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EVOLUTIONARY TREES CAN BE LEARNED IN POLYNOMIAL
TIME IN THE TWO-STATE GENERAL MARKOV MODEL*
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Abstract. The j-state general Markov model of evolution (due to Steel) is a stochastic model
concerned with the evolution of strings over an alphabet of size j. In particular, the two-state general
Markov model of evolution generalizes the well-known Cavender—Farris—-Neyman model of evolution
by removing the symmetry restriction (which requires that the probability that a “0” turns into a “1”
along an edge is the same as the probability that a “1” turns into a “0” along the edge). Farach and
Kannan showed how to probably approximately correct (PAC)-learn Markov evolutionary trees in
the Cavender—Farris—-Neyman model provided that the target tree satisfies the additional restriction
that all pairs of leaves have a sufficiently high probability of being the same. We show how to remove
both restrictions and thereby obtain the first polynomial-time PAC-learning algorithm (in the sense
of Kearns et al. [Proceedings of the 26th Annual ACM Symposium on the Theory of Computing,
1994, pp. 273-282]) for the general class of two-state Markov evolutionary trees.
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1. Introduction. The j-state general Markov model of evolution was proposed
by Steel in 1994 [14]. The model is concerned with the evolution of strings (such
as DNA strings) over an alphabet of size j. The model can be described as follows.
A j-state Markov evolutionary tree consists of a topology (a rooted tree, with edges
directed away from the root), together with the following parameters. The root of
the tree is associated with j probabilities pg,...,p;—1 which sum to 1, and each
edge of the tree is associated with a stochastic transition matrix whose state space
is the alphabet. A probabilistic experiment can be performed using the Markov
evolutionary tree as follows: The root is assigned a letter from the alphabet according
to the probabilities po,...,pj—1. (Letter ¢ is chosen with probability p;.) Then the
letter propagates down the edges of the tree. As the letter passes through each edge,
it undergoes a probabilistic transition according to the transition matrix associated
with the edge. The result is a string of length n which is the concatenation of the
letters obtained at the n leaves of the tree. A j-state Markov evolutionary tree
thus defines a probability distribution on length-n strings over an alphabet of size j.
(The probabilistic experiment described above produces a single sample from the
distribution.!)
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IBiologists would view the n leaves as being existing species, and the internal nodes as being
hypothetical ancestral species. Under the model, a single experiment as described above would
produce a single bit position of (for example) DNA for all of the n species.
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To avoid getting bogged down in detail, we work with a binary alphabet. Thus,
we will consider two-state Markov evolutionary trees.

Following Farach and Kannan [9], Erdds et al. [7, 8], and Ambainis et al. [2], we
are interested in the problem of learning a Markov evolutionary tree, given samples
from its output distribution. Following Farach and Kannan and Ambainis et al., we
consider the problem of using polynomially many samples from a Markov evolutionary
tree M to “learn” a Markov evolutionary tree M’ whose distribution is close to that
of M. We use the wvariation distance metric to measure the distance between two
distributions, D and D’, on strings of length n. The variation distance between D
and D" is 30 o130 [D(s) — D'(s)]. If M and M’ are n-leaf Markov evolutionary
trees, we use the notation var(M, M) to denote the variation distance between the
distribution of M and the distribution of M’.

We use the probably approximately correct (PAC) distribution learning model of
Kearns et al. [11]. Our main result is the first polynomial-time PAC-learning algorithm
for the class of two-state Markov evolutionary trees (which we will refer to as METS).

THEOREM 1. Let 6 and € be any positive constants. If our algorithm is given
poly(n,1/e,1/8) samples from any MET M with any n-leaf topology T, then with prob-
ability at least 1 — 6, the MET M’ constructed by the algorithm satisfies var(M, M') <
€.

Interesting PAC-learning algorithms for biologically important restricted classes
of METSs have been given by Farach and Kannan in [9] and by Ambainis et al. in [2].
These algorithms (and their relation to our algorithm) will be discussed more fully in
section 1.1. At this point, we simply note that these algorithms only apply to METSs
which satisfy the following restrictions.

Restriction 1. All transition matrices are symmetric (the probability of a “1”
turning into a “0” along an edge is the same as the probability of a “0” turning into
a “17).

Restriction 2. For some positive constant «, every pair of leaves (x,y) satisfies
Pr(z #y) <1/2—a.

We will explain in section 1.1 why the restrictions significantly simplify the prob-
lem of learning Markov evolutionary trees (though they certainly do not make it
easy!). The main contribution of our paper is to remove the restrictions.

While we have used variation distance (L distance) to measure the distance be-
tween the target distribution D and our hypothesis distribution D’, Kearns et al. for-
mulated the problem of learning probability distributions in terms of the Kullback—
Leibler (KL) divergence distance from the target distribution to the hypothesis
distribution (see [6]). This distance is defined as the sum over all length-n strings s of
D(s)log(D(s)/D'(s)). Kearns et al. point out that the KL distance gives an up-
per bound on variation distance, in the sense that the KL distance from D to D’
is Q(var(D,D’)?). Hence if a class of distributions can be PAC-learned using KL
distance, it can be PAC-learned using variation distance. We justify our use of the
variation distance metric by showing that the reverse is true. In particular, we prove
the following lemma in the appendix.

LEMMA 2. A class of probability distributions over the domain {0,1}™ that is
PAC-learnable under the variation distance metric is PAC-learnable under the KL-
distance measure.

The lemma is proved using a method related to the e-Bayesian shift of Abe and
Warmuth [3]. Note that the result requires a discrete domain of support for the target
distribution, such as the domain {0, 1}" which we use here.
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The rest of this section is organized as follows: Subsection 1.1 discusses previous
work related to the general Markov model of evolution, and the relationship between
this work and our work. Subsection 1.2 gives a brief synopsis of our algorithm for
PAC-learning Markov evolutionary trees. Subsection 1.3 discusses an interesting con-
nection between the problem of learning Markov evolutionary trees and the problem
of learning mixtures of Hamming balls, which was studied by Kearns et al. [11].

1.1. Previous work and its relation to our work. The two-state general
Markov model [14] which we study in this paper is a generalization of the Cavender—
Farris—Neyman model of evolution [5, 10, 13]. Before defining the Cavender—Farris—
Neyman Model, let us return to the two-state general Markov model. We will fix
attention on the particular two-state alphabet {0,1}. Thus, the stochastic transition
matrix associated with edge e is simply the matrix

1760 €0
€1 1—61 ’

where ey denotes the probability that a “0” turns into a “1” along edge e and e;
denotes the probability that a “1” turns into a “0” along edge e. The Cavender—Farris—
Neyman model is simply the special case of the two-state general Markov model in
which the transition matrices are required to be symmetric. That is, it is the special
case of the two-state general Markov model in which Restriction 1 holds (so eg = €3
for every edge e).

We now describe past work on learning Markov evolutionary trees in the general
Markov model and in the Cavender—Farris-Neyman model. Throughout the paper,
we will define the weight w(e) of an edge e to be |1 —eg — ey].

Steel [14] showed that if a j-state Markov evolutionary tree M satisfies (i) p; > 0
for all 4, and (ii) the determinant of every transition matrix is outside of {—1,0, 1},
then the distribution of M uniquely determines its topology. In this case, he showed
how to recover the topology, given the joint distribution of every pair of leaves. In
the two-state case, it suffices to know the exact value of the covariances of every pair
of leaves. In this case, he defined the weight A(e) of an edge e from node v to node w
to be

(1) Ale) =

Pr(v=0) Pr(v=1)

W otherwise.

w(e)y/Pr(v=0)Pr(v=1) ifw is a leaf, and
{ w(e)
Steel observed that these distances are multiplicative along a path and that the dis-
tance between two leaves is equal to their covariance. Since the distances are mul-
tiplicative along a path, their logarithms are additive. Therefore, methods for con-
structing trees from additive distances such as the method of Bandelt and Dress [4]
can be used to reconstruct the topology. Steel’s method does not show how to recover
the parameters of a Markov evolutionary tree, even when the exact distribution is
known and j = 2. In particular, the quantity that he obtains for each edge e is a one-
dimensional distance rather than a two-dimensional vector giving the two transition
probabilities ey and e;. Our method shows how to recover the parameters exactly,
given the exact distribution, and how to recover the parameters approximately (well
enough to approximate the distribution), given polynomially-many samples from M.
Farach and Kannan [9] and Ambainis et al. [2] worked primarily in the special
case of the two-state general Markov model satisfying the two restrictions on page 2.
Farach and Kannan’s paper was a breakthrough, because prior to their paper nothing
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was known about the feasibility of reconstructing Markov evolutionary trees from
samples. For any given positive constant a, they showed how to PAC-learn the class of
METSs which satisfy the two restrictions. However, the number of samples required is a
function of 1/, which is taken to be a constant. Ambainis et al. improved the bounds
given by Farach and Kannan to achieve asymptotically tight upper and lower bounds
on the number of samples needed to achieve a given variation distance. These results
are elegant and important. Nevertheless, the restrictions that they place on the model
do significantly simplify the problem of learning Markov evolutionary trees. In order
to explain why this is true, we explain the approach of Farach et al.: Their algorithm
uses samples from an MET M, which satisfies the restrictions above, to estimate the
“distance” between any two leaves. (The distance is related to the covariance between
the leaves.) The authors then relate the distance between two leaves to the amount
of evolutionary time that elapses between them. The distances are thus turned into
times. Then the algorithm of [1] is used to approximate the inter-leaf evolutionary
times with times which are close, but form an additive metric, which can be fitted onto
a tree. Finally, the times are turned back into transition probabilities. The symmetry
assumption is essential to this approach because it is symmetry that relates a one-
dimensional quantity (evolutionary time) to an otherwise two-dimensional quantity
(the probability of going from a “0” to a “1” and the probability of going from a “1” to
a “0”). The second restriction is also essential: If the probability that x differs from y
were allowed to approach 1/2, then the evolutionary time from z to y would tend to
o0o. This would mean that in order to approximate the inter-leaf times accurately,
the algorithm would have to get the distance estimates very accurately, which would
require many samples. Ambainis et al. [2] generalized their results to a symmetric
version of the j-state evolutionary model, subject to the two restrictions above.

Erdos et al. [7, 8] also considered the reconstruction of Markov evolutionary trees
from samples. Like Steel [14] and unlike our paper or the papers of Farach and
Kannan [9] and Ambainis et al. [2], Erdos et al. were interested in reconstructing
only the topology of an MET (rather than its parameters or distribution), and they
were interested in using as few samples as possible to reconstruct the topology. They
showed how to reconstruct topologies in the j-state general Markov model when the
Markov evolutionary trees satisfy the following: (i) every root probability is bounded
above 0, (ii) every transition probability is bounded above 0 and below 1/2, and
(iii) for positive quantities A and )\, the determinant of the transition matrix along
each edge is between A and 1 — ). The number of samples required is polynomial
in the worst case, but is only polylogarithmic in certain cases including the case in
which the MET is drawn uniformly at random from one of several (specified) natural
distributions. Note that restriction (iii) of Erdds et al. is weaker than Farach and
Kannan’s Restriction 2. However, Erdos et al. show only how to reconstruct the
topology (thus they work in a restricted case in which the topology can be uniquely
constructed using samples). They do not show how to reconstruct the parameters of
the Markov evolutionary tree or how to approximate its distribution.

1.2. A synopsis of our method. In this paper, we provide the first polynomial-
time PAC-learning algorithm for the class of METs. Our algorithm works as follows:
First, using samples from the target MET, the algorithm estimates all of the pairwise
covariances between leaves of the MET. Second, using the covariances, the leaves of
the MET are partitioned into “related sets” of leaves. Essentially, leaves in different
related sets have such small covariances between them that it is not always possible
to use polynomially many samples to discover how the related sets are connected
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in the target topology. Nevertheless, we show that we can closely approximate the
distribution of the target MET by approximating the distribution of each related set
closely, and then joining the related sets by “cut edges.” The first step, for each
related set, is to discover an approximation to the correct topology. Since we do not
restrict the class of METs which we consider, we cannot guarantee to construct the
exzact induced topology (in the target MET). Nevertheless we guarantee to construct
a good enough approximation. The topology is constructed by looking at triples of
leaves. We show how to ensure that each triple that we consider has large inter-leaf
covariances. We derive quadratic equations which allow us to approximately recover
the parameters of the triple, using estimates of inter-leaf covariances and estimates
of probabilities of particular outputs. We compare the outcomes for different triples
and use the comparisons to construct the topology. Once we have the topology, we
again use our quadratic equations to discover the parameters of the tree. As we show
in section 2.4, we are able to prevent the error in our estimates from accumulating,
so we are able to guarantee that each estimated parameter is within a small additive
error of the “real” parameter in a (normalized) target MET. From this, we can show
that the variation distance between our hypothesis and the target is small.

1.3. Markov evolutionary trees and mixtures of Hamming balls. A
Hamming ball distribution [11] over binary strings of length n is defined by a cen-
ter (a string c of length n) and a corruption probability p. To generate an output from
the distribution, one starts with the center, and then flips each bit (or not) according
to an independent Bernoulli experiment with probability p. A linear mizture of j
Hamming balls is a distribution defined by j Hamming ball distributions, together
with j probabilities p1,...,p; which sum to 1 and determine from which Hamming
ball distribution a particular sample should be taken. For any fixed j, Kearns et al.
give a polynomial-time PAC-learning algorithm for a mixture of j Hamming balls,
provided all j Hamming balls have the same corruption probability.?

A pure distribution over binary strings of length n is defined by n probabilities,
Al,..-y An. To generate an output from the distribution, the ith bit is set to “0”
independently with probability A;, and to “1” otherwise. A pure distribution is a
natural generalization of a Hamming ball distribution. Clearly, every linear mixture
of j pure distributions can be realized by a j-state MET with a star-shaped topology.
Thus, the algorithm given in this paper shows how to learn a linear mixture of any
two pure distributions. Furthermore, a generalization of our result to a j-ary alphabet
would show how to learn any linear mixture of any j pure distributions.

2. The algorithm. Our description of our PAC-learning algorithm and its anal-
ysis requires the following definitions. For positive constants § and ¢, the input to
the algorithm consists of poly(n,1/€,1/6) samples from an MET M with an n-leaf
topology T. We will let €; = €/(20n?), €2 = €1/(4n?), e3 = €3/25, €4 = €1/(4n),
€5 = €2€4/2'0, and €5 = e5€3/27. We have made no effort to optimize these con-
stants. However, we state them explicitly so that the reader can verify below that
the constants can be defined consistently. We define an e4-contraction of an MET
with topology T” to be a tree formed from T” by contracting some internal edges e

2The kind of PAC-learning that we consider in this paper is generation. Kearns et al. also
show how to do evaluation for the special case of the mixture of j Hamming balls described above.
Using the observation that the output distributions of the subtrees below a node of an MET are
independent, provided the bit at that node is fixed, we can also solve the evaluation problem for
METs. In particular, we can calculate (in polynomial time) the probability that a given string is
output by the hypothesis MET.
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for which A(e) > 1 — €4, where A(e) is the edge-distance of e as defined by Steel [14]
(see (1)). If x and y are leaves of the topology T' then we use the notation cov(z,y)
to denote the covariance of the indicator variables for the events “the bit at x is 17
and “the bit at y is 1.” Thus,

(2) cov(z,y) =Pr(zy =11) = Pr(z = 1) Pr(y = 1).

We will use the following observations.

Observation 3. If MET M’ has topology T’ and e is an internal edge of T’
from the root r to node v and T is a topology that is the same as T’ except that
v is the root (so e goes from v to r) then we can construct an MET with topology
T” which has the same distribution as M’. To do this, we simply set Pr(v = 1)
appropriately (from the distribution of M’). If Pr(v = 1) = 0 we set ey to be
Pr(r = 1) (from the distribution of M”). If Pr(v = 1) = 1 we set e; to be Pr(r = 0)
(from the distribution of M’). Otherwise, we set e¢g = Pr(r = 1)(old e1)/ Pr(v = 0)
and e; = Pr(r = 0)(old eg)/ Pr(v =1).

Observation 4. If MET M’ has topology T” and v is a degree-2 node in T” with
edge e leading into v and edge f leading out of v and T” is a topology which is the
same as 1" except that ¢ and f have been contracted to form edge g then there is an
MET with topology T which has the same distribution as M’. To construct it, we
simply set go = eo(1 — f1) + (1 —eo) fo and g1 = e1(1 — fo) + (1 —e1) f1.

Observation 5. If MET M’ has topology T” then there is an MET M” with
topology T” which has the same distribution on its leaves as M’ and has every internal
edge e satisfy eg +e; < 1.

Proof of Observation 5. We will say that an edge e is “good” if eg + €1 < 1.
Starting from the root we can make all edges along a path to a leaf good, except
perhaps the last edge in the path. If edge e from w to v is the first nongood edge in
the path we simply set ey to 1 — (old eg) and ey to 1 — (old ey). This makes the edge
good but it has the side effect of interchanging the meaning of 0 and 1 at node v.
As long as we interchange 0 and 1 an even number of times along every path we will
preserve the distribution at the leaves. Thus, we can make all edges good except
possibly the last one, which we use to get the parity of the number of interchanges
correct. O

We will now describe the algorithm. In subsection 2.6, we will prove that with
probability at least 1 — §, the MET M’ that it constructs satisfies var(M, M’) < e.
Thus, we will prove Theorem 1.

2.1. Step 1: Estimate the covariances of pairs of leaves. For each pair
(z,y) of leaves, obtain an “observed” covariance cov(z,y) such that, with probability
at least 1 — §/3, all observed covariances satisfy

cov(z,y) € [cov(z,y) — €3, cov(z,y) + €3].

LEMMA 6. Step 1 requires only poly(n,1/e,1/6) samples from M.

Proof. Consider leaves x and y and let p denote Pr(zy = 11). By a Chernoff
bound (see [12]), after k samples the observed proportion of outputs with zy = 11 is
within +e3/4 of p, with probability at least 1 — 2 exp(—ke3/2%). For each pair (z,y)
of leaves, we estimate Pr(zy = 11), Pr(xz = 1), and Pr(y = 1) within +e3/4. From
these estimates, we can calculate cov(z,y) within +e3 using (2). 0
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2.2. Step 2: Partition the leaves of M into related sets. Consider the
following leaf connectivity graph whose nodes are the leaves of M. Nodes x and y
are connected by a “positive” edge if cov(z,y) > (3/4)e2 and are connected by a
“negative” edge if cov(x,y) < —(3/4)ea. Each connected component in this graph
(ignoring the signs of edges) forms a set of “related” leaves. For each set S of related
leaves, let s(S) denote the leaf in S with smallest index. METs have the property
that for leaves z, y, and z, cov(y, z) is positive iff cov(z,y) and cov(y, z) have the
same sign. To see this, use the following equation, which can be proved by algebraic
manipulation from (2):

(3) cov(z,y) =Pr(v=1)Pr(v =0)(1 — ap — a1)(1 — Bp — 1),

where v is taken to be the least common ancestor of x and y and ag and a; are the
transition probabilities along the path from v to x and By and (3; are the transition
probabilities along the path from v to y. Therefore, as long as the observed covariances
are as accurate as stated in Step 1, the signs on the edges of the leaf connectivity graph
partition the leaves of S into two sets S; and S, in such a way that s(S) € Sy, all
covariances between pairs of leaves in S are positive, all covariances between pairs of
leaves in S are positive, and all covariances between a leaf in S and a leaf in Sy are
negative.

For each set S of related leaves, let T'(S) denote the subtree formed from T by
deleting all leaves which are not in .S, contracting all degree-2 nodes, and then rooting
at the neighbour of s(S5). Let M(S) be an MET with topology T'(S) which has the
same distribution as M on its leaves and satisfies the following:

(4) e Every internal edge e of M (S) has eg + ¢ < 1.
e Every edge e to a node in 57 has eg +e; < 1.
e Every edge e to a node in Sy has eg +e; > 1.

Observations 3, 4, and 5 guarantee that M (S) exists.

Observation 7. As long as the observed covariances are as accurate as stated in
Step 1 (which happens with probability at least 1 — ¢§/3), then for any related set S
and any leaf z € S there is a leaf y € S such that |cov(z,y)| > €2/2.

Observation 8. As long as the observed covariances are as accurate as stated in
Step 1 (which happens with probability at least 1 — §/3), then for any related set S
and any edge e of T'(S) there are leaves a and b which are connected through e and
have |cov(a,b)| > ea/2.

Observation 9. As long as the observed covariances are as accurate as stated in
Step 1 (which happens with probability at least 1 — §/3), then for any related set S,
every internal node v of M(S) has Pr(v =0) € [e2/2,1 — €2/2].

Proof of Observation 9. Suppose to the contrary that v is an internal node of
M(S) with Pr(v =0) € [0,€e2/2) U (1 — €2/2,1]. Using Observation 3, we can re-root
M(S) at v without changing the distribution. Let w be a child of v. By (3), every
pair of leaves a and b which are connected through (v, w) satisfy |cov(a,b)| < Pr(v =
0)Pr(v =1) < €2/2. The observation now follows from Observation 8. 0

Observation 10. As long as the observed covariances are as accurate as stated
in Step 1 (which happens with probability at least 1 — §/3), then for any related set
S, every edge e of M(S) has w(e) > €3/2.

Proof of Observation 10. This follows from Observation 8 using (3). (Recall that
w(e) =|1—eg—e].) O
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2.3. Step 3: For each related set S, find an e4-contraction TV(S) of
T(S). In this section, we will assume that the observed covariances are as accurate
as stated in Step 1. (This happens with probability at least 1—6/3.) Let S be a related
set. With probability at least 1 —§/(3n) we will find an e4-contraction 77 (S) of T'(S).
Since there are at most n related sets, all e4-contractions will be constructed with
probability at least 1 — §/3. Recall that an e4-contraction of M (S) is a tree formed
from T'(S) by contracting some internal edges e for which A(e) > 1 —e4. We start
with the following observation, which will allow us to redirect edges for convenience.

Observation 11. 1If e is an internal edge of T'(S) then A(e) remains unchanged if
e is redirected as in Observation 3.

Proof. The observation can be proved by algebraic manipulation from (1) and
Observation 3. Note (from Observation 9) that every endpoint v of e satisfies Pr(v =
0) € (0,1). Thus, the redirection in Observation 3 is not degenerate and A(e) is
defined. o

We now describe the algorithm for constructing an es-contraction 77(S) of T'(S).
We will build up 7(5) inductively, adding leaves from S one by one. That is, when we
have an e4-contraction 7" (S’) of a subset S” of S, we will consider a leaf z € S— 5’ and
build an e4-contraction 77 (S’ U{z}) of T(S"U{z}). Initially, S’ = (). The precise order
in which the leaves are added does not matter, but we will not add a new leaf x unless
S’ contains a leaf y such that [cov(z,y)| > (3/4)ea. When we add a new leaf = we
will proceed as follows. First, we will consider T"(S"), and for every edge ¢’ = (u/, v’)
of T'(S"), we will use the method in the following section (section 2.3.1) to estimate
A(e’). More specifically, we will let « and v be nodes which are adjacent in T'(S”) and
have u € v/ and v € v’ in the e4-contraction T(S"). We will show how to estimate
A(e). Afterwards (in section 2.3.2), we will show how to insert z.

2.3.1. Estimating A(e). In this section, we suppose that we have an MET
M(S") on a set S” of leaves, all of which form a single related set. T(S’) is the
topology of M(S”) and T'(S") is an e4-contraction of T(S’). The edge ¢/ = (u/,v") is
an edge of T"(S"). e = (u,v) is the edge of T'(S’) for which v € v’ and v € v'. We
wish to estimate A(e) within +e4/16. We will ensure that the overall probability that
the estimates are not in this range is at most 6/(6n).

The proof of the following equations is straightforward. We will typically apply
them in situations in which z is the error of an approximation:

x4+ z x z x
5452 (+3)
y—=z Yy y—=z Yy
1
(6) 1+Z§1+4z if 2 <1/2,
-z
1—=2

>1—-2z ifz>0.

1+2

Case 1: €' is an internal edge. We first estimate eg, e1, Pr(u = 0), and Pr(v = 0)
within +e5 of the correct values. By Observation 9, Pr(u = 0) and Pr(v = 0) are in
[e2/2,1 — €3/2]. Thus, our estimate of Pr(u = 0) is within a factor of (1 & 2€5/e2) =
(1+€4277) of the correct value. Similarly, our estimates of Pr(u = 1), Pr(v = 0), and
Pr(v = 1) are within a factor of (1 £ ¢,277) of the correct values. Now using (1) we
can estimate A(e) within +e4/16. In particular, our estimate of A(e) is at most
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< A(e) + e4/16.

In the inequalities, we used (6) and the fact that A(e) < 1. Similarly, by (7), our
estimate of A(e) is at least

> Ale) — 64/16.

We now show how to estimate eg, e1, Pr(u = 0), and Pr(v = 0) within +e5. We
say that a path from node a to node 8 in an MET is strong if |cov(a, §)] > €2/2. Tt
follows from (3) that if node ~y is on this path, then

(8) |cov (7, B)] = [eov(a, B)],
9) |cov(er, B)] = [cov(er, ) [cov (v, B),

We say that a quartet (¢,b | a,d) of leaves a, b, ¢, and d is a good estimator of the
edge e = (u,v) if e is an edge of T'(S’) and the following hold in T'(S") (see Figure 1):
1. a is a descendent of v.
2. The undirected path from c to a is strong and passes through u then v.
3. The path from u to its descendent b is strong and only intersects the (undi-
rected) path from c to a at node u.
4. The path from v to its descendent d is strong and only intersects the path
from v to a at node v.
We say that (¢,b | a,d) is an apparently good estimator of €' if the following hold in
the e4-contraction T(S"):
1. a is a descendent of v’.
2. The undirected path from c to a is strong and passes through u’ then v’.
3. The path from v’ to its descendent b is strong and only intersects the (undi-
rected) path from ¢ to a at node u'.
4. The path from v’ to its descendent d is strong and only intersects the path
from v’ to a at node v'.
Observation 12. If e is an edge of T'(S") and (¢, b | a,d) is a good estimator of
e, then any leaves ,y € {a,b, ¢, d} have |cov(z,y)| > (e2/2)°.
Proof. The observation follows from (8) and (9) and from the definition of a good
estimator. a
LEMMA 13. If (¢,b | a,d) is a good estimator of e, then it can be used (along with
poly(n,1/e,1/8) samples from M(S')) to estimate eg, €1, Pr(u = 0), and Pr(v = 0)
within te5. (If we use sufficiently many samples, then the probability that any of the
estimates is not within +es of the correct value is at most 6/(12n7)).
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Fi1G. 1. Finding Pr(u = 1), eg, and e;.

Proof. Let go and ¢; denote the transition probabilities from v to a (see Figure 1)
and let pg and p; denote the transition probabilities from u to a. We will first show
how to estimate pg, p1, and Pr(u = 1) within +e5. Without loss of generality (by
Observation 3) we can assume that ¢ is a descendant of u. (Otherwise we can re-root
T(S’) at v without changing the distribution on the nodes or py or p;.) Let 3 be the
path from u to b and let « be the path from u to c. We now define

(10) cov(b,c,0) = Pr(abc = 011) Pr(a = 0) — Pr(ab = 01) Pr(ac = 01),
cov(b,c,1) = Pr(abc = 111) Pr(a = 1) — Pr(ab = 11) Pr(ac = 11).

(These do not quite correspond to the conditional covariances of b and ¢, but they are
related to these.) We also define

1 _
1 (cov(b,c) + cov(b, c,0) — cov(b, c, 1) and
2 cov(b, c)
D = F? — cov(b,c,0)/cov(b, c).

F =

The following equations can be proved by algebraic manipulation from (10), (2), and
the definitions of F' and D.

(11)  cov(b,¢,0) = Pr(u=1)Pr(u=0)(1 — By — B1)(1 —v0 — 71)p1(1 — po),
cov(b,c,1) =Pr(u=1)Pr(u=0)(1— B — 1)1 —v0 — 71)po(1 — p1),

(12) F:1+P1—po
2 b

(1—=po —p1)2

13 D=-~———_-"-

Case la: a € S7. In this case, by (4) and by Observation 10, we have 1 —py—p; >
0. Thus, by (13), we have

1 — po —
(14) VD = %.

Equations (12) and (14) imply
(15) b1 = F— \/57
(16) pozl—F—\/E.
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Also, since Pr(a =0) =Pr(u = 1)p1 + (1 — Pr(u = 1))(1 — pg), we have

(17) Priu—1)— L4 F=Pre=0)

2 2v'D
From these equations, it is clear that we could find pg, p1, and Pr(u = 1) if we knew
Pr(a = 0), cov(b,c), cov(b,c,0), and cov(b,c,1) exactly. We now show that with
polynomially many samples, we can approximate the values of Pr(a = 0), cov(b, ¢),
cov(b, c,0), and cov(b,c, 1) sufficiently accurately so that using our approximations
and the above equations, we obtain approximations for pg, p1, and Pr(u = 1) which
are within +eg. As in the proof of Lemma 6, we can use (2) and (10) to estimate
Pr(a = 0), cov(b, ¢), cov(b,c,0), and cov(b, ¢, 1) within €' for any ¢ whose inverse is
at most a polynomial in n and 1/e. Note that our estimate of cov(b, ¢) will be nonzero
by Observation 12 (as long as € < (e2/2)"), so we will be able to use it to estimate F
from its definition. Now, using the definition of F' and (5), our estimate of 2F is at
most

3¢’

2F + —————— (1 + 2F).
+ cov(b,c) — 36/( +2F)

By Observation 12, this is at most

3¢’

(18) 2F + e

(1+2).

The error is at most ¢” for any €’ whose is inverse is at most polynomial in n and
1/e. (This is accomplished by making € small enough with respect to e according
o (18).) We can similarly bound the amount that we underestimate F. Now we use
the definition of D to estimate D. Our estimate is at most

2_ cov(b,,0) — €

F+¢ .
(F +¢") cov(b,c) + €

Using (5), this is at most

! b,c,0)
D 2 //F "2 € 1 COV( i) .
Pee i en cov(b,c) + € + cov(b, c)

Once again, by Observation 12, the error can be made within +¢”’ for any "’ whose

inverse is polynomial in n and 1/e (by making ¢’ and €’ sufficiently small). It follows
that our estimate of v/D is at most v D(14¢”/(2D)) and (since Observation 12 gives
us an upper bound on the value of D as a function of €3), we can estimate VD within
+€"”” for any €’ whose inverse is polynomial in n and 1/e. This implies that we can
estimate py and p; within +eg. Observation 12 and (3) imply that w(p) > (e2/2)°.
Thus, the estimate for v/D is nonzero. This implies that we can similarly estimate
Pr(u = 1) within +es using (17).

Now that we have estimates for pg, p1, and Pr(u = 1) which are within +eg of
the correct values, we can repeat the trick to find estimates for ¢y and ¢; which are
also within +e5. We use leaf d for this. Observation 4 implies that

P1—q1
l—q—aq1 1—q—q1
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b a d
Fic. 2. (¢, b | a,d) is a good estimator of e = (u,v) and an apparently good estimator of
e = (u,v).
Using these equations, our estimate of ey is at most

Po — qo + 2¢6
1—qo—q1 —2¢

Equation (5) and our observation above that w(p) > (e2/2)® imply that the error is

at most
2¢ —
36 (1 + Po — qo ) 7
(62/2) — 2¢q4 1—q —q

which is at most 27¢5/€3 = e5. Similarly, the estimate for ey is at least ey — €5
and the estimate for e; is within +e5 of ¢;. We have now estimated eg, e, and
Pr(u = 0) within +e5. As we explained in the beginning of this section, we can use
these estimates to estimate A(e) within +e4/16.

Case 1b: a € Sy. In this case, by (4) and by Observation 10, we have 1 —py—p; <
0. Thus, by (13), we have

(19) VD - ().

Equations (12) and (19) imply

(20) m =F+ VD,
(21) po=1—-F+VD.

Equation (17) remains unchanged. The process of estimating po, p1, and Pr(u = 1)
(from the new equations) is the same as for Case la. This concludes the proof of
Lemma 13. O

Observation 14.  Suppose that €’ is an edge from u' to v/ in T"(S’) and that
e = (u,v) is the edge in T(S’) such that v € « and v € v'. There is a good
estimator (¢,b | a,d) of e. Furthermore, every good estimator of e is an apparently
good estimator of ¢’. (Refer to Figure 2.)

Proof. Leaves c and a can be found to satisfy the first two criteria in the definition
of a good estimator by Observation 8. Leaf b can be found to satisfy the third criterion
by Observation 8 and (8) and by the fact that the degree of u is at least 3 (see the
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u
C ‘
o
b
a
d
FiG. 3. (c,b | a,d) is an apparently good estimator of € = (u',v’') and a good estimator of

p=(u",v"). Alp) < Au,v).

text just before (4)). Similarly, leaf d can be found to satisfy the fourth criterion.
(¢,b | a,d) is an apparently good estimator of e’ because only internal edges of T'(S")
can be contracted in the e4-contraction 7”(S’). 0

Observation 15.  Suppose that €’ is an edge from u' to v/ in T"(S’) and that
e = (u,v) is an edge in T'(S’) such that u € v’ and v € v'. Suppose that (¢, b | a,d)
is an apparently good estimator of ¢’. Let u” be the meeting point of ¢, b, and a
in T(S"). Let v" be the meeting point of ¢, a, and d in T(S’). (Refer to Figure 3.)
Then (¢, b | a,d) is a good estimator of the path p from u” to v” in T(S’). Also,
A(p) < Ale).

Proof. The fact that (¢,b | a,d) is a good estimator of p follows from the definition
of good estimator. The fact that A(p) < A(e) follows from the fact that the distances
A are multiplicative along a path, and bounded above by 1. 1]

Observations 14 and 15 imply that in order to estimate A(e) within +e,/16, we
need only estimate A(e) using each apparently good estimator of e’ and then take
the maximum. By Lemma 13, the failure probability for any given estimator is at
most §/(12n7), so with probability at least 1 —§/(12n?), all estimators give estimates
within +¢4/16 of the correct values. Since there are at most 2n edges €’ in T7(5"),
and we add a new leaf = to S’ at most n times, all estimates are within £e4/16 with
probability at least 1 — §/(6n).

Case 2: ¢’ is not an internal edge. In this case v = v’ since v’ is a leaf of T'(S").
We say that a pair of leaves (b,c) is a good estimator of e if the following holds
in T(S"): The paths from leaves v, b, and ¢ meet at u and |cov(v,b)], |cov(v, ¢)|, and
|cov(b, )| are all at least (e5/2)>. We say that (b, c) is an apparently good estimator
of ¢’ if the following holds in 77(S”): The paths from leaves v, b, and ¢ meet at v’ and
|cov(v,b)|, [cov(v, c)|, and |cov(b, ¢)| are all at least (e5/2)>. As in the previous case,
the result follows from the following observations.

Observation 16. 1If (b, c) is a good estimator of e then it can be used (along with
poly(n,1/e,1/6) samples from M(S’)) to estimate ey, e1, and Pr(u = 0) within +e5.
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(The probability that any of the estimates is not within +e5 of the correct value is at
most 6/(12n3).)

Proof. This follows from the proof of Lemma 13. a

Observation 17. Suppose that €’ is an edge from u’ to leaf v in T7(S’) and that
e = (u,v) is an edge in T'(S”) such that u € u’. There is a good estimator (b, ¢) of e.
Furthermore, every good estimator of e is an apparently good estimator of e’.

Proof. This follows from the proof of Observation 14 and from (9). a

Observation 18. Suppose that €’ is an edge from u’ to leaf v in T7(S’) and that
e = (u,v) is an edge in T(S’) such that v € . Suppose that (b,c) is an apparently
good estimator of /. Let u” be the meeting point of b, v, and ¢ in T'(S’). Then (b, ¢)
is a good estimator of the path p from u” to v in T(S"). Also, A(p) < A(e).

Proof. This follows from the proof of Observation 15. O

2.3.2. Using the estimates of A(e). We now return to the problem of showing
how to add a new leaf z to T"(S’). As we indicated above, for every internal edge
e = (u,v") of T'(S"), we use the method in section 2.3.1 to estimate A(e) where
e = (u,v) is the edge of T'(S") such that v € v and v € v'. If the observed value
of A(e) exceeds 1 — 15¢4/16, then we will contract e. The accuracy of our estimates
will guarantee that we will not contract e if A(e) < 1 — €4, and that we definitely
contract e if A(e) > 1 — Tes/8. We will then add the new leaf x to T"(S’) as follows.
We will insert a new edge (z,2") into T"(S’). We will do this by either (i) identifying
x' with a node already in 77(S’), or (ii) splicing z’ into the middle of some edge
of T'(5").

We will now show how to decide where to attach =’ in 77(S’). We start with the
following definitions. Let S” be the subset of S’ such that for every y € S we have
lcov(z,y)| > (e2/2)*. Let T” be the subtree of T"(S’) induced by the leaves in S”. Let
5" be the subset of S’ such that for every y € S we have [cov(z,y)| > (e2/2)" — es.
Let T be the subtree of T"(S’) induced by the leaves in S".

Observation 19. If T(S" U {x}) has =’ attached to an edge e = (u,v) of T'(S")
and €’ is the edge corresponding to e in 77(S’) (that is, ¢’ = (u/,v"), where u € v/ and
v € v'), then ¢’ is an edge of T".

Proof. By Observation 14 there is a good estimator (¢, b | a,d) for e. Since z is
being added to S’ (using (8)), |cov(z,x’)| > €3/2. Thus, by Observation 12 and (9),
every leaf y € {a,b,c,d} has |cov(z,y)| > (62/2)4. Thus, a, b, ¢, and d are all in S”
so e isin T". O

Observation 20. If T(S" U {z}) has z’ attached to an edge e = (u,v) of T'(S")
and v and v are both contained in node «’ of 77(S") then v’ is a node of T”.

Proof. Since w is an internal node of T'(S"), it has degree at least 3. By Observa-
tion 8 and (8), there are three leaves a1, as, and a3 meeting at u with |cov(u,a;)| >
€2/2. Similarly, |cov(u,v)| > €3/2. Thus, for each a;, |cov(x,a;)| > (62/2)3 so ai, as,

and asz are in S”. O
Observation 21. S" C §".
Proof. This follows from the accuracy of the covariance estimates in Step 1. 0

We will use the following algorithm to decide where to attach 2’ in T"”. In the
algorithm, we will use the following tool. For any triple (a, b, ¢) of leaves in S' U {z},
let u denote the meeting point of the paths from leaves a, b, and ¢ in T'(S’U{z}). Let
M* be the MET which has the same distribution as M (S’ U {z}), but is rooted at u.
(M™ exists, by Observation 3.) Let A.(a,b,c) denote the weight of the path from
to ¢ in M*. By observation 11, A.(a,b,c) is equal to the weight of the path from wu
to ¢ in M(S"U{z}). (This follows from the fact that re-rooting at u only redirects
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F1G. 4. The setting for Test 1(u’,v’,a1,a2,b) and Test 2(u’,v’,a1,az2,b) when v’ is an internal
node of T"". (If v/ is a leaf, we perform the same tests with v’ =b.)

ai T u v b

F1a. 5. Either Test 1(u/,v’,a1,a2,b) fails or Test 2(u’,v’, a1,a2,b) fails.

internal edges.) It follows from the definition of A (as in (1)) and from (3) that

(22) Ac(abyc) = \/ cov(a, ¢)eov(b,¢)

cov(a,b)

If a, b, and c are in S”’U{z}, then by the accuracy of the covariance estimates and (8)
and (9), the absolute value of the pairwise covariance of any pair of them is at least
€5/219. As in section 2.3.1, we can estimate cov(a, ¢), cov(b, ¢), and cov(a, b) within a
factor of (1£¢€') of the correct values for any ¢ whose inverse is at most a polynomial
in n, and 1/e. Thus, we can estimate A.(a, b, c) within a factor of (1 £ €4/16) of the
correct value. We will take sufficiently many samples to ensure that the probability
that any of the estimates is outside of the required range is at most §/(6n2). Thus,
the probability that any estimate is outside of the range for any z is at most 6/(6n).

We will now determine where in 7" to attach z’. Choose an arbitrary internal
root u' of T"'. We will first see where z’ should be placed with respect to u’. For
each neighbor v’ of u’ in T", each pair of leaves (a1,as) on the “u’” side of (u',v"),
and each leaf b on the “v’” side of (u’,v’) (see Figure 4), perform the following two
tests.

o Test 1(u',v',a1,a2,b): The test succeeds if the observed value of
Ag(ar,x,b)/A(az, x,b) is at least 1 — €4 /4.
o Test 2(u’,v', a1, az2,b): The test succeeds if the observed value of
Ap(a1,az,b)/Ap(ar, x,b) is at most 1 — 3eq/4.
We now make the following observations.

Observation 22. TIf x is on the “u side” of (u,v) in T(S" U {z}) and w is in v’
in 7" and v is in v' # o' in T"” then some test fails.

Proof. Since v’ is an internal node of T"”, it has degree at least 3. Thus, we can
construct a test such as the one depicted in Figure 5. (If 2’ = w then the figure is still
correct; that would just mean that A(f) = 1. Similarly, if v’ is a leaf, we simply have
A(f") =1 where f' is the edge from v to b.) Now we have
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F1G. 6. Test 1(u/,v’,a1,a2,b) and Test 2(u’,v’,a1,az2,b) succeed for all choices of a1, a2, and b.

1 Az(ay,z,b)  Ap(ay,az,b)

Af)  Aglag,z,b)  Ay(ar,z,b)’

However, Test 1(u',v’, a1, as,b) will succeed only if the left hand fraction is at least
1 — €4/4. Furthermore, Test 2(u',v’,a1,a2,b) will only succeed if the right hand
fraction is at most 1 — 3e4/4. Since our estimates are accurate to within a factor of
(1 +€4/16), at least one of the two tests will fail. 0

Observation 23. 1If x is between u and v in T(S” U {z}) and the edge f from
u to 2’ has A(f) < 1 — Tes/8 then Test 1(u',v,a1,a2,b) and Test 2(u', v’ a1, as,b)
succeed for all choices of a1, az, and b.

Proof. Every such test has the form depicted in Figure 6, where again g might be
degenerate, in which case A(g) = 1. Observe that A, (a1, x,b)/Az(az,2,b) =1, so its
estimate is at least 1 — e4/4 and Test 1 succeeds. Furthermore,

Ay(a1,az,b)
A T T A(AA <A <1—"Tes/8
Ab(al,I7b) (f) (g)— (f)— 64/ )
so the estimate is at most 1 — 3e4/4 and Test 2 succeeds. 0

Observation 24. If x is on the “v side” of (u,v) in T(S" U{z}) and A(e) <1 —
Tes/8 (recall from the beginning of section 2.3.2 that A(e) is at most 1 —7es/8 if u and
v are in different nodes of T"), then Test 1(u’,v’, a1, as,b) and Test 2(u’, v, a1, az, b)
succeed for all choices of a1, as, and b.

Proof. Note that this case only applies if v is an internal node of T'(S”’). Thus,
every such test has one of the forms depicted in Figure 7, where some edges may be
degenerate. Observe that in both cases A(a1,z,b)/A;(az,x,b) = 1, so its estimate
is at least 1 — €4/4 and Test 1 succeeds. Also in both cases

Ay(ay, a2,b)

~ 7 = MeA()A(g) < Ale) <1 -

Ap(ay,z,b) (e)A(f)A(g) < Ale) < Teq /8,
so the estimate is at most 1 — 3e4/4 and Test 2 succeeds. O

Now note (using Observation 22) that node v’ has at most one neighbor v’ for
which all tests succeed. Furthermore, if there is no such v’, Observations 23 and 24
imply that 2’ can be merged with u/. The only case that we have not dealt with is
the case in which there is exactly one v’ for which all tests succeed. In this case, if v’
is a leaf, we insert 2’ in the middle of edge (v,v’). Otherwise, we will either insert z’
in the middle of edge (v',v’), or we will insert it in the subtree rooted at v’. In order
to decide which, we perform similar tests from node v/, and we check whether Test
1(v', v/, a1, a9,b) and Test 2(v', u', a1, az,b) both succeed for all choices of a;, as, and
b. If so, we put 2’ in the middle of edge (u’,v"). Otherwise, we recursively place x’ in
the subtree rooted at v’.



EVOLUTIONARY TREES CAN BE LEARNED IN POLYNOMIAL TIME 391

ay
f e g
U v x’ b
as
T
ai
f e g ,
U v T
az
b T

Fi1G. 7. Test 1(u/,v’,a1,a2,b) and Test 2(u/,v’,a1,az2,b) succeed for all choices of a1, a2, and b.

2.4. Step 4: For each related set S, construct an MET M’(S) which is
close to M (S). For each set S of related leaves we will construct an MET M’(S) with
leaf-set S such that each edge parameter of M’(S) is within +e€; of the corresponding
parameter of M(S). The topology of M’(S) will be T(S). We will assume without
loss of generality that T'(S) has the same root as T(S). The failure probability for S
will be at most 6/(3n), so the overall failure will be at most §/3.

We start by observing that the problem is easy if S has only one or two leaves.

Observation 25. 1f | S| < 3 then we can construct an MET M’(S) such that each
edge parameter of M’(S) is within +e; of the corresponding parameter of M (S).

We now consider the case in which S has at least three leaves. Any edge of T'(.5)
which is contracted in T”(S) can be regarded as having eg and ey set to 0. The fact
that these are within +¢; of their true values follows from the following lemma.

LEMMA 26. Ife is an internal edge of M(S) from v to w with A(e) > 1 —¢y4 then
eo+e1 < 2e =¢€1/(2n).

Proof. First observe from Observation 9 that Pr(w = 0) ¢ {0,1} and from
Observation 10 that ey + e; # 1. Using algebraic manipulation, one can see that

Pr(w=1)—
Pr(vzl):—r(w ) eo,

1—60—61

Pr(w =10) — e
P =0)= —.
I'(U ) 1760761

Thus, by (1),

8= (1 pty) (- m=)

Since A(e)? > 1 — 2¢4, we have ey < 2¢4 Pr(w = 1) and e; < 2¢4 Pr(w = 0), which
proves the observation. 0

Thus, we need only show how to label the remaining parameters within +¢;. Note
that we have already shown how to do this in section 2.3.1. Here the total failure
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probability is at most §/(3n) because there is a failure probability of at most §/(6n?)
associated with each of the 2n edges.

2.5. Step 5: Form M’ from the METs M’(S). Make a new root r for M’
and set Pr(r = 1) = 1. For each related set S of leaves, let u denote the root of M’(.59),
and let D denote the probability that « is 0 in the distribution of M’(S). Make an
edge e from r to u with e; = p.

2.6. Proof of Theorem 1. Let M"” be an MET which is formed from M as

follows.
e Related sets are formed as in Step 2.
e For each related set S, a copy M"(S) of M(S) is made.
e The METs M"(S) are combined as in Step 5.

Theorem 1 follows from the following lemmas.

LEMMA 27. Suppose that for every set S of related leaves, every parameter of
M'(S) is within +e1 of the corresponding parameter in M(S). Then var(M" M) <
€/2.

Proof. First, we observe (using a crude estimate) that there are at most 5n?
parameters in M’. (Each of the (at most n) METs M’(S) has one root parameter
and at most 4n edge parameters.) We will now show that changing a single parameter
of a MET by at most +¢; yields at MET whose variation distance from the original
is at most 2¢;. This implies that var(M”, M’) < 10n%e; = ¢/2. Suppose that e is an
edge from u to v and eg is changed. The probability that the output has string s on
the leaves below v and string s’ on the remaining leaves is

Pr(u=0)Pr(s' | u=0)(egPr(s | v=1)+ (1 —eg) Pr(s | v=0))
+Pr(u=1)Pr(s’" |[u=1)(e1 Pr(s |v=0)+ (1 —e1) Pr(s | v =1)).

Thus, the variation distance between M’ and an MET obtained by changing the value
of ey (within +e;) is at most

€1 ZZPr(u =0)Pr(s' |u=0)(Pr(s|v=1)+Pr(s | v =0))

< €1 Pr(u=0) (ZPr(s’ \ u=0)> ((ZPr(s \ vzl)) + (ZPr(s | sz)))

S 261.

Similarly, if p; is the root parameter of an MET then the probability of having output s
is

pPr(s|r=1)+(1—p1)Pr(s|r=0).

So the variation distance between the original MET and one in which p; is changed
within £e; is at most

Y eaPr(s|r=1)+Pr(s|r=0)<2. O

S

LEMMA 28. var(M", M) < ¢/2.
Before we prove Lemma 28, we provide some background material. Recall that
the weight w(e) of an edge e of an MET is |1 — eg — e1| and define the weight w(¢) of
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a leaf £ to be the product of the weights of the edges on the path from the root to /.
We will use the following lemma.

LEMMA 29. In any MET with root r, the variation distance between the distribu-
tion on the leaves conditioned on r = 1 and the distribution on the leaves conditioned
onr =0 1is at most 2, w(¢), where the sum is over all leaves (.

Proof. We proceed by induction on the number of edges in the MET. In the base
case there are no edges so r is a leaf, and the result holds. For the inductive step,
let e be an edge from r to node x. For any string s; on the leaves below x and any
string so on the other leaves,

Pr(sisa |r=0)=Pr(sa |r=0)(egPr(s; |z =1)4 (1 —ep) Pr(sy | z =0)).

Algebraic manipulation of this formula shows that Pr(s;sy | r = 1) — Pr(sys2 | r =0)
is

(1—ep—e1)Pr(sy|r=1)(Pr(sy |z =1)—Pr(s; |z =0))
(23) +Pr(sy |r=0)(Pr(sz | r=1) —Pr(s2 | r =0)).

It follows that the variation distance is at most the sum over all s;s2 of the absolute
value of the quantity in (23), which is at most

11—eg — e (Zpr(52 |r = 1)) <Z|Pr(sl |z =1) —Pr(s; |z = 0)|>

+ (ZPr(sl |r = 0)) <Z|Pr(52 |r=1)—Pr(se | r :0)|> .

The result follows by induction. 0

LEMMA 30. Suppose that m is an MET with n leaves and that e is an edge from
node u to node v. Let m' be the MET derived from m by replacing eq with Pr(v = 1)
and ey with Pr(v = 0). Then var(m,m’) < n?z, where z is the mazimum over all
pairs (x,y) of leaves which are connected via e in m of |cov(z,y)|.

Proof. By Observation 3, we can assume without loss of generality that u is the
root of m. For any string s; on the leaves below v and any string s, on the remaining
leaves, we find (via a little algebraic manipulation) that the difference between the
probability that m outputs s;s and the probability that m’ does is

Pr(u=1)Pr(u=0)(1—ey—e1)(Pr(sa |u=1)
— Pr(sg |u=0))(Pr(s; |[v=1) = Pr(sy | v=0)).

Thus, the variation distance between m and m’ is Pr(u = 1) Pr(u = 0)(1 — eg — €1)
times the product of the variation distance between the distribution on the leaves
below v conditioned on v = 1 and the distribution on the leaves below v conditioned
on v = 0 and the variation distance between the distribution on the remaining leaves
conditioned on u = 1 and the distribution on the remaining leaves conditioned on u =
0. By Lemma 29, this is at most

Priu=0)Priu=1) {2 >  w@]| |2 Y w],

¢ below v other ¢
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which by (3) is

4 3 cov(e, )],

(z,y) connected via e

which is at most 4(n/2)%z = n2z. 0

LEMMA 31. If, for two different related sets, S and S’, an edge e from u to v is
in M(S) and in M'(S), then ey + e1 < n?ex/(n+1).

Proof. By the definition of the leaf connectivity graph in Step 2, there are leaves
a,a’ € S and b,b" € S’ such that the path from a’ to a and the path from b’ to b both
go through e = v — v and

cov(a, )| > (3/4)e and [cov(5, V)] > (3/4)ea,

and the remaining covariance estimates amongst leaves a, a’, b, and b’ are less than
(3/4)e2. Without loss of generality (using Observation 3), assume that u is the root
of the MET. Let py o denote the path from u to o’ and use similar notation for the
other leaves. By (3) and the accuracy of the estimates in Step 1,

Pr(u = 0)% Pr(u = 1)*w(e)*w(pu,a)w(po.a)w(pup )w(poy) = ((3/4)e2 — e)”,
Pr(u = 0) Pr(u = 1)w(pu,o )w(pup) < (3/4)€2 + €3,
Pr(v =0)Pr(v = 1)w(py,a)w(pop) < (3/4)€2 + €3.

Thus,

2¢3 Pr(v =1)Pr(v =0)
w(e) 2 <1 T (3/4)er + 63> \/Pr(u =1)Pr(u=0)"
By (1),

263
Ale) >1— Batea

The result now follows from the proof of Lemma 26. (Clearly, the bound in
the statement of Lemma 31 is weaker than we can prove, but it is all that we will
need.) a

Proof of Lemma 28. Let M* be the MET which is the same as M except
that every edge e which is contained in M(S) and M(S’) for two different related
sets S and S’ is contracted. Similarly, let M"* be the MET which is the same
as M" except that every such edge has all of its copies contracted in M"*. Clearly,
var(M, M") < var(M, M*) + var(M*, M"™*) + var(M'™*, M"). Lemma 31 then implies
that var(M, M*) + var(M"*, M") < ¢n%ez, where £ is the number of edges in M that
are contracted. We now wish to bound var(M*, M"*). By construction, M*(S) and
M*(S") do not intersect in an edge (for any related sets S and S’). Now suppose that
M*(S) and M*(S’) both contain node u. We can modify M* without changing the
distribution in a way that avoids this overlap. To do this, we just replace node u with
two copies of u, and we connect the two copies by an edge e with eg = e; = 0. Note
that this change will not affect the operation of the algorithm. Thus, without loss of
generality, we can assume that for any related sets S and S’, M*(S) and M*(S’) do
not intersect. Thus, M* and M"* are identical, except on edges which go between the
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sub-METs M*(S). Now, any edge e going between two sub-METSs has the property
that for any pair of leaves, x and y connected via e, |cov(z,y)| < €2. (This follows from
the accuracy of our covariance estimates in Step 1.) Thus, by Lemma 30, changing
such an edge according to Step 5 adds at most n2es to the variation distance. Thus,
var(M*, M"*) < £'ney, where £’ is the number of edges that are modified according
to Step 5. We conclude that var(M, M") < (2n)nes = €1/2 <¢€/2. O

3. Appendix.

3.1. Proof of Lemma 2.

LEMMA 2. A class of probability distributions over the domain {0,1}™ that is
PAC-learnable under the variation distance metric is PAC-learnable under the KL-
distance measure.

Proof. Let K be a polynomial in three inputs and let A be an algorithm which
takes as input K(n,1/e,1/6) samples from a distribution D from the class of dis-
tributions and, with probability at least 1 — 8, returns a distribution D’ such that
var(D, D’) < e. Without loss of generality, we can assume that e is sufficiently small.
For example, it will suffice to have ¢ < 2/15.

Define algorithm A’ as follows. Let & = €2/(12n). Run A with sample size
K(n,1/£,1/6). (Note that the sample size is polynomial in n, 1/¢, and 1/6.) Let D’
be the distribution returned by A. Let U denote the uniform distribution on {0, 1}"
and let D" be the distribution defined by

D"(s) = (1= ()D'(s) + EU(s).

With probability at least 1—46, var(D, D) < £. By definition of D", var(D’, D") <
2¢. Thus, with probability at least 1 — 8, var(D,D"”) < 3£. Note that for all s,
D"(s) > £27™. Let S be the set of all output strings s satisfying D”(s) < D(s). S
contains all the strings which contribute positively to the KL-distance from D to D”.
Thus,

D,D") < ZD (logD(s) — log D" (s))

ses
= (D(s) = D"(s))(log D(s) — log D" (s)) + Y _ D"(s)(log D(s) — log D" (s)).
ses ses

We have seen that var(D,D"”) < 3¢. Thus, Y 4(D(s) — D"(s)) < 3. So, the first

term is at most

max(log D(s) — log D" (5)) 3_(D(s) ~ D"(5))
seS

<3¢ meaéc(log D(s) —logD"(s))
< 3¢ max(~log D"(s))

< 3¢(—log(£27"))
= 3¢(n —log(¢)).

Furthermore, the second term is at most



396 M. CRYAN, L. A. GOLDBERG, AND P. W. GOLDBERG

> D"(s)(log D(s) — log D" (s))
ses

— 3" D"(s)(10g(D"(s) + hy) — log D" (s)),
ses

where hs = D(s) — D" (s), which is a positive quantity for s € S. By concavity of the
logarithm function, the above quantity is at most

/! d
3 D (s)hy {%(log(w‘))]lzpﬂ(s) =3 h, <3¢

seS seS

Thus, KL(D,D"”) < 3£(1 + n — log&). This quantity is at most € for all n > 1 by the
definition of &. a

The method in the proof of Lemma 2 converts a hypothesis distribution which
is close (in variation distance) to the target distribution to a hypothesis distribution
which is close (in KL-distance) to the target distribution. However, if the original
hypothesis is given as a two-state MET, then the modified hypothesis would require
a three-state MET to realize it. We conclude the paper by explaining how to perform
a similar trick using only two-state METs. The distribution obtained is not quite the
same as the one used in the proof of Lemma 2, but it has the properties needed to
show that small KL-distance is achieved.

Let M be the target Markov evolutionary tree. We run the PAC learning algo-
rithm with accuracy parameter ¢ = €2/(12n3) to obtain MET M’. Now we construct
a new hypothesis M" by adjusting some of the parameters of M’ as follows:

For each edge e = (u,l) of M’ where [ is a leaf, let eg and e; be its parameters.
If eg < £ then we set eg = & and if eg > 1 — £ then set eg = 1 — & We make
the same change to e;. By the proof of Lemma 27, var(M’, M") < 4n¢, since 2n
parameters have each been changed by at most £. Hence, with probability at least
1 =46, var(M, M") < (14 4n)¢.

For each string s € {0,1}", M"(s) > ™ (where M"(s) denotes the probability
that M" outputs s). Using a similar argument to the proof of Lemma 2,

KL(M, M") < (14 4n)¢(1 — log(€")) = (1 + 4n)&(1 — nlog)

€2

12n3

which as before is at most ¢ for all n > 1.

= (1+4n)

(1 —n(2loge — 3logn —log 12))
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