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Abstract. We study double auction market design where the market
maker wants to maximize its total revenue by buying low from the sell-
ers and selling high to the buyers. We consider a Bayesian setting where
buyers and sellers have independent probability distributions on the val-
ues of products on the market.

For the simplest setting where each seller has one kind of item that can
be sold in whole to a buyer, and each buyer’s value can be represented by
a single parameter, i.e., single-parameter setting, we develop a maximum
mechanism for the market maker to maximize its own revenue.

For the more general case where the product may be different, we
consider various models in terms of supplies and demands constraints.
For each of them, we develop a polynomial time computable truthful
mechanism for the market maker to achieve a revenue at least a constant
α times the revenue of any other truthful mechanism.

1 Introduction

We consider a double auction market maker who collects valuations from buy-
ers and sellers about a certain product to decide on the prices each seller gets
and each buyer pays. The buyers may want to buy many units and the sellers
may have many units to part with. The buyers and sellers may have different
valuations of the product, and there is public knowledge of the probability dis-
tributions of the valuations (but each valuation, sampled from its distribution,
is known only to its own buyer or seller). For simplicity, we assume that the
probability distributions are independent. For the sellers and buyers, they know
their own private values exactly. The market maker purchases the products from
the sellers and sell them to the buyers. Our goal is to design a market mechanism
that maximizes the revenue of the market maker. In other words, the market
maker is to buy the same amount of products from the sellers as the amount
sold to the buyers with the objective of maximizing the difference of its collected
payment from the buyers and the total amount paid to the sellers. When in addi-
tion we assume public knowledge of distributions of buyers’ private values from
the previous sales, we call it a revenue maximization Bayesian double auction
market maker.
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There have been many double auction institutions, each of which may be suit-
able for one type of market environment [9]. Ours is motivated by the growing
use of discriminative pricing models over the Internet such as one that is studied
in [7] for the prior-free market environment. A possible realistic setting for ap-
plications of our model could be Google’s ad exchange where Google could play
a market maker for advertisers and webpage owners [12]. One may also use it
for a market model of Groupon. Our use of the Bayesian model is justified by
the repeated uses of a commercial system by registered users. It allows the mar-
ket maker to gain Bayesian information of the users’ valuations of the products
being sold. Therefore, the Bayesian model adequately describes the knowledge
of the market maker, buyers and sellers for the optimal mechanism design.

Our Results. We provide optimal or constant approximate mechanisms for
various settings for double auction design. There are important parameters in the
market design issues. The problem can be one or multi dimensional (meaning, one
product or multiple different types of products). The buyers can have demand
constraints or not, and sellers are supply constrained or not. Players’ values are
drawn from a continuous or discrete distribution. Our results are summarized in
the following table.

Table 1. Results

Dimension Demand Supply Distribution Results

Sec. 3 Single Arbitrary Arbitrary Continuous Optimal

Sec. 4 Multi Arbitrary Arbitrary Continuous 1/4-Approx

Sec. 4 Multi Arbitrary Arbitrary Discrete 1/4-Approx

Sec. 5 Multi Unlimited Arbitrary Discrete Optimal

Sec. 5 Multi Arbitrary Unlimited Discrete Optimal

For the demand column, “Arbitrary” refers to the case where buyers can buy at most
di items where di can be an arbitrary number and “Unlimited” means di = +∞. The
supply column is similar.

In the Bayesian Mechanism Design problems, there are two computational
processes involved. The first one is, given the distribution, to design an optimal
or approximate mechanism which can be viewed as a function mapping bidders’
profiles to allocation and payment outcomes. Since the function maps potentially
exponentially many profiles to outcomes, a succinct representation of the func-
tion is also an important part in the Bayesian mechanism design. The second
process is the implementation of the mechanism, i.e., given a bid profile, we run
the mechanism to compute the outcome. Our results imply that all mechanisms
described in the table can be represented in polynomial size and be found and
implemented in polynomial time.

Related Works. Auction design play an important role in economics in gen-
eral and especially in electronic commerce [11]. Of particular interest, a number
of research works focus on maximizing the auctioneer’s revenue, referred as the



692 X. Deng et al.

optimal auction design problem. Myerson, in his seminal paper [13], character-
ized the optimal auction for the single-item setting in the Bayesian model. Re-
cently, efforts have been made on extending Myerson’s results to border settings
[8,15,17].

Unlike Myerson’s optimal auction result, finding the optimal solution is not
easy for multi-dimensional settings. Recent research interest has turned toward
approximate mechanisms [1,5]. Cai et al. [4] presented a characterization of a
rather general multi-dimensional setting and proposed an efficient mechanism for
the special case where no bidders are demand constrained. Using similar ideas,
Alaei et al. [2] present a general framework for reducing multi-agent service
problems to single-agent ones.

The double auction design problem becomes more complicated since the mar-
ket maker acts as the middle man to bring buyers and sellers together. A guide
to the literature in micro-economics on this topic can be found in [9]. The profit
maximization problem for the single buyer/single seller setting has been studied
by Myerson and Satterthwaite [14]. Our optimal double auction is a direct ex-
tension of their work and, to our best knowledge, fills a clear gap in the economic
theory of double auctions. Deshmukh et al. [7], studied the revenue maximiza-
tion problem for double auctions when the auctioneer has no prior knowledge
about bids. Their prior-free model is essentially different from ours. More auction
mechanism design problems were studied by many researchers in recent years,
but as far as we know, not in the context of optimal double auction design in
the Bayesian setting. While our setting assumes the existence of a monopoly
platform, Rochet and Tirole [16] and Armstrong [3] introduced several different
models for two-sided markets and studied platform competition.

2 Preliminaries

Throughout the paper we consider Bayesian incentive compatible mechanisms
only. Informally, a mechanism is Bayesian incentive compatible if it is optimal
for each buyer and each seller to bid its true value of the items. We will formally
define this concept later. As a consequence, we should consider their bids to be
their true valuations and restrict our discussion to mechanisms that result in
less or equal utility if one deviates to report a false value.

Therefore, we will use the notation vij to represent the ith buyer’s (true) bid
for one of the jth seller’s items and wj for the jth seller’s (true) bid. We will
drop the “(true)” subsequently as deviations of bids from the true valuations
will be marked. The ith buyer’s bid can be denoted by a vector vi and bids of all
buyers can be denoted by v or sometimes (vi; v−i) where v−i is the joint profile
of all other bidders. Similarly, we use w and (wj ;w−j) for the sellers’ bid. 1

In our model, all players’ bids are assumed to be distributed independently
according to publicly known distributions, V for buyers, W for sellers. Note
that we also assume that V and W should be bounded, i.e. vij ∈ [vij , vij ] and
wj ∈ [wj , wj ].

1 We use semi-colon to separate the profile of a special player with others and use
comma to separate the buyers’ profiles with sellers’.
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The outcome of a mechanism M consists of four random variables (x, p, y, q)
where x and p are the allocation function and payment functions for buyers,
y and q for sellers. That is, buyer i receives item j with probability xij(v, w)
and pays pi(v, w); seller j sells her item with probability yj(v, w) and gets a
payment qj(v, w). Thus, the expected revenue of the mechanism is R(M) =
Ev,w[

∑
i pi(v, w) −

∑
j qj(v, w)] where Ev,w is short for Ev∼V,w∼W .

In general, a buyer may buy more than one item from the mechanism. We
assume buyers’ valuation functions are additive, i.e. vi(S) =

∑
j∈S vij . For each

buyer i, let di denote the demand constraint for buyer i, i.e. buyer i cannot
buy more than di items. Similarly, let kj be the supply constraint for seller
j, i.e. seller j cannot sell more than kj items. By the Birkhoff-von Neumann
theorem [10][8][6], it suffices to satisfy

∑
j xij ≤ di and yj =

∑
i xij ≤ kj .

Let Ui(v, w) =
∑

j xij(v, w)vij − pi(v, w) be the expected utility of buyer i
when the profile of all players is (v, w) and Tj(v, w) = qj(v, w) − yj(v, w)wj

be the expected utility of seller j. We proceed to formally define the concepts
of Bayesian Incentive Compatibility of mechanisms and ex-interim Individual
Rationality of the buyers and sellers:

Definition 1. A double auction mechanism M is said to be Bayesian Incentive
Compatible (BIC) iff the following inequalities hold for all i, j, v, w.

Ev−i,w[Ui(v, w)] ≥ Ev−i,w[Ui((v
′
i; v−i), w)]

Ev,w−j [Tj(v, w)] ≥ Ev,w−j [Tj(v, (w
′
j ;w−j))]

(1)

We note that, if Ui(v, w) ≥ Ui((v
′
i; v−i), w) and Tj(v, w) ≥ Tj(v, (w

′
j ;w−j)) for

all v, w, v′i, w
′
j , we say M is Incentive Compatible.

Definition 2. A double auction mechanism M is said to be ex-interim Individ-
ual Rational (IR) iff the following inequalities hold for all i, j, v, w.

Ev−i,w[Ui(v, w)] ≥ 0

Ev,w−j [Tj(v, w)] ≥ 0
(2)

Similarly, we note that, if Ui(v, w) ≥ 0 and Tj(v, w) ≥ 0 for all v, w, we say M
is ex-post Individual Rational.

Finally, we present the formal definition of approximate mechanism.

Definition 3 (α-approximate Mechanism[17]). Given a set M of feasible
mechanisms, we say mechanism M ∈ M is an α-approximate mechanism in M iff
for each mechanism M ′ ∈ M, for any set of buyer and sellers α ·R(M ′) ≤ R(M).
A mechanism is optimal in M if it is an 1-approximate mechanism in M.

3 Optimal Single-Dimensional Double Auction

In this section, we consider the single-dimensional double auction design problem
where all sellers sell identical items, that is for all j, j′ ∈ [m], vij = vij′ . Moreover,
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as shown in Table 1, in this section we assume the bidders’ bids are drawn from
continuous distributions. Let fi, Fi be the probability density function (PDF)
and cumulative distribution function (CDF) for buyer i’s value, gj , Gj be the
PDF and CDF for seller j’s value.

Our mechanism can be viewed as a generalization of the classical Myerson’s
Optimal Auction [13]. It is well known that Myerson’s approach is powerful and
extensive in the single-dimensional setting. We strengthen this by showing that
a similar optimal double auction can be found in this single-dimensional setting.
In addition, in Section 4 this optimal mechanism will be used to construct a
constant approximate mechanism for a multi-dimensional setting.

Recall that Myerson’s virtual value function is defined as ci(vi) = vi− 1−Fi(vi)
fi(vi)

for each buyer. In the double auction, we define the virtual value functions

for buyers and sellers as ci(vi) = vi − 1−Fi(vi)
fi(vi)

and rj(wj) = wj +
Gj(wj)
gj(wj)

.

If ci(vi) is not an increasing function of vi or rj is not decreasing, by Myer-
son’s ironing technique, we can use the ironed virtual value function c̄i and
r̄j . W.l.o.g, we assume the buyers are sorted in decreasing order with respect
to c̄i(vi) and all sellers are in increasing order with respect to r̄j(wj). Let

D = maxi,j{min{∑i
s=1 ds,

∑j
t=1 kj}|c̄i(vi) > r̄j(wj)}. Thus, we can define the

optimal auction in the spirit of maximizing virtual surplus.

xi(v, w) =

⎧
⎨

⎩

di if
∑

s≤i ds ≤ D

D −∑
s<i ds if

∑
s<i ds < D <

∑
s≤i ds

0 otherwise

yj(v, w) =

⎧
⎨

⎩

kj if
∑

t≤j kt ≤ D

D −∑
s<j ks if

∑
t<j kt < D <

∑
t≤j kt

0 otherwise

pi(v, w) = xi(v, w)vi −
∫ vi

vi

xi((s; v−i), w)ds

qj(v, w) = yj(v, w)wj +

∫ wj

wj

yj(v, (t;w−j))dt

Theorem 1. The above mechanism is an optimal (revenue) mechanism for the
single-dimensional double auction setting. Under the assumption that the inte-
gration and convex hull of f , g can be computed in polynomial time, the mecha-
nism can be found and implemented. Moreover, the mechanism is deterministic,
incentive compatible and ex-post Individual Rational.

4 Approximate Multi-dimensional Double Auction

In this section, we provide a general framework for approximately reducing the
double auction design problem for multiple buyers and sellers to single pair
of buyer and seller sub-problems. As an application, we apply the framework to
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construct a 1/4-approximate mechanism for the multi-dimensional setting. Our
approach is inspired by the work of Alaei [1] which provide a general framework
for the one sided auction.

Recall that all bids are drawn from public known distributions and our goal
is to maximize the expected revenue for the auctioneer. It should be empha-
sized that, in this section, we assume the buyers’ values for different items are
independent, i.e. vij and vij′ are independent.

First of all, we introduce the concept of Primary Mechanism which can be
viewed as a mechanism between one buyer and one seller.

Definition 4 (Primary Mechanism/Primary Benchmark).
A primary mechanism denoted by Mij for buyer i and seller j is a single buyer
and single seller mechanism which allows specifying an upper bound on the ex-
ante expected probability k̄ij of allocating jth item to buyer i. A primary bench-
mark denoted by R̄ij is a concave function such that the optimal revenue of any
primary mechanism Mij subject to k̄ij is upper bounded by R̄ij(k̄ij).

Intuitively, for any allocation rule, define the ex-ante probability of assigning
jth seller’s items to buyer i as k̄ij = Evi,wj [xij(vi, wj)]. Then we can relax the
supply constraints

∑
i xij(v, w) ≤ kj and demand constraints

∑
j xij(v, w) ≤ di

to the ex-ante probability constraints,
∑

i k̄ij ≤ kj and
∑

j k̄ij ≤ di. Then we
compute the optimal ex-ante probability by convex programming. Obviously,
the optimal solution of the relaxed problem must be an upper bound for any
original solution. Unfortunately, the solution solved by convex programming may
not be a feasible solution of the original problem. To solve this problem, Alaei
introduced the following rounding process to round the relaxed solution to a
feasible one.

Lemma 1 (γ-Conservative Magician (Theorem 2 in [1])). In the Magi-
cian problem, a magician is presented with a series of boxes one by one. He has
k magic wands that can be used to open the boxes. On each box is written a
probability qi. If a wand is used on a box, it opens, but with at most probability
qi the wand breaks. Given

∑
i qi ≤ k and any γ ≤ 1 − 1√

k+3
, a γ-conservative

magician guarantees that each box is opened with an ex-ante expected probability
at least γ.

Using above lemma, we describe our mechanism for multi-dimensional double
auction problem. Recall that in the classical auction setting, all items are sold
by the auctioneer. However, in the double auction setting, items are sold by dif-
ferent sellers and more efforts should be taken to handle the truthfulness issue of
sellers. We extend Alaei’s rounding mechanism from one-dimension (considering
buyers one by one) to two-dimension (considering each pair of buyer and seller
sequentially) as follows.
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Mechanism (Modified γ-Pre-Rounding Mechanism)

(I) Solve the following convex program and let k̄ij denote an optimal assignment
for it.

Maximize:
∑

i∈[n],j∈[m]

R̄ij(xij) (CP)

Subject to:
∑

j∈[m]

xij ≤ di for all i ∈ [n]

∑

i∈[n]

xij ≤ kj for all j ∈ [m]

xij ≥ 0 for all i ∈ [n], j ∈ [m]

(II) For each buyer i, create an instance of γ-conservative magician with di
wands (this will be referred to as the buyer i’s magician). For each item j
create an instance of γ-conservative magician with kj wands (this will be
referred to as the seller j’s magician).

(III) For each pair of buyer and seller (i, j):
(a) Write k̄ij on a box and present it to the buyer i’s magician and the
seller j’s magician.
(b) If both of them open the box, run Mij(k̄ij) on buyer i and seller j
otherwise consider next pair.
(c) If the mechanism buys an item from seller j and sells it to buyer i, then
break the wands of buyer i’s magician and seller j’s magician.

Theorem 2 (Modified γ-Pre-Rounding Mechanism). Suppose for each
buyer and seller pair (i, j), we have an α-approximate primary mechanism Mij

and a corresponding primary benchmark R̄ij . Then for any γ ∈ [0, 1 − 1√
k∗+3

]

where k∗ = mini,j{di, kj}, the Modified γ-Pre-Rounding Mechanism is a γ2 · α-
approximation mechanism.

Proof. The proof is similar to the one in [1]. First, we prove that the expected
revenue of any mechanism is upper bounded by

∑
i

∑
j R̄ij(k̄ij). For any mech-

anism M = (x, p, y, q), let kij = Ev,wxij(v, w). Due to the feasibility of M , kij
must be a feasible solution of the convex programming (CP ). So we have,

R(M) =
∑

i

∑

j

Rij(kij) ≤
∑

i

∑

j

R̄ij(kij) ≤
∑

i

∑

j

R̄ij(k̄ij)

Then it suffices to show that for each pair (i, j), our mechanism can gain the
revenue R̄ij(k̄ij) with probability at least γ2 · α, i.e. each box will be opened
with probability at least γ2. This can be deduced from Lemma 1 easily. ��
Then we consider the multi-dimensional double auction design problem and
present a constant approximate mechanism. For each buyer and seller pair i, j,
we use the mechanism in Section 3 for one-dimensional cases to be the primary
mechanism Mij and the expected revenue of Mij to be the primary bench-
mark R̄ij .
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Theorem 3. Assume that all bidders’ bids are drawn from continuous distribu-
tions. A 1/4 approximate double auction for the multi-dimensional setting can
be found and implemented in polynomial time.

For the discrete distribution case, the optimal mechanism for single buyer and
single seller can be computed by Linear Programming. So we have the similar
result.

Theorem 4. Assume that all bidders’ bids are drawn from discrete distribu-
tions. A 1/4 approximate double auction for the multi-dimensional setting can
be found and implemented in polynomial time.

5 Optimal Mechanism for Discrete Distributions

In this section, we consider the multi-dimensional double auction when all the
bidders’ value distributions are discrete. Unlike Section 4, we consider two special
cases of the problem. One is the case where all buyers have unlimited demand,
i.e., di = +∞ for all buyer i and the other one is the case where all sellers have
unlimited supply, i.e. kj = +∞ for all seller j. In this section, we focus on the
previous case. The mechanism and the proof of the latter case are similar.

Recall that, in the multi-dimensional setting, the auctioneer collects each
buyer’s bid, denoted by a vector vi = (vi1, . . . , vim) drawn from a public known
distribution Vi and seller’s bid denoted by wj drawn from Wj . Throughout this
section, Vi and Wj are discrete distributions and we use fi and gj to denote
their probability mass function, i.e. fi(t) = Pr[vi = t] and gj(t) = Pr[wj = t].
It should be emphasized that, unlike Section 4, we do not need to assume that
the buyer’s bids for each item should be independent, i.e. vij and vij′ can be
correlated in this section. We also add a dummy buyer 0 with only one type v0
for buyers and seller 0 with w0 for sellers.

Our approach is motivated by the recent results of Cai et al. [4] and Aleai
et al. [2] which require a reduced form of x, y, p, q denoted by x̄, ȳ, p̄ and q̄
respectively, defined as follows:

x̄ij(vi, wj) = Ev−i,w−j [xij(v, w)] ȳj(vi, wj) = Ev−i,w−j [yj(v, w)]
p̄i(vi, wj) = Ev−i,w−j [pi(v, w)] q̄j(vi, wj) = Ev−i,w−j [qj(v, w)]

Now we are ready to convert an optimization problem of x, p, y, q to a problem
of x̄, p̄, ȳ, q̄ which can be represented by a Linear Program with polynomial size
in T , n and m where T is the maximum among all |Vi| and |Wj |.

Then BIC constraints (1) and IR constraints (2) can be rewritten as

Ewj [
∑

j x̄ij(vi, wj)vij − p̄i(vi, wj)] ≥ Ewj [
∑

j x̄ij(v
′
i, wj)vij − p̄i(v

′
i, wj)]

Evi [q̄j(vi, wj)− ȳj(vi, wj)wj)] ≥ Evi [q̄j(vi, w
′
j)− ȳj(vi, w

′
j)wj ]

Ewj [
∑

j x̄ij(vi, wj)vij − p̄i(vi, wj)] ≥ 0

Evi [q̄j(vi, wj)− ȳj(vi, wj)wj)] ≥ 0

(3)

Finally, all mechanism should satisfy the supply constraints, i.e., for each item
j and profiles v, w,yj(v, w) =

∑
i xij(v, w) ≤ kj . Note that there is no demand
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constraint on buyers. With loss of generality, we assume that kj = 1 for all j.
Otherwise, we can normalize x by setting x′

ij(v, w) = xij(v, w)/kj and refine
v, w by setting v′ij = kjvij and w′

j = kjwj such that k′j = 1 for all item j.
For the single-item setting of classical auction, i.e. m = 1 and seller’s value for

his item is always 0, Alaei et al. [2] prove a sufficient and necessary condition for
the supply constraint. We generalize their result to a multi-dimensional double
auction setting.

Lemma 2. Given a reduced form x̄, there exists an ex-post implementation x
such that xij(v, w) ≥ 0,

∑
i xij(v, w) ≤ 1 and x̄ij(vi, wj) = Ev−i,w−j [xij(v, w)] iff

there exists (s, z) such that, for each seller j and wj ∈ Wj

s
(j)
0 (v0, wj , 0) = 1

s
(j)
i (vi, wj , i) =

∑i−1
k=0

∑
vk∈Vk

z
(j)
ki (vk, vi, wj) ∀i, vi ∈ Vi

s
(j)
k (vk, wj , i) = s

(j)
k (vk, wj , i− 1)−∑

vi∈Vi
z
(j)
ki (vk, vi, wj) ∀i, k < i, vk ∈ Vk

z
(j)
ki (vk, vi, wj) ≤ s

(j)
k (vk, wj , i− 1)fi(vi) ∀i, k < i, vi ∈ Vi, vk ∈ Vk

x̄ij(vi, wj)fi(vi) = s
(j)
i (vi, wj , n) ∀i, vi ∈ Vi

(4)

Moreover, given any feasible reduced allocation rule x̄, the ex-post of x̄ can be
found efficiently.

Finally, we convert the problem of multi-dimensional double auction design prob-
lem to a Linear Program with reduced form which can be solved in polynomial
time in m,n, T .

Theorem 5. Assume all bidders’ bids are drawn from discrete distributions and
all bidders are without demand constraints. An optimal double auction for multi-
dimensional setting can be found and implemented in polynomial time.

Theorem 6. Assume that all bidders’ bids are drawn from discrete distributions
and all sellers are without supply constraints. An optimal double auction for
multi-dimensional setting can be found and implemented in polynomial time.

6 Conclusion

In this paper, we present several optimal or approximately-optimal auctions
for a double auction market. Double auction platforms have started to gain
importance in electronic commerce. One possible example is the ad exchange
market proposed to bring advertisers and web publishers together [12]. There is
other potential in setting up electronic platforms for sellers and buyers of other
types of resources in the context of cloud computing.

Our results on the one hand show the power of recent significant progress in
one-sided markets, and on the other hand raise new challenges in the develop-
ment of mathematical and algorithmic tools for market design.
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