e.g. acetylsalicylic acid or aspirin).
Dosage indicates the amount administered to the patient, which
could be a measurement (e.g. 2.0 mgs) or units (e.g. 2 tablets).
Mode refers to the administration route (e.g. orally). Frequency
refers to how often the medication was taken (e.g. 2 per day).
Duration consists on treatment length (e.g. until symptoms dis-
appear). Reason is the cause for the prescription (e.g. presumed
pneumonia).

2.2. Datasets

This study used all datasets released by I2B2 from 2007 to
2012. We observed that some documents were repeated across
different yearly releases. To eliminate duplicates, we sequentially
pooled each corpus into a final set of 4605 unique documents
(see Table 1). I2B2 2009 challenge released a total of 1249 unique
documents, with 258 of them annotated for the objective task.
Given that our objective task was the one corresponding to I2B2
2009 challenge, only the 258 documents from this year were
considered annotated for our case, using all others as unanno-
tated samples for the purpose of transfer learning. In detail, 4347
unannotated samples were selected for training embeddings, 238
for training the rest of the NN, 10 for validation and 10 for final
testing.

2.3. Text pre/processing

Text was pre-processed to reduce the number of out of vocab-
ulary (OOV) words, which was defined as words not accounted
by the embeddings described in Section 2.4. Sentences were split
on ‘‘.’’ followed by a capital letter, as recommended by Patrick
and Li (2009). All numbers were replaced by the special to-
ken <num> . Punctuation symbols ‘‘.’’, ‘‘:’’ and ‘‘;’’ were re-
moved, unless they were surrounded by letters or followed a
number. All letters were lower cased. Pre-processing did not
alter number and location of words and sentences. Finally, a
number of metrics evaluated the text demographics of the em-
bedding/train/validation/test datasets after pre-processing.

2.4. Training embeddings

We created two embeddings versions with Contiguous Bag
of Words (CBOW) and Continuous Skip-Gram (CSG) (Mikolov,
Chen, Corrado, & Dean, 2013a; Mikolov, Sutskever, Chen, Corrado,
& Dean, 2013b), and evaluated their adequacy for the objective
task described in Section 2.1. Following the CBOW algorithm, we
randomly initialised m-dimensional embeddings with a Gaussian
distribution of mean 0 and standard deviation 1. The text of all
samples (including not annotated and annotated, but excluding
the 20 samples reserved for validation and final testing; see
Section 2.2) was then randomly divided into 4.5 million windows
of 11 words length each. Each window would contain only words
from the same sentence of the central word, using a neutral ‘PAD’
symbol for positions that spread to other neighbouring sentences.
A fully connected single layered network was then created to
predict the central word of each window based on the average
of all word embeddings appearing within the window. Using
this network, embeddings were trained through backpropagation
with 0.025 (min alpha 0.0001) learning rate, 5 epochs, and all
other parameters set to default values of Word2Vec implementa-
tion from the gensim library (Řehůřek & Sojka, 2010). Separately
to CBOW, and following the CSG algorithm, we initialised other
set of 100 dimensional embeddings with a Gaussian distribution
of mean 0 and standard deviation 1. Text from all not anno-
tated samples was divided into windows in the same manner as
done for CBOW. A fully connected single layer network was then
trained through with 0.025 (min alpha 0.0001) learning rate and
5 epochs to predict words from the window based on the central
embedding. In both cases, the size of the vocabulary consisted on
all the words from the embedding and training sets (see Fig. 2).

2.5. Intrinsic evaluation of embeddings

Once created, we intrinsically (Bakarov, 2018) evaluated the
embeddings by calculating their average Euclidean distance, av-
erage cosine similarity, and visualising their t-SNE projection.
For the first of these, we divided all words into those belonging
to each of the target categories (i.e. medication, dosage, mode,
frequency, duration, reason; see Section 2.1), and those belonging
to none. Then we calculated the average Euclidean distance be-
tween words of the same class. We followed the same process to
calculate the average cosine similarity, but using cosine distance
rather than Euclidean distance. Finally, word categories were
projected onto a two-dimensional space with t-SNE and then
visually inspected to assess class separation (Hinton & Bengio,
2008).
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Fig. 1. Architectures for term classification. From left to right, the figure shows the context free FNN, the context aware FNN and the RNN architectures used for
terms classification. The component operations (e.g. layers) of each architecture are represented as boxes, with blue for full layers, green for dropout, orange for
transformation functions, and grey for shuffling or tensorflow wrappers. Within each box, bold font shows the name of the tensorflow operation, and italic fonts the
input parameters when non default values were used for that particular operation. In occasions, input and output tensors are also represented with a capital letter,
with subindex for tensor dimensions, and superindex for a further description of the data held in that particular tensor.

2.6. Extrinsic evaluation of embeddings

Besides the three intrinsic evaluation methods described in
Section 2.5, we also extrinsically evaluated them with a context
free classification task (Bakarov, 2018). The task consisted on
classifying words as either belonging to each of the target classes
of the study (i.e. medication, dosage, mode, frequency, duration,
reason; see Section 2.1) or to none. The task was implemented
in the form of a series of binary classifiers, one independently
for each target class, and results averaged. The classifier was a
feed forwards neural network (FFN) whose input was only the
m-dimensional embedding of the to-be-classified word, followed
by ‘l’ densely connected sigmoid layers of ‘h’ units each, and
finally a dense SoftMax layer of 2 units, corresponding with the
one-hot representation of the classification objective. Each of the
‘h’ dense layers was also followed by a dropout operation with
proportion ‘d’ per cent. In the context of this article, we will call
this architecture ‘‘context free FFN’’. The training and testing sets
were 10000 and 1000 randomly selected words, with ‘p’% of them
belonging to one of the target classes of the study. The NN was
trained with Adam for ‘e’ epochs, learning rate ‘r’, using batches
of size ‘b’. Several values of parameters ‘m’, ‘l’, ‘h’, ‘d’, ‘p’, ‘e’, ‘r’
and ‘b’ were tested to prevent using an architecture, dataset or
training method that specially favoured either CBOW or CSG.

2.7. Term classification

The ‘‘context free FFN’’1 defined in Section 2.6 was also used
to obtain a baseline measure of performance on the objective task
(Section 2.1) with the objective dataset (2.2). In this case we set
all free parameters (‘m’, ‘l’, ‘h’, ‘d’, ‘p’, ‘e’, ‘r’ and ‘b’) to the values
that produced the best performance on the set of words randomly
selected in Section 2.6.

A second architecture was created by extending the con-
text free FFN into a ‘‘context aware FFN’’.2 This consisted on
replacing the single word input by the concatenation of the ‘w’
words existing around the to-be-classified token. Namely, the
one-dimensional embedding, which consisted of ‘m’ real numbers
each, was concatenated into a single 1D vector of ‘m(1+2w)’ real
numbers.

A third architecture, partly based on previous work (Mesnil
et al., 2015), was a ‘‘RNN’’3 (recurrent neural network) that se-
quentially read all words in the target window around the target
word. The input to the architecture was one word embedding per
time step, fully connected to a LSTM layer of 100 units. The final

1 In the GitHub repository, this architecture is defined in file ‘Model 2 (Feed
Forward).ipynb’.
2 Defined in file ‘Model 3 (Windowed Feed Forward).ipynb’.
3 Defined in ‘Model 4 (Recurrent).ipynb’.
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Fig. 2. Architectures for relationship extraction. From left to right, the figure shows the seq2seq and the encoder–decoder RNN architectures. Boxes, colours and
fonts have same meaning as in Fig. 1.

state of the LSTM layer is fed to a SoftMax function. The NN was
trained via Adam algorithm, 0.001 learning rate, 50 batch size, 3
epochs.

2.8. Relationship extraction

I2B2 challenge consisted on extracting all medications,
dosages, modes, frequencies, durations and reasons as individual
terms (see Section 2.1), and the architectures of Section 2.7 were
designed and tested for this objective. However, in practice, what
is of importance is not only the medical terms themselves, but
also the relationships between them. Namely, when extracted
medical information is used in a subsequent epidemiological
analysis, it is of little value to know that a patient took, for
example, aspirin, as this patient could have taken the drug on
only one occasion, which would have no long-term impact on
chronic diseases. What in that example would be of interest
is to know whether the patient takes aspirin daily, for how

long and with what dosage. Therefore, due to the importance of
extracting relationships between medical terms, we also designed
and tested a fourth and a fifth architecture specialised on, given
a target medication term, extracting its dosage, mode, frequency,
duration and reason.

The fourth architecture, which was the first one used for this
task, was a sequence to sequence (seq2seq) RNN,4 which sequen-
tially read all words within a 5 rows window around the target
medication word, simultaneously outputting word classification
at each time step. A bidirectional neural network architecture
comprising 100 gated recurrent units (GRU) was initialised with
a linear transformation of bag of words (BOW) representation of
the target medication for that window. This BOW representation
consisted on the sum of all words part of the target medication
term (e.g. for the term ‘baby aspirin’, embedding of ‘baby’ plus
embedding of ‘aspirin’) concatenated with the medication label,

4 Defined in ‘Model 11 (ELS2S).ipynb’.
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Table 2
Document metrics of annotated datasets. The table shows how many docu-
ments/entries/phrases/tokens correspond to each of the 3 annotated datasets
(train/validation/test) used.
Metric Train Validation Test

No. of documents 238 10 10
No. of entries 8387 485 376
No. of phrases 21497 1329 973
No. of tokens 34718 2169 1571
Mean entries per document 35.2 48.5 37.6
Mean phrases per document 90.3 132.9 97.3
Mean tokens per document 145.9 216.9 157.1
Mean phrases per entry 2.6 2.7 2.6
Mean tokens per entry 4.1 4.5 4.2
Mean tokens per phrase 1.6 1.6 1.6
Vocabulary of target tokens 2267 442 4372
Out of vocabulary tokens N/A 48 52

Fig. 3. Evaluation of embeddings. A: Intrinsic evaluation with t-SNE. The figure
shows the 2D t-SNE projection of the embeddings calculated with either CBOW
(left) or CSG (right). Each point is an embedding, with red corresponding to
target categories and blue to other words. B: Extrinsic evaluation. The figure
shows the F1 score of the context free NN when embeddings are trained using
CBOW (blue) or CSG (orange) algorithms. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

which altogether created a vector of length ‘m’ (size of embed-
dings) plus 1 (for the medication label). The weights and biases
of the linear transformation were learnt during training. Then,
the GRU was sequentially fed with the 100-dimensional word
embeddings of the sentence, where embeddings were concate-
nated with an additional real number representing the I2B2 2009
classification of each word, if any (i.e. 1 for medication, 2 dosage,
3 mode, 4 frequency, 5 duration, 6 reason and 0 for ‘none’). In
each time step, the state of the GRU was fed to a SoftMax layer of
7 outputs, representing each of the I2B2 2009 term classes (plus

a 7th class for ‘none’). The RNN was trained via Adam algorithm,
0.001 learning rate, 50 batch size, 100 epochs (see Table 5).

The fifth and final architecture, which was the second one
used for the relationships task, was an encoder–decoder RNN,5
which first read all words within a ±2 row window and then
outputted all those words deemed as related to the target medi-
cation. A bidirectional LSTM encoder of 128 units was initialised
with a BOW representation of the target medication. Then, in
the encoding phase, the LSTM read the input window coded as
in the seq2seq RNN model described in the previous paragraph.
On reaching the end of the window, the final states of the en-
coder in the forwards and backwards directions are concatenated
to form the initial 256-dimensional state of a decoder LSTM.
During the decoding phase, this second LSTM received as input
the step outputs of the decoder weighted by either Bahdanau,
Cho, and Bengio (2014) or Luong, Pham, and Manning (2015)
attention mechanism. The decoding LSTM then outputted words
until emitting a special <end of output> token. Output words
were selected with a SoftMax over the whole vocabulary. The
RNN was trained via Adam algorithm with power scheduling rate
decay, 0.001 learning rate, 0.00001 decay rate, gradients clipped
at value 5, 50 batch size, 100 epochs.

In the case of the latter architecture (encoder–decoder RNN),
it should be noted that as the model itself produces words rather
than labels, it is impossible to assess its results for field spe-
cific Type I errors, so a vocabulary lookup function was used to
determine the fields of false positive tokens.

3. Results

3.1. Text pre-processing

Each document contains a number of entries, which are fur-
ther divided into sentences and tokens. A number of document
metrics count how documents/entries/sentences/tokens corre-
spond to each other. The total number of unique tokens appearing
in the unannotated dataset (see Table 2) forms the vocabulary
size of our embeddings, which does not include a small number
of words of the validation (5) and testing (7) sets. Further labels
metrics indicate that pre-annotated terms are evenly distributed
across train, validation and testing sets (see Table 2).

3.2. Intrinsic evaluation of embeddings

Intrinsic evaluation did not clearly favour one method of con-
structing embeddings above the other (see Table 4). Average
Euclidean distance showed preference for CSG embeddings over
CBOW, while average cosine similarity did the opposite. Visual
inspection with t-SNE (see Fig. 3) indicated that both methods
separated words belonging to target categories (i.e. medication,
dosage, mode, frequency, duration, reason; see Section 2.1) from
the rest, but again without a method clearly outperforming the
other. We also explored with embedding sizes of 24 to 210 and no-
ticed diminishing improvements in performance at values above
27, ultimately settling at an embedding size of 100.

3.3. Extrinsic evaluation of embeddings

To further evaluate embeddings, we created a context free FFN
whose input was the embedding of a single word and trained it
on classifying such words as either belonging to any of the target
classes of the study or to none (see Section 2.6). The NN meta-
parameters that we explored and the values that obtained best
performance are in Table 6. One single layer, sigmoid activation

5 Defined in ‘Model 10 (S2S).ipynb’.
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Table 3
Label metrics of our annotated datasets. The table shows the proportions of
entries that contain each of the I2B2 2009 labels.
Field Train Validation Test

Medication 100% 100% 100%
Dosage 49.5% 56.3% 50.0%
Mode 37.7% 40.8% 37.7%
Frequency 44.8% 53.4% 45.4%
Duration 6.1% 6.0% 6.1%
Reason 18.3% 17.5% 18.1%

Table 4
Intrinsic evaluation of embeddings. The table shows results of the intrinsic
evaluation performed on the embeddings trained either with CBOW or CSG
(see Section 2.5). AED — Average Euclidean Distance; ACD — Average Cosine
Similarity.
Field CBOW CSG

AED ACS AED ACS

Medication 6.53 0.23 3.61 0.53
Dosage 11.93 0.15 4.45 0.42
Mode 10.26 0.21 4.51 0.43
Frequency 14.63 0.15 4.76 0.41
Duration 17.01 0.07 4.91 0.34
Reason 12.65 0.10 4.68 0.35

Table 5
Used parameters. The table shows the values used for the parameters of each
architecture.
Parameter Context

free FFN
Context
aware FFN

RNN

m = embeddings dimension 100 100 100
w = window words – 5 15
l = No. of layers 2 2 1
h = No. of units per layer [100, 100] [500, 100] (100)
d = dropout proportion 0.0 0.0 0.0
p = proportion of target words 0.1 0.1 0.1
e = No. of epochs 5 5 3
r = learning rate 0.01 0.001 0.001
d = decay rate 0.002 0.0 0.0
b = batch size 50 50 50

Table 6
Metaparameters of context free NN. The table shows the best performing set of
parameters for each field.
Parameter Explored values Med Dos Mod Fre Dur Rea

Algorithm CBOW, CSG CBOW CSG CSG CBOW CSG CBOW
No. of layers ‘l’ 1, 2 1 1 1 1 1 1
Activation ‘a’ tanh, σ , ReLU σ σ σ σ σ σ

Dropout ‘d’ 0.0, 0.2, 0.4 0.0 0.4 0.2 0.4 0.4 0.4
Lean rate ‘r’ 0.001, 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 7
Performance on I2B2 2009 objective task. The table shows F1 scores for each of
our three architectures on extracting each of the target terms of I2B2 2009. For
comparison, results of the winners of I2B2 challenge are also provided in the
last column.
Term Context

free FFN
Context
aware FFN

RNN I2B2
winner

Medication 79.0 88.9 94.6 90.3
Dosage 71.0 91.0 93.0 90.8
Mode 95.4 92.7 96.9 89.3
Frequency 79.8 88.5 90.9 87.7
Duration 31.7 61.9 63.0 56.0
Reason 26.5 28.1 28.4 47.0

functions, dropout at 0.4 and a learning rate of 0.01 obtained in
general the best performance. However, no significant difference
in F1 was found between CBOW and CSG algorithms (see Fig. 3),
although CBOW converged earlier and had a more stable final
performance (see Fig. 4).

Table 8
Performance on relationship extraction task. The table shows F1 scores for each
of our architectures capable of extracting relationships between I2B2 2009 terms
and pre-annotated drugs.
Term seq2seq

RNN
Encoder–decoder
RNN + Bahdanau

Encoder–decoder
RNN + Luong

Average 0.824 0.806 0.811
Medication 0.897 0.851 0.876
Dosage 0.797 0.876 0.879
Mode 0.863 0.889 0.831
Frequency 0.811 0.785 0.826
Duration 0.701 0.434 0.547
Reason 0.667 0.463 0.402

3.4. Term classification

Three architectures were trained and tested on the objective
task of the original I2B2 2009 challenge. The first architecture was
the context free FFN described in Section 2.6 with the optimal
metaparameter values of Section 3.3. The second architecture
was a context aware FFN, which extended the previous context
free architecture by also reading the ‘±w’ words existing around
the to-be-classified token. The third architecture was a LSTM-
based RNN capped by a SoftMax that sequentially read the ‘±w’
words existing around the target token. This last architecture
outperformed the FNN models in all target terms. Further its
performance was above the winner algorithm of I2B2 2009 chal-
lenge in all tasks except for extracting ‘reason’ (see Table 7).
Interestingly, context aware FFN preferred small window sizes,
while the performance of the RNN was not specially affected by
the value of ‘w’ (see supplementary Figure 4).

3.5. Relationship extraction

Beyond the official I2B2 2009 term extraction task, we also
created two architectures to identify all terms associated to a
given pre-annotated drug (see Section 2.8). These were a seq2seq
RNN, which simultaneously read the input word by word while
outputting word classification, and an encoder–decoder RNN,
which first read all input words and then outputted all those
related to the pre-annotated drug. The encoder–decoder system
was trained and tested with two different methods of attention
— Bahdanau et al. (2014) and Luong et al. (2015). Examples of
extractions by these architectures are shown in Fig. 5 and the
results can be seen in Table 8.

4. Discussion

Architectures based on the artificial neural networks suffer
from requiring large amounts of annotated data to be able to
perform at state-of-the-art-accuracy. This fact bars them from
applications where data is scarce or difficult to access and anno-
tate, such as EHRs. This is the reason why laboratories working
with EHRs have traditionally preferred classical methods such as
rule-based systems (Cunningham, Tablan, Roberts, & Bontcheva,
2013; Karystianis et al., 2017; Perera et al., 2014). In this study we
demonstrate that appropriate use of transfer learning and unsu-
pervised learning allow NNs to perform above traditional meth-
ods such as those applied earlier (Uzuner et al., 2010). Specifically,
fine tuning embeddings to domain specific text (i.e. medical text)
and the use of recurrent architectures appeared to produce the
highest gains in performance. Interestingly, high dropout rates
performed better than low dropout rates only for the terms that
were least annotated (see Table 3), even when the most densely
annotated terms (e.g. ‘medication’) were only sampled in 238
documents.
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Fig. 4. Effects of window size. The figure shows how F1 varies depending on window size of the context aware FFN (left) and the RNN (right) architectures.

Fig. 5. Term relationship sample. The table shows the two streams of input (word embedding and word class) that both the seq2seq and the encoder–decoder RNNs
would receive in this sample. The third row shows the output given by the encoder–decoder after it read this particular example, while the last row shows the
ground truth.

However, our model still did perform poorly for the least
annotated categories (e.g. ‘reason’, see Table 3), where the tradi-
tional knowledge-based approaches that won the original chal-
lenge achieved better results (see Table 7). The same problem
arose for relationship extraction (Section 3.5), because each sam-
ple was now each record entry (e.g. each record with a word
of the category ‘medication’), rather than each annotated word
(e.g. each word of the category ‘medication’), as implied in Fig. 5.

Future work could attempt at further improving the perfor-
mance of NNs in small annotated datasets by transferring learn-
ing from unannotated datasets larger than what we used here,
and using both within-domain (e.g. medical) and out-of-domain
corpora. It is striking that a non-medical expert can learn to
recognise reasons for prescribing medications (i.e. our category
‘reason’) in EHRs after only seeing a few examples, while NNs still
reach only F1 score of 0.281 even after seeing numerous more
examples than a human. To mitigate the problem of learning
from scarce data, a few-shot learning approach for medical texts
was introduced recently (Hofer, Kormilitzin, Goldberg, & Nevado-
Holgado, 2018). One of the challenges outlined in above, namely
the representation of the worst performing categories, such as
‘reasons’, could be addressed using fuzzy sets and fuzzy logic due
to their ability to capture semantics of vague linguistic constructs
due to their capacity (Zadeh, 1996). This approach was studied
in recent works (Qiu et al., 2019; Sun et al., 2018), where an
adaptive fuzzy control scheme for stochastic non-linear systems
was introduced as well as using an efficient representation of
high-dimensional ordered data using the path signature from
stochastic analysis (Chevyrev & Kormilitzin, 2016; Kormilitzin
et al., 2016, 2017; Lyons, 2014). Given that knowledge-based
methods still outperformed our NN in the ‘reason’ category (F1 =

0.47), other avenues could consist on introducing field knowledge

into the NN in the form of bias, or in the form of symbolic meth-
ods such as dictionaries and gazetteers. Finally, more theoretical
work such as the Information Bottleneck (Tishby & Zaslavsky,
2015), the Neural Homology (Guss & Salakhutdinov, 2018), or
other theories could allow us to better understand why NNs still
need such a large number of samples to learn appropriately, and
guide future work on how this problem could be overcome.
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