
Theoretical Computer Science 1052 (2025) 115367

Available online 20 June 2025
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The frontier of intractability for EFX with two agents

Paul W. Goldberg a,∗, Kasper Høgh b, Alexandros Hollender a, ,∗

a University of Oxford, United Kingdom of Great Britain and Northern Ireland
b Aarhus University, Denmark

A R T I C L E I N F O A B S T R A C T

Section Editor: Paul G. Spirakis

Handling Editor: Argyrios Deligkas

Keywords:

Fair allocation

EFX

PLS

We consider the problem of sharing a set of indivisible goods among agents in a fair manner,
namely such that the allocation is envy-free up to any good (EFX). We focus on the problem of
computing an EFX allocation in the two-agent case and characterize the computational complexity
of the problem for most well-known valuation classes. We present a simple greedy algorithm that
solves the problem when the agent valuations are weakly well-layered, a class which contains
gross substitutes and budget-additive valuations. For the next largest valuation class we prove a
negative result: the problem is PLS-complete for submodular valuations. All of our results also
hold for the setting where there are many agents with identical valuations.

1. Introduction

The field of fair division studies the following fundamental question: given a set of resources, how should we divide them among a
set of agents (who have subjective preferences over those resources) in a fair way? This question arises naturally in many settings, such
as divorce settlement, division of inheritance, or dissolution of a business partnership, to name just a few. Although the motivation
for studying this question is perhaps almost as old as humanity itself, the first mathematical investigation of the question dates back
to the work of Banach, Knaster and Steinhaus [29,30].

Of course, in order to study fair division problems, one has to define what exactly is meant by a fair division. Different fairness
notions have been proposed to formalize this. Banach, Knaster and Steinhaus considered a notion which is known today as propor

tionality: every agent believes that it obtained at least a fraction 1∕𝑛 of the total value available, where 𝑛 is the number of agents.
A generally1 stronger notion, and one which seems more adapted to the motivating examples we mentioned above, is that of envy

freeness [18,16,33]. A division of the resources is said to be envy-free, if no agent is envious, i.e., no agent values the bundle of
resources obtained by some other agent strictly more than what it obtained itself.

As our motivating examples already suggest, the case with few agents -- in fact, even just with two agents -- is very relevant in
practice. When the resources are divisible, such as for example money, water, oil, or time, the fair division problem with two agents
admits a very simple and elegant solution: the cut-and-choose algorithm, which already appears in the Book of Genesis. As its name
suggests, in the cut-and-choose algorithm one agent cuts the resources in half (according to its own valuation), and the other agent
chooses its preferred piece, leaving the other piece to the first agent. It is easy to check that this guarantees envy-freeness, among
other things. The case of divisible resources, which is usually called cake cutting, has been extensively studied for more than two
agents. One of the main objectives in that line of research can be summarized as follows: come up with approaches that achieve

* Corresponding authors.

E-mail addresses: paul.goldberg@cs.ox.ac.uk (P.W. Goldberg), kasperhogh2@gmail.com (K. Høgh), alexandros.hollender@cs.ox.ac.uk (A. Hollender).
1 As long as agents’ valuations are subadditive, every envy-free division also satisfies proportionality.

https://doi.org/10.1016/j.tcs.2025.115367

Received 22 January 2025; Accepted 28 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0001-5255-9349
mailto:paul.goldberg@cs.ox.ac.uk
mailto:kasperhogh2@gmail.com
mailto:alexandros.hollender@cs.ox.ac.uk
https://doi.org/10.1016/j.tcs.2025.115367
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115367&domain=pdf
https://doi.org/10.1016/j.tcs.2025.115367
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1052 (2025) 115367

2

P.W. Goldberg, K. Høgh and A. Hollender

similar guarantees to cut-and-choose, but for more than two agents. This has been partially successful, and notable results include
the proof of the existence of an envy-free allocation for any number of agents [31,34,32], as well as a finite, albeit very inefficient,
protocol for computing one [5].

In many cases, however, assuming that the resources are divisible might be too strong an assumption. Indeed, some resources are
inherently indivisible, such as a house, a car, or a company. Sometimes these resources can be made divisible by sharing them over
time, for example, one agent can use the car over the weekend and the other agent on weekdays. But, in general, and in particular
when agents are not on friendly terms with each other, as one would expect to often be the case for divorce settlements, this is not
really an option.

Indivisible resources make the problem of finding a fair division more challenging. First of all, in contrast to the divisible setting,
envy-free allocations are no longer guaranteed to exist. Indeed, this is easy to see even with just two agents and a single (indivisible)
good that both agents would like to have. No matter who is given the good, the other agent will envy them. In order to address
this issue of non-existence of a solution, various relaxations of envy-freeness have been proposed and studied in the literature. The
strongest such relaxation, namely the one which seems closest to perfect envy-freeness, is called envy-freeness up to any good and is
denoted by EFX [11,19]. An allocation is EFX if for all agents 𝑖 and 𝑗, agent 𝑖 does not envy agent 𝑗, after removal of any single good
from agent 𝑗 ’s bundle. In other words, an allocation is not EFX, if and only if there exist agents 𝑖 and 𝑗, and a good in 𝑗 ’s bundle, so
that 𝑖 envies 𝑗 ’s bundle even after removal of that good.

For this relaxed notion of envy-freeness, it is possible to recover existence, at least in some cases. An EFX allocation is guaranteed
to exist for two agents with any monotone valuations [27], and for three agents if we restrict the valuations to be additive [12]. It is
currently unknown whether it always exists for four or more agents, even just for additive valuations.

Surprisingly, proving the existence of EFX allocations for two agents is non-trivial. In order to use the cut-and-choose approach,
we need to be able to ``cut in half''. In the divisible setting, this is straightforward. But, in the indivisible setting, we need to ``cut in
half in the EFX sense,'' i.e., divide the goods into two bundles such that the first agent is EFX with either bundle. In other words,
we first need to show the existence of EFX allocations for two identical agents, namely two agents who share the same valuation
function, which is not a trivial task.

Plaut and Roughgarden [27] provided a solution to this problem by introducing the leximin++ solution. Given a monotone valu

ation function, they defined a total ordering over all allocations called the leximin++ ordering. They proved that for two identical
agents, the leximin++ solution, namely the global maximum with respect to the leximin++ ordering, must be an EFX allocation. As
mentioned above, using the cut-and-choose algorithm, this shows the existence of EFX allocations for two, possibly different, agents.
Unfortunately, computing the leximin++ solution is computationally intractable2 and so, while this argument proves the existence
of EFX allocations, it does not yield an efficient algorithm.

Nevertheless, for two agents with additive valuations, Plaut and Roughgarden [27] provided a polynomial-time algorithm based
on a modification of the Envy-Cycle elimination algorithm of Lipton et al. [23]. They also provided a lower bound for the problem
in the more general class of submodular valuations, but not in terms of computational complexity (i.e., not in the standard Turing
machine model). Namely, they proved that for two identical agents with submodular valuations computing an EFX allocation requires
an exponential number of queries in the query complexity model.

Their work naturally raises the following two questions about the problem of computing an EFX allocation for two agents:

1. What is the computational complexity of the problem for submodular valuations?

2. What is the computational complexity of the problem for well-known valuation classes lying between additive and submodular,3

such as gross substitutes, OXS, and budget-additive?

Note that it does not make sense to study the query complexity for additive valuations, since a polynomial number of queries
is sufficient to reconstruct the whole valuation functions (and the amount of computation then needed to determine a solution is
not measured in the query complexity). However, it does make sense to study the computational complexity of the problem for
submodular valuations, as well as other classes beyond additive. The query lower bound by Plaut and Roughgarden essentially says
that many queries are needed in order to gather enough information about the submodular valuation function to be able to construct
an EFX allocation. But it does not say anything about the computational hardness of finding an EFX allocation. Their lower bound
does not exclude the possibility of a polynomial-time algorithm for submodular valuations in the standard Turing machine model.
Studying the problem in the computational complexity model allows us to investigate how hard it is to solve when the valuation
functions are given in some succinct representation, e.g., as a few lines of code, or any other form that allows for efficient evaluation.

Our contribution. We answer both of the aforementioned questions:

1. For submodular valuations, we prove that the problem is PLS-complete in the standard Turing machine model, even with two
identical agents.

2 Computing the leximin++ solution is NP-hard, even for two identical agents with additive valuations. This can be shown by a reduction from the Partition
problem (see [27, Footnote 7] and note that their argument, which they use for leximin, also applies to leximin++).

3 In particular, Plaut and Roughgarden [27, Section 7] propose studying the complexity of fair division problems with respect to the hierarchy of complement-free
valuations (additive ⊆ OXS ⊆ gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive) introduced by Lehmann et al. [22].

Theoretical Computer Science 1052 (2025) 115367

3

P.W. Goldberg, K. Høgh and A. Hollender

2. We present a simple greedy algorithm that finds an EFX allocation in polynomial time for two agents with weakly well-layered
valuations, a class of valuation functions that we define in this paper and which contains all well-known strict subclasses of
submodular, such as gross substitutes (and thus also OXS) and budget-additive.4

Together, these two results resolve the computational complexity of the problem for all valuation classes in the standard complement

free hierarchy (additive ⊆ OXS ⊆ gross substitutes ⊆ submodular ⊆ XOS ⊆ subadditive) introduced by Lehmann et al. [22]. Furthermore,
just like in the work of Plaut and Roughgarden [27], our negative and positive results also hold for any number of identical agents.

Regarding the PLS-completeness result, the membership in PLS is easy to show using the leximin++ ordering of Plaut and
Roughgarden [27]. The PLS-hardness is more challenging. The first step of our hardness reduction is essentially identical to the first
step in the corresponding query lower bound of Plaut and Roughgarden [27]: a reduction from a local optimization problem on the
Kneser graph to the problem of finding an EFX allocation. The second step of the reduction is our main technical contribution: we
prove that finding a local optimum on a Kneser graph is PLS-hard,5 which might be of independent interest.

Further related work. The existence and computation of EFX allocations has been studied in various different settings, such as for
restricted versions of valuation classes [2,6], when some items can be discarded [10,14,8,13], or when valuations are drawn randomly
from a distribution [24].

A weaker relaxation of envy-freeness is envy-freeness up to one good (EF1) [9,23]. It can be computed efficiently for any number of
agents with monotone valuations using the Envy-Cycle elimination algorithm [23]. If one is also interested in economic efficiency,
then it is possible to obtain an allocation that is both EF1 and Pareto-optimal in pseudopolynomial time for additive valuations [7].
For more details about fair division of indivisible items, we refer to the recent survey by Amanatidis et al. [3].

Outline. We begin with Section 2 where we formally define the problem and solution concept, as well as some standard valuation
classes of interest. In Section 3 we introduce weakly well-layered valuation functions, and present our simple greedy algorithm for
computing EFX allocations. Finally, in Section 4 we prove our main technical result, the PLS-completeness for submodular valuations.

2. Preliminaries

We consider the problem of discrete fair division where an instance consists of a set of agents 𝑁 , a set of goods 𝑀 , and for every
agent 𝑖 ∈𝑁 a valuation function 𝑣𝑖 ∶ 2𝑀 →ℝ≥0 assigning values to bundles of goods. All valuation functions will be assumed to be
monotone, meaning that for any subsets 𝑆 ⊆ 𝑇 ⊆𝑀 it holds that 𝑣(𝑆) ≤ 𝑣(𝑇), and normalized, i.e., 𝑣(∅) = 0.

We now introduce the different types of valuation functions that are of interest to us. A valuation 𝑣 ∶ 2𝑀 →ℝ≥0 is additive if 𝑣(𝑆) =∑
𝑔∈𝑆 𝑣({𝑔}) for every 𝑆 ⊆𝑀 . The hardness result we present in Section 4 holds for submodular valuations. These are valuations that

satisfy the following diminishing returns condition that whenever 𝑆 ⊆ 𝑇 and 𝑥 ∉ 𝑇 it holds that 𝑣(𝑆 ∪{𝑥})−𝑣(𝑆) ≥ 𝑣(𝑇 ∪{𝑥})−𝑣(𝑇).
Next, for our results in the positive direction, we introduce the classes of gross substitutes and budget-additive valuations, both

contained in the class of submodular valuations. Before defining gross substitutes valuations, we have to introduce some notation.
For a price vector 𝑝 ∈ℝ𝑚 on the set of goods, where 𝑚 = |𝑀|, the function 𝑣𝑝 is defined by 𝑣𝑝(𝑆) = 𝑣(𝑆) −

∑
𝑔∈𝑆 𝑝𝑔 for any subset

𝑆 ⊆ 𝑀 , and the demand set is 𝐷(𝑣, 𝑝) = arg max𝑆⊆𝑀 𝑣𝑝(𝑆). A valuation 𝑣 is gross substitutes if for any price vectors 𝑝, 𝑝′ ∈ ℝ𝑚 with
𝑝 ≤ 𝑝′ (meaning that 𝑝𝑔 ≤ 𝑝′

𝑔
for all 𝑔 ∈ 𝑀), it holds that if 𝑆 ∈ 𝐷(𝑣, 𝑝), then there exists a demanded set 𝑆′ ∈ 𝐷(𝑣, 𝑝′) such that

{𝑔 ∈ 𝑆 ∶ 𝑝𝑔 = 𝑝′
𝑔
} ⊆ 𝑆′. That is to say, if some good 𝑔 is demanded at prices 𝑝 and the prices of some other goods increase, then 𝑔 will

still be demanded. These valuations have various nice properties, for instance guaranteeing existence of Walrasian equilibria [20].
Lastly, a valuation 𝑣 is budget-additive if it is of the form 𝑣(𝑆) = min{𝐵,

∑
𝑔∈𝑆 𝑤𝑔} for reals 𝐵,𝑤1,… ,𝑤𝑚 ≥ 0. Lehmann et al. [22]

show that a budget-additive valuation need not satisfy the gross substitutes condition. See Fig. 1 for the relationship between the
valuation classes.

Envy-freeness up to any good (EFX). The goal of fair division is to find an allocation of the goods to the agents (i.e., a partitioning
𝑀 =𝑋1 ⊔⋯⊔𝑋𝑛) satisfying some notion of fairness. One might hope for an envy-free division in which every agent prefers his own
bundle over the bundle of any other agent, that is, 𝑣𝑖(𝑋𝑖) ≥ 𝑣𝑖(𝑋𝑗) for all 𝑖, 𝑗 ∈𝑁 . Such a division need not exist, however, as can be
seen in the case where one has to divide one good among two agents, as already mentioned in the introduction. Therefore various
weaker notions of fairness have been studied. In this paper we consider the notion of envy-freeness up to any good (EFX) introduced
by Caragiannis et al. [11], and before that by Gourvès et al. [19] under a different name. An allocation (𝑋1,… ,𝑋𝑛) is said to be EFX
if for any 𝑖, 𝑗 ∈𝑁 and any 𝑔 ∈𝑋𝑗 it holds that 𝑣𝑖(𝑋𝑖) ≥ 𝑣𝑖(𝑋𝑗 ⧵ {𝑔}).

3. Polynomial-time algorithm for weakly well-layered valuations

In this section we present our positive result, namely the polynomial-time algorithm for computing an EFX allocation for two
agents with weakly well-layered valuations. To be more precise, our algorithm works for any number of agents that all share the

4 The class of weakly well-layered valuations also contains the class of cancelable valuations which have been recently studied in fair division [8,1,4].
5 We note that proving a tight computational complexity lower bound is more challenging than proving a query lower bound, because we have to reduce from

problems with more structure. Indeed, the exponential query lower bound for the Kneser problem (and thus also for the EFX problem) can easily be obtained as a
byproduct of our reduction.

Theoretical Computer Science 1052 (2025) 115367

4

P.W. Goldberg, K. Høgh and A. Hollender

Submodular

Additive

G
ross SubstitutesBu

dg
et

-A
dd

iti
ve

Well-Layered

Weakly Well-Layered

∙
Example 1

∙
Example 2

∙
Example 3

Fig. 1. Inclusions of valuation classes.

same weakly well-layered valuation function. As a result, using cut-and-choose it can then be used to solve the problem with two
possibly different agents. We begin with the definition of this new class of valuations, and then present the algorithm and prove its
correctness.

3.1. Weakly well-layered valuations

We introduce a property of valuation functions and then situate this with respect to well-known classes of valuation functions in
the next section.

Definition 3.1. A valuation function 𝑣 ∶ 2𝑀 →ℝ≥0 is said to be weakly well-layered if for any 𝑀 ′ ⊆𝑀 the sets 𝑆0, 𝑆1, 𝑆2,… obtained
by the greedy algorithm (that is, 𝑆0 = ∅ and 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑥𝑖} where 𝑥𝑖 ∈ argmax𝑥∈𝑀 ′⧵𝑆𝑖−1

𝑣(𝑆𝑖−1 ∪ {𝑥}) for 1 ≤ 𝑖 ≤ |𝑀 ′|) are optimal
in the sense that 𝑣(𝑆𝑖) = max𝑆⊆𝑀 ′ ∶ |𝑆|=𝑖 𝑣(𝑆) for all 𝑖.

We can reformulate this definition as follows: a valuation function 𝑣 is weakly well-layered if and only if, for all 𝑀 ′ ⊆𝑀 and all
𝑖, the optimization problem

max 𝑣(𝑆)

s.t. 𝑆 ⊆𝑀 ′

|𝑆| ≤ 𝑖

(1)

can be solved by using the natural greedy algorithm. Note that since we only consider monotone valuations, we can also use the
condition |𝑆| = 𝑖 instead of |𝑆| ≤ 𝑖.

The reformulation of the definition in terms of the optimization problem (1) is reminiscent of one of the alternative definitions of
a matroid. Consider the optimization problem

max 𝑣(𝑆)

s.t. 𝑆 ∈ 
(2)

where 𝑣 ∶ 2𝑀 →ℝ≥0 is a valuation function and  is an independence system on 𝑀 . Then, it is well-known that  is a matroid, if
and only if, for all additive valuations 𝑣, the optimization problem (2) can be solved by the natural greedy algorithm [28,17,15]. In
other words, the class of set systems (namely, matroids) is defined by fixing a class of valuations (namely, additive). The alternative
definition of weakly well-layered valuations given in (1) can be viewed as doing the opposite: the class of valuations (namely,
weakly well-layered) is defined by fixing a class of set systems (namely, all uniform matroids on subsets 𝑀 ′ ⊆𝑀 , or, more formally,
 = {𝑆 ⊆𝑀 ′ ∶ |𝑆| ≤ 𝑖} for all 𝑀 ′ ⊆𝑀 and all 𝑖).

Theoretical Computer Science 1052 (2025) 115367

5

P.W. Goldberg, K. Høgh and A. Hollender

3.2. Relationship to other valuation classes

Gross substitutes. We begin by showing that any gross substitutes valuation is weakly well-layered. In particular, this also implies that
OXS valuations, which are a special case of gross substitutes, are also weakly well-layered. Paes Leme [26] proved that gross substitutes
valuation functions satisfy the stronger condition of being well-layered, that is, for any 𝑝 ∈ ℝ𝑚 it holds that if 𝑆0, 𝑆1, 𝑆2,… is con

structed greedily with respect to the valuation 𝑣𝑝, where 𝑣𝑝(𝑆) ∶= 𝑣(𝑆)−
∑

𝑔∈𝑆 𝑝𝑔 , then 𝑆𝑖 satisfies that 𝑆𝑖 ∈ argmax𝑆⊆𝑀 ∶ |𝑆|=𝑖 𝑣𝑝(𝑆).

Lemma 1. If 𝑣 ∶ 2𝑀 → ℝ≥0 is well-layered, then it is also weakly well-layered. In particular, gross substitutes valuations are weakly well

layered.

Proof. Assume that 𝑣 ∶ 2𝑀 → ℝ≥0 is well-layered and let 𝑀 ′ ⊆ 𝑀 . Assume that the sequence 𝑆0, 𝑆1, 𝑆2,… is constructed via the
greedy algorithm: that is 𝑆0 = ∅ and 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑥𝑖} where 𝑥𝑖 ∈ arg max𝑥∈𝑀 ′⧵𝑆𝑖−1

𝑣(𝑆𝑖−1 ∪ {𝑥}) for 1 ≤ 𝑖 ≤ |𝑀 ′|. We have to show
that 𝑣(𝑆𝑖) = max𝑆⊆𝑀 ′ ∶ |𝑆|=𝑖 𝑣(𝑆).

In order to exploit the assumption that 𝑣 is well-layered, we introduce a price vector 𝑝 ∈ℝ𝑚 given by

𝑝𝑔 =

{
0 𝑔 ∈𝑀 ′

𝑣(𝑀) + 1 𝑔 ∉𝑀 ′

One sees that the sequence 𝑆0, 𝑆1, 𝑆2,… can occur via the greedy algorithm for the valuation 𝑣𝑝, because goods not in 𝑀 ′ cannot
be chosen as their prices are too high. As 𝑣 is well-layered, we have that 𝑣𝑝(𝑆𝑖) = max𝑆⊆𝑀 ∶ |𝑆|=𝑖 𝑣𝑝(𝑆). As 𝑝𝑔 = 0 for all 𝑔 ∈𝑀 ′, this
implies that 𝑣(𝑆𝑖) = max𝑆⊆𝑀 ′ ∶ |𝑆|=𝑖 𝑣(𝑆). We conclude that 𝑣 is weakly well-layered. □

Closure properties and budget-additive valuations. We note that the class of weakly well-layered valuations is closed under two natural
operations.

Lemma 2. Let 𝑣 ∶ 2𝑀 →ℝ≥0 be weakly well-layered and let 𝑓 ∶ ℝ≥0 →ℝ≥0 strictly increasing. Then the composition 𝑓 ◦ 𝑣 ∶ 2𝑀 →ℝ≥0 is
weakly well-layered.

Proof. Let 𝑀 ′ ⊆ 𝑀 and assume that 𝑆0, 𝑆1, 𝑆2,… are constructed greedily, that is 𝑆0 = ∅ and 𝑆𝑖 = 𝑆𝑖−1 ∪ {𝑥𝑖} where 𝑥𝑖 ∈
argmax𝑥∈𝑀 ′⧵𝑆𝑖−1

𝑓 (𝑣(𝑆𝑖−1 ∪ {𝑥})) for 1 ≤ 𝑖 ≤ |𝑀 ′|. As 𝑓 is strictly increasing, we see that 𝑥𝑖 ∈ argmax𝑥∈𝑀 ′ 𝑓 (𝑣(𝑆𝑖−1 ∪ {𝑥})) if
and only if 𝑥𝑖 ∈ argmax𝑥∈𝑀 ′ 𝑣(𝑆𝑖−1 ∪ {𝑥}). Therefore 𝑆0, 𝑆1, 𝑆2,… could also arise via the greedy construction based on the val

uation 𝑣. As 𝑣 is weakly well-layered, this implies that 𝑣(𝑆𝑖) = max𝑆⊆𝑀 ′ ∶ |𝑆|=𝑖 𝑣(𝑆) for all 𝑖. As 𝑓 is increasing, this shows that
𝑓 (𝑣(𝑆𝑖)) = max𝑆⊆𝑀 ′ ∶ |𝑆|=𝑖 𝑓 (𝑣(𝑆)) for all 𝑖. We conclude that 𝑓 ◦ 𝑣 is weakly well-layered. □

Lemma 3. Let 𝑣 ∶ 2𝑀 →ℝ≥0 be weakly well-layered and 𝐵 ≥ 0. Then the valuation 𝑢 ∶ 2𝑀 →ℝ≥0 given by 𝑢(𝑆) = min(𝑣(𝑆),𝐵) is weakly
well-layered.

Proof. Let 𝑆0, 𝑆1, 𝑆2,… be constructed greedily from the valuation 𝑢. Suppose that 𝑆0, 𝑆1,… , 𝑆𝑘 have utility < 𝐵 and that
𝑆𝑘+1, 𝑆𝑘+2,… have utility 𝐵. As 𝑥 ↦ min(𝑥,𝐵) is strictly increasing on [0,𝐵), the sets 𝑆0, 𝑆1,… , 𝑆𝑘 could have been constructed
greedily from 𝑣. As 𝑣 is weakly well-layered, they are therefore optimal of their given size for 𝑣 and therefore also for 𝑢. The sets
𝑆𝑘+1,… all have maximal utility 𝐵 and are therefore optimal of their given sizes. □

As a corollary, since additive valuations are weakly well-layered, it follows that the class of budget-additive valuations satisfies
the weakly well-layered property.

Corollary 1. Any budget-additive valuation is weakly well-layered.

In contrast, it is known that budget-additive valuations are not necessarily gross substitutes, and, as the following example shows,
not even well-layered.

Example 1. Consider the budget-additive valuation on three goods 𝑎, 𝑏, 𝑐 with values 𝑣𝑎 = 𝑣𝑏 = 2, 𝑣𝑐 = 4 and a budget of 𝐵 = 4. Let
𝑝 = (1,1,2) be a price vector. Under these prices, the greedy algorithm would pick good 𝑐 as its first item. However, {𝑎, 𝑏} is the
unique optimal bundle of size 2, and so the greedy algorithm would fail in this case. As a result, the valuation is not well-layered.

Cancelable valuations. The class of weakly well-layered valuations also contains the class of cancelable valuations recently defined
by Berger et al. [8], which contains budget-additive, unit-demand, and multiplicative valuations as special cases. A valuation function
𝑣 ∶ 2𝑀 →ℝ≥0 is said to be cancelable if 𝑣(𝑆 ∪ {𝑥}) > 𝑣(𝑇 ∪ {𝑥}) ⟹ 𝑣(𝑆) > 𝑣(𝑇) for any 𝑆,𝑇 ⊆𝑀 and 𝑥 ∈𝑀 ⧵ (𝑆 ∪ 𝑇).

Lemma 4. Any cancelable valuation is weakly well-layered.

Theoretical Computer Science 1052 (2025) 115367

6

P.W. Goldberg, K. Høgh and A. Hollender

Algorithm 1 Greedy EFX.

Input: 𝑁,𝑀,𝑣

Output: EFX allocation
Let 𝐴𝑖 = ∅ for 𝑖∈𝑁 .

Let 𝑅 =𝑀 .

while 𝑅 ≠ ∅ do
𝑖 = arg min𝑗∈𝑁 𝑣(𝐴𝑗)
𝑔 = arg max𝑥∈𝑅 𝑣(𝐴𝑖 ∪ {𝑥})
𝐴𝑖 =𝐴𝑖 ∪ {𝑔}
𝑅 =𝑅 ⧵ {𝑔}

end while

return (𝐴1,… ,𝐴𝑛)

Proof. Let 𝑣 be cancelable, 𝑀 ′ ⊆ 𝑀 , and let 𝑆0, 𝑆1, 𝑆2,… be obtained by the greedy algorithm on 𝑣 and 𝑀 ′ (see Definition 3.1).
We prove by induction that 𝑣(𝑆𝑖) = max𝑆⊆𝑀 ′∶|𝑆|=𝑖 𝑣(𝑆) for all 𝑖. Clearly, this holds for 𝑖 = 1.

Now assume that the induction hypothesis holds for some 𝑖 ≥ 1 and consider 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝑥𝑖+1}. If there existed 𝑇 ⊆ 𝑀 ′ with |𝑇 | = 𝑖+ 1 such that 𝑣(𝑇) > 𝑣(𝑆𝑖+1), then, letting 𝑦 be any element in 𝑇 ⧵𝑆𝑖, we would obtain

𝑣((𝑇 ⧵ {𝑦}) ∪ {𝑦}) = 𝑣(𝑇) > 𝑣(𝑆𝑖+1) = 𝑣(𝑆𝑖 ∪ {𝑥𝑖+1}) ≥ 𝑣(𝑆𝑖 ∪ {𝑦})

where we used the fact that 𝑥𝑖+1 was added greedily to 𝑆𝑖. Since 𝑣 is cancelable, it follows that 𝑣(𝑇 ⧵ {𝑦}) > 𝑣(𝑆𝑖), which contradicts
the induction hypothesis for 𝑖. As a result, the set 𝑆𝑖+1 must also be optimal. □

The results of this subsection are summarized in Fig. 1. Note also that the classes of submodular valuations and weakly well

layered valuations are incomparable. For an example of a valuation function that is submodular but not weakly well-layered, see
Example 3 in the next section. For the other direction, see the following example of a valuation that is well-layered (and thus weakly
well-layered), but not submodular.

Example 2. Consider the valuation function 𝑣 on two goods 𝑎, 𝑏 given by 𝑣({𝑎, 𝑏}) = 1 and 𝑣(∅) = 𝑣({𝑎}) = 𝑣({𝑏}) = 0. This valuation
function is seen to be well-layered (and thus weakly well-layered), because subsets of equal size have the same valuation. However,
it is not submodular, because 𝑣({𝑎} ∪ {𝑏}) − 𝑣({𝑎}) = 1 > 0 = 𝑣(∅ ∪ {𝑏}) − 𝑣(∅).

3.3. The greedy EFX algorithm

We now present a simple algorithm that computes an EFX allocation for many agents that all share the same weakly well-layered
valuation function 𝑣.

Theorem 3.1. If the valuation function 𝑣 is weakly well-layered, then the output of Algorithm 1 is EFX. In particular, by using the cut-and

choose protocol one may compute an EFX allocation for two agents with different valuations as long as one of these valuations is weakly
well-layered.

Proof. We show that the algorithm maintains a partial EFX allocation throughout. Initially the partial allocation is empty and so
clearly EFX. Suppose that at the beginning of some round the current partial allocation (𝑋1,… ,𝑋𝑛) is EFX and that some agent 𝑖 ∈𝑁

receives a good 𝑔 in this round. We have to show that the new (partial) allocation (𝑋′
1,… ,𝑋′

𝑛
) is EFX, where 𝑋′

𝑖
= 𝑋𝑖 ∪ {𝑔} and

𝑋′
𝑗
=𝑋𝑗 for 𝑗 ≠ 𝑖. Clearly, the only thing we have to argue is that 𝑣(𝑋′

𝑖
⧵ {𝑔′}) ≤ 𝑣(𝑋′

𝑗
) for all 𝑗 ∈𝑁 and all 𝑔′ ∈𝑋′

𝑖
. As 𝑖 received

a good in the current round we have that 𝑣(𝑋𝑖) ≤ 𝑣(𝑋𝑗) = 𝑣(𝑋′
𝑗
). Therefore, it suffices to argue that 𝑣(𝑋′

𝑖
⧵ {𝑔′}) ≤ 𝑣(𝑋𝑖) for all

𝑔′ ∈ 𝑋′
𝑖
. This last inequality follows from 𝑣 being weakly well-layered by taking 𝑀 ′ = 𝑋′

𝑖
. With this 𝑀 ′, the set 𝑋𝑖 could namely

be produced by running the greedy algorithm. Therefore, 𝑋𝑖 is an optimal subset of 𝑀 ′ =𝑋′
𝑖

of size |𝑋𝑖| = |𝑋′
𝑖
| − 1, meaning that

𝑣(𝑋′
𝑖
⧵ {𝑔′}) ≤ 𝑣(𝑋𝑖) for all 𝑔 ∈𝑋′

𝑖
. □

The algorithm can fail to provide an EFX allocation for submodular valuations that are not weakly well-layered, as the following
example shows.

Example 3. Consider an instance with two agents and four goods denoted 𝑎, 𝑏, 𝑐, 𝑑, where the valuation function 𝑣 is given by:
𝑣({𝑎}) = 11, 𝑣({𝑏}) = 𝑣({𝑐}) = 10, 𝑣({𝑑}) = 16, 𝑣({𝑎, 𝑏}) = 15, 𝑣({𝑎, 𝑐}) = 15, 𝑣({𝑏, 𝑐}) = 17, 𝑣({𝑎, 𝑏, 𝑐}) = 18, and 𝑣(𝑆) = 18 for all sets
𝑆 that satisfy 𝑑 ∈ 𝑆 and |𝑆| ≥ 2. It can be checked by direct computation that 𝑣 is indeed submodular. The greedy EFX algorithm
yields: agent 1 gets good 𝑑, and then agent 2 gets goods 𝑎, 𝑏, 𝑐. This allocation is not EFX, because 𝑣({𝑑}) < 𝑣({𝑏, 𝑐}).

4. PLS-completeness for submodular valuations

Total NP search problems (TFNP). A total search problem is given by a relation 𝑅⊆ {0,1}∗ ×{0,1}∗ that satisfies: for all 𝑥 ∈ {0,1}∗,
there exists 𝑦 ∈ {0,1}∗ such that (𝑥, 𝑦) ∈𝑅. The relation 𝑅 is interpreted as the following computational problem: given 𝑥 ∈ {0,1}∗,

Theoretical Computer Science 1052 (2025) 115367

7

P.W. Goldberg, K. Høgh and A. Hollender

find some 𝑦 ∈ {0,1}∗ such that (𝑥, 𝑦) ∈ 𝑅. The class TFNP [25] is defined as the set of all total search problems 𝑅 such that the
relation 𝑅 is polynomial-time decidable (i.e., given some 𝑥, 𝑦 we can check in polynomial time whether (𝑥, 𝑦) ∈𝑅) and polynomially
balanced (i.e., there exists some polynomial 𝑝 such that |𝑦| ≤ 𝑝(|𝑥|) whenever (𝑥, 𝑦) ∈𝑅).

Let 𝑅 and 𝑆 be two problems in TFNP. We say that 𝑅 reduces to 𝑆 if there exist polynomial-time functions 𝑓 ∶ {0,1}∗ → {0,1}∗
and 𝑔 ∶ {0,1}∗ × {0,1}∗ → {0,1}∗ such that for all 𝑥, 𝑦 ∈ {0,1}∗: if (𝑓 (𝑥), 𝑦) ∈ 𝑆 , then (𝑥, 𝑔(𝑦,𝑥)) ∈ 𝑅. In other words, 𝑓 maps an
instance of 𝑅 to an instance of 𝑆 , and 𝑔 maps back any solution of the 𝑆-instance to a solution of the 𝑅-instance.

Polynomial Local Search (PLS). Johnson et al. [21] introduced the class PLS, a subclass of TFNP, to capture the complexity of
computing locally optimal solutions in settings where local improvements can be computed in polynomial time. In order to define the
class PLS, we proceed as follows: first, we define a set of basic PLS problems, and then define the class PLS as the set of all TFNP
problems that reduce to a basic PLS problem.

A local search problem Π is defined as follows. For every instance6 𝐼 ∈ {0,1}∗, there is a finite set 𝐹𝐼 ⊆ {0,1}∗ of feasible solutions,
an objective function 𝑐𝐼 ∶ 𝐹𝐼 → ℕ, and for every feasible solution 𝑠 ∈ 𝐹𝐼 there is a neighborhood 𝑁𝐼 (𝑠) ⊆ 𝐹𝐼 . Given an instance 𝐼 ,
one seeks a local optimum 𝑠∗ ∈ 𝐹𝐼 with respect to 𝑐𝐼 and 𝑁𝐼 , meaning, in case of a maximization problem, that 𝑐𝐼 (𝑠∗) ≥ 𝑐𝐼 (𝑠) for all
neighbors 𝑠 ∈𝑁𝐼 (𝑠∗).

Definition 4.1. A local search problem Π is a basic PLS problem if there exists some polynomial 𝑝 such that 𝐹𝐼 ⊆ {0,1}𝑝(|𝐼|) for all
instances 𝐼 , and if there exist polynomial-time algorithms 𝐴,𝐵 and 𝐶 such that:

1. Given an instance 𝐼 , algorithm 𝐴 produces an initial feasible solution 𝑠0 ∈ 𝐹𝐼 .

2. Given an instance 𝐼 and a string 𝑠 ∈ {0,1}𝑝(|𝐼|), algorithm 𝐵 determines whether 𝑠 is a feasible solution and, if so, computes the
objective value 𝑐𝐼 (𝑠).

3. Given an instance 𝐼 and any feasible solution 𝑠 ∈ 𝐹𝐼 , the algorithm 𝐶 checks if 𝑠 is locally optimal and, if not, produces a feasible
solution 𝑠′ ∈𝑁𝐼 (𝑠) that improves the objective value.

Note that any basic PLS problem lies in TFNP.

Definition 4.2. The class PLS is defined as the set of all TFNP problems that reduce to a basic PLS problem.

A problem is PLS-complete if it lies in PLS and if every problem in PLS reduces to it. Johnson et al. [21] showed that the so-called
Flip problem is PLS-complete. We will define this problem later when we make use of it to prove our PLS-hardness result.

4.1. PLS-membership

Plaut and Roughgarden [27] prove the existence of an EFX allocation when all agents share the same monotone valuation, by
introducing the leximin++ solution. In this section, we show how their existence proof can be translated into a proof of PLS

membership for the following problem.

Definition 4.3 (Identical-EFX). An instance 𝐼 = (𝑁,𝑀,𝐶) of the Identical-EFX search problem consists of a set of agents 𝑁 = [𝑛],
a set of goods 𝑀 = [𝑚], and a boolean circuit 𝐶 with 𝑚 input gates. The circuit 𝐶 defines a valuation function 𝑣 ∶ 2𝑀 → ℕ which is
the common valuation of all the agents. A solution is one of the following:

1. An allocation (𝑋1,… ,𝑋𝑛) that is EFX.

2. A pair of bundles 𝑆 ⊆ 𝑇 that violate monotonicity, that is, 𝑣(𝑆) > 𝑣(𝑇).

The reason for allowing the violation-of-monotonicity solutions is that the circuit 𝐶 is not guaranteed to define a monotone
valuation, and in this case an EFX allocation is not guaranteed to exist. Importantly, we note that our PLS-hardness result (presented
in the next section) does not rely on violation solutions. In other words, even the version of the problem where we are promised that
the valuation function is monotone remains PLS-hard.

Theorem 4.1. The Identical-EFX problem lies in PLS.

The problem of computing an EFX allocation for two non-identical agents with valuations 𝑣1 and 𝑣2 is reducible to the problem
of computing an EFX allocation for two identical agents via the cut-and-choose protocol. As a result, we immediately also obtain the
following:

6 A more general definition would also include a polynomial-time recognizable set 𝐷Π ⊆ {0,1}∗ of valid instances. The assumption that 𝐷Π = {0,1}∗ is essentially
without loss of generality. Indeed, for 𝐼 ∉𝐷Π we can define 𝐹𝐼 = {0}, 𝑐𝐼 (0) = 1 and 𝑁𝐼 (0) = {0}. Note that this does not change the complexity of the problem.

Theoretical Computer Science 1052 (2025) 115367

8

P.W. Goldberg, K. Høgh and A. Hollender

Corollary 2. Computing an EFX allocation for two not necessarily identical agents is in PLS.

Proof. To show that the Identical-EFX problem is in PLS, we reduce it to a basic PLS problem. An instance of this basic PLS
problem is just an instance of the Identical-EFX problem, i.e., a tuple 𝐼 = (𝑁,𝑀,𝐶). The set of feasible solutions 𝐹𝐼 is the set of
all possible allocations of the goods in 𝑀 to the agents in 𝑁 . As an initial feasible solution, we simply take the allocation where one
agent receives all goods. It remains to specify the objective function 𝑐𝐼 and the neighborhood structure 𝑁𝐼 , and then to argue that a
local optimum corresponds to an EFX allocation.

Plaut and Roughgarden [27, Section 4] introduce the leximin++ ordering on the set of allocations, and show that the maximum
element with respect to that ordering must be an EFX allocation. In fact, a closer inspection of their proof reveals that even a local
maximum with respect to the leximin++ ordering must be an EFX allocation. As a result, we construct an objective function that
implements the leximin++ ordering and then use the same arguments as Plaut and Roughgarden [27, Theorem 4.2].

For an allocation (𝑋1,… ,𝑋𝑛), we let 𝑂𝑋 = (𝑖1,… , 𝑖𝑛) be an ordering of the agents according to increasing values of 𝑣(𝑋𝑖) (if
multiple agents have bundles of equal utility, we break ties by ordering tied agents in terms of their agent number, i.e., if agents 𝑖
and 𝑗 are tied, and 𝑖 < 𝑗, then agent 𝑖 will appear before agent 𝑗 in the ordering). The objective value is then defined as

𝑐𝐼 (𝑋) = |𝑋𝑖𝑛
|+ 𝑣(𝑋𝑖𝑛

)𝐾

+|𝑋𝑖𝑛−1
|𝐾2 + 𝑣(𝑋𝑖𝑛−1

)𝐾3

+…

+|𝑋𝑖1
|𝐾2𝑛−2 + 𝑣(𝑋𝑖1

)𝐾2𝑛−1

where 𝐾 is an upper bound on the size or utility of any bundle. We claim that if an allocation 𝑋 is not EFX, then one may construct an
allocation 𝑋′ from 𝑋 by moving a single good from one bundle to another such that the objective strictly increases, 𝑐𝐼 (𝑋′) > 𝑐𝐼 (𝑋).
Therefore, we will consider local maximization of this objective and we define the neighborhood of 𝑋 to be 𝑁𝐼 (𝑋) = {𝑋′ ∈ 𝐹𝐼 ∶ ∃𝑖, 𝑗 ∈
𝑁,∃𝑔 ∈𝑋𝑗 s.t. 𝑋′

𝑖
=𝑋𝑖 ∪ {𝑔}, 𝑋′

𝑗
=𝑋𝑗 ⧵ {𝑔}, 𝑋′

𝑘
=𝑋𝑘 for 𝑘 ≠ 𝑖, 𝑗}. We note that the cardinality of 𝑁𝐼 (𝑋) is polynomial in 𝑛 and 𝑚,

so the algorithm for finding an improving neighbor if one exists may simply compute the objective value for every allocation in the
neighborhood. Thus, this local maximization problem is indeed a basic PLS problem.

Finally, we have to show that any local maximum 𝑋 ∈ 𝐹𝐼 yields a solution to the Identical-EFX problem, i.e., 𝑋 is an EFX
allocation or 𝑋 yields a violation of monotonicity. We say that an allocation 𝑋 yields a violation of monotonicity, if there exist
𝑖 ∈𝑁 and 𝑔 ∈𝑀 such that 𝑣(𝑋𝑖 ⧵ {𝑔}) > 𝑣(𝑋𝑖) or 𝑣(𝑋𝑖 ∪ {𝑔}) < 𝑣(𝑋𝑖). We note that if 𝑋 yields a violation of monotonicity, then the
violation can be found in polynomial time.

Consider an allocation 𝑋 ∈ 𝐹𝐼 that is not EFX and that does not yield a violation of monotonicity. We will show that 𝑋 cannot be
a local maximum, which then implies the desired statement by contrapositive. Since 𝑋 is not EFX, we may find 𝑖, 𝑗 ∈𝑁 and 𝑔 ∈𝑋𝑗

such that 𝑣(𝑋𝑖) < 𝑣(𝑋𝑗 ⧵ {𝑔}). Without loss of generality, we may assume that 𝑖 = argmin𝑘∈𝑁 𝑣(𝑋𝑘), and if more than one agent
attains this minimum, then we take the 𝑖 that appears last among those tied agents in 𝑂𝑋 according to the tie-breaking. Now define
an allocation 𝑋′ by

𝑋′
𝑖
=𝑋𝑖 ∪ {𝑔}

𝑋′
𝑗
=𝑋𝑗 ⧵ {𝑔}

𝑋′
𝑘
=𝑋𝑘 for 𝑘 ≠ 𝑖, 𝑗

and note that 𝑋′ ∈𝑁𝐼 (𝑋). We claim that 𝑐𝐼 (𝑋′) > 𝑐𝐼 (𝑋), meaning that 𝑋 is not a local maximum.

In order to prove this, we first show that the orderings 𝑂𝑋 and 𝑂𝑋′
agree in their first 𝓁 positions, where 𝓁 ∈ {0,1,… , 𝑛− 1} is

the index such that 𝑂𝑋
𝓁+1 = 𝑖, i.e., agent 𝑖 appears in position 𝓁 + 1 in 𝑂𝑋 . Let 𝑆 denote the set of agents that appear in 𝑂𝑋 before

agent 𝑖, i.e., the first 𝓁 agents appearing in 𝑂𝑋 . Note that 𝑆 consists of all the agents that have utility 𝑣(𝑋𝑖) in allocation 𝑋, excluding
𝑖. First, observe that 𝑗 ∉ 𝑆 , because 𝑣(𝑋𝑗) ≥ 𝑣(𝑋𝑗 ⧵ {𝑔}) > 𝑣(𝑋𝑖) as 𝑋 does not yield a violation of monotonicity. Therefore, we find
that the bundles of the agents in 𝑆 are not changed from allocation 𝑋 to 𝑋′, and, in particular, these agents still have utility 𝑣(𝑋𝑖)
in allocation 𝑋′. Furthermore, in allocation 𝑋′, all other agents (except possibly 𝑖) have strictly larger utility than 𝑆-agents, namely
𝑣(𝑋′

𝑗
) = 𝑣(𝑋𝑗 ⧵ {𝑔}) > 𝑣(𝑋𝑖), and 𝑣(𝑋′

𝑘
) = 𝑣(𝑋𝑘) > 𝑣(𝑋𝑖) for 𝑘 ∉ 𝑆 ∪ {𝑖, 𝑗}. Finally, 𝑣(𝑋′

𝑖
) = 𝑣(𝑋𝑖 ∪ {𝑔}) ≥ 𝑣(𝑋𝑖) as 𝑋 does not yield a

violation of monotonicity, and thus, in allocation 𝑋′, agent 𝑖 is either also tied with the agents in 𝑆 , or it has strictly larger utility.
In any case, by the tie-breaking, the first 𝓁 positions of 𝑂𝑋 and 𝑂𝑋′

are the same.

We now argue that 𝑐𝐼 (𝑋′) > 𝑐𝐼 (𝑋). Since 𝑂𝑋 and 𝑂𝑋′
agree in their first 𝓁 positions, and the bundles of those first 𝓁 agents have

not changed, the 2𝓁 highest-order terms in 𝑐𝐼 (𝑋) and 𝑐𝐼 (𝑋′) have identical coefficients. By definition, 𝑂𝑋
𝓁+1 = 𝑖. If 𝑂𝑋′

𝓁+1 = 𝑖, then we
have that 𝑐𝐼 (𝑋′) > 𝑐𝐼 (𝑋), because 𝑣(𝑋′

𝑖
) = 𝑣(𝑋𝑖 ∪ {𝑔}) ≥ 𝑣(𝑋𝑖) and |𝑋′

𝑖
| = |𝑋𝑖 ∪ {𝑔}| > |𝑋𝑖|, meaning that the coefficient in front of

𝐾2𝑛−(2𝓁+1) is at least as large in 𝑐𝐼 (𝑋′) as in 𝑐𝐼 (𝑋) and the coefficient in front of 𝐾2𝑛−(2𝓁+2) is strictly larger. If 𝑂𝑋′
𝓁+1 = 𝑘 ≠ 𝑖, then

we have that 𝑐𝐼 (𝑋′) > 𝑐𝐼 (𝑋), because 𝑣(𝑋′
𝑘
) > 𝑣(𝑋𝑖), implying that the coefficient in front of 𝐾2𝑛−(2𝓁+1) is strictly larger in 𝑐𝐼 (𝑋′)

than in 𝑐𝐼 (𝑋). We conclude that 𝑋 is not a local maximum. Therefore, by contraposition, a local maximum is an EFX allocation or
it yields a violation of monotonicity. □

Theoretical Computer Science 1052 (2025) 115367

9

P.W. Goldberg, K. Høgh and A. Hollender

4.2. PLS-hardness

In this section we prove the following theorem.

Theorem 4.2. The problem of computing an EFX allocation for two identical agents with a submodular valuation function is PLS-hard.

The reduction consists of two steps. First, following Plaut and Roughgarden [27], we reduce the problem of local optimization on
an odd Kneser graph to the problem of computing an EFX allocation for two agents sharing the same submodular valuation function.
Then, in the second step, which is also our main technical contribution, we show that the PLS-complete problem Flip reduces to
local optimization on an odd Kneser graph.

4.2.1. Kneser ≤ Identical-EFX

For 𝑘 ∈ ℕ, the odd Kneser graph 𝐾(2𝑘+ 1, 𝑘) is defined as follows: the vertex set consists of all subsets of [2𝑘 + 1] of size 𝑘, and
there is an edge between two vertices if the corresponding sets are disjoint. We identify the vertex set of 𝐾(2𝑘 + 1, 𝑘) with the set
{𝑥 ∈ {0,1}2𝑘+1 ∶ ||𝑥||1 = 𝑘}, where ||𝑥||1 =∑2𝑘+1

𝑖=1 𝑥𝑖 denotes the 1-norm. Note that there is an edge between 𝑥 and 𝑥′ if and only if ⟨𝑥,𝑥′⟩ = 0, where ⟨⋅, ⋅⟩ denotes the inner product.

Definition 4.4 (Kneser). The Kneser problem of local optimization on an odd Kneser graph is defined as the following basic PLS
problem. An instance of the Kneser problem consists of a boolean circuit 𝐶 with 2𝑘+1 input nodes for some 𝑘 ∈ℕ. The set of feasible
solutions is 𝐹𝐶 = {𝑥 ∈ {0,1}2𝑘+1 ∶ ||𝑥||1 = 𝑘}, and the neighborhood of some 𝑥 ∈ 𝐹𝐶 is given by 𝑁𝐶 (𝑥) = {𝑥′ ∈ 𝐹𝐶 ∶ ⟨𝑥,𝑥′⟩ = 0}.
The goal is to find a solution that is a local maximum with respect to the objective function 𝐶(𝑥) =

∑𝑚−1
𝑖=0 𝑦𝑖 ⋅ 2𝑖, where 𝑦0,… , 𝑦𝑚−1

denote the output nodes of the circuit 𝐶 .

Lemma 5. Kneser reduces to Identical-EFX with two identical submodular agents.

Proof. Our proof of this lemma closely follows the corresponding proof of Plaut and Roughgarden [27, Theorem 3.1], with some
minor modifications due to the different computational model. First, we describe the map 𝑓 taking instances 𝐶 of Kneser to instances
of Identical-EFX. We consider a valuation on subsets of [2𝑘+ 1] given by

𝑣(𝑋) =
⎧⎪⎨⎪⎩
2|𝑋| if |𝑋| < 𝑘

2𝑘− 2−𝐶(𝑋) if |𝑋| = 𝑘

2𝑘 if |𝑋| > 𝑘

Using the description of the circuit 𝐶 , we may in polynomial time construct a boolean circuit computing 𝑣. This valuation may take
non-integer values, but this can be fixed by scaling by a larger power of 2. Scaling will not change anything in the arguments below.
We now define 𝑓 (𝐶) = ([2], [2𝑘 + 1], 𝑣). That is, the Kneser instance 𝐶 is mapped to an Identical-EFX instance with 2𝑘 + 1 goods
and with two agents sharing the same valuation 𝑣.

We note that 2−𝐶(𝑋) ∈ (0,1], because 𝐶 takes values in the natural numbers. This ensures that the valuation 𝑣 is monotone,
because 𝑣(𝑆) is seen to be non-decreasing in |𝑆|. Therefore, the only optimal solutions of 𝑓 (𝐶) are EFX allocations (𝑋1,𝑋2). Note by
inspection of 𝑣 that if (𝑋1,𝑋2) is EFX, then |𝑋1| = 𝑘 and |𝑋2| = 𝑘+ 1 (or |𝑋1| = 𝑘+ 1 and |𝑋2| = 𝑘). If we are in the first case then
𝑋1 corresponds to a feasible solution of the Kneser instance 𝐶 . Also any neighbor of 𝑋1 in the Kneser graph is of the form 𝑋2 ⧵ {𝑔}
for some 𝑔 ∈𝑋2. As (𝑋1,𝑋2) is EFX we have that

2𝑘− 2−𝐶(𝑋1) = 𝑣(𝑋1)

≥ 𝑣(𝑋2 ⧵ {𝑔}) = 2𝑘− 2−𝐶(𝑋2⧵{𝑔})

implying that 𝐶(𝑋1) ≥ 𝐶(𝑋2 ⧵ {𝑔}) for all 𝑔 ∈𝑋2. We conclude that 𝑋1 is a local maximum for the instance of Kneser given by the
circuit 𝐶 . Similarly, when |𝑋2| = 𝑘, 𝑋2 will be a local maximum. As a result, we can define the polynomial-time map 𝑔 that maps
solutions of the Identical-EFX instance to solutions of the Kneser-instance by

𝑔((𝑋1,𝑋2),𝐶) =

{
𝑋1 if |𝑋1| = 𝑘

𝑋2 otherwise

By the discussion above it follows that if (𝑋1,𝑋2) is a solution to the Identical-EFX instance, then 𝑔((𝑋1,𝑋2),𝐶) is an optimal
solution to the Kneser-instance. Therefore, the pair (𝑓, 𝑔) constitutes a reduction from Kneser to Identical-EFX.

Finally, we show that 𝑣 is submodular. For any 𝑋 ⊆ [2𝑘+ 1] and 𝑥 ∉𝑋 we have that

𝑣(𝑋 ∪ {𝑥}) − 𝑣(𝑋) =

⎧⎪⎪⎨⎪⎪⎩
2 if |𝑋| < 𝑘− 1
2 − 2−𝐶(𝑋∪{𝑥}) if |𝑋| = 𝑘− 1
2−𝐶(𝑋) if |𝑋| = 𝑘

0 if |𝑋| > 𝑘

Theoretical Computer Science 1052 (2025) 115367

10

P.W. Goldberg, K. Høgh and A. Hollender

Using that 2−𝐶(𝑋) ∈ (0,1], this shows that 𝑣(𝑋 ∪ {𝑥}) − 𝑣(𝑋) is non-increasing in |𝑋|. Thus, if 𝑌 ⊆ 𝑋 and 𝑥 ∉ 𝑋, we have that
𝑣(𝑋 ∪ {𝑥}) − 𝑣(𝑋) ≤ 𝑣(𝑌 ∪ {𝑥}) − 𝑣(𝑌), meaning that 𝑣 is submodular. □

4.2.2. Flip ≤ Kneser

Johnson et al. [21] introduced the computational problem Flip and proved that it is PLS-complete. We will now reduce from Flip
to Kneser to show that Kneser, and thus Identical-EFX, are PLS-hard. In particular, this also establishes the PLS-completeness of
Kneser, which might be of independent interest.

Definition 4.5 (Flip). The Flip problem is the following basic PLS problem. The instances of Flip are boolean circuits. For an
instance 𝐶 with 𝑛 input nodes 𝑥0,… , 𝑥𝑛−1 and 𝑚 output nodes 𝑦0,… , 𝑦𝑚−1, the set of feasible solutions is all the possible inputs
to the circuit: 𝐹𝐶 = {0,1}𝑛. For any 𝑥 ∈ {0,1}𝑛, the neighborhood is all the inputs that can be obtained from 𝑥 by flipping one bit:
𝑁𝐶 (𝑥) = {𝑥′ ∈ {0,1}𝑛 ∶ Δ(𝑥,𝑥′) = 1} where Δ(⋅, ⋅) denotes the Hamming distance. The goal is to find a solution that is locally minimal
with respect to the objective function defined by 𝐶(𝑥) =

∑𝑚−1
𝑖=0 𝑦𝑖 ⋅ 2𝑖.

Lemma 6. Flip reduces to Kneser.

Proof. We construct a reduction from Flip to the minimization version of Kneser. The minimization version of Kneser is seen
to be equivalent to its maximization version by negating the output nodes of the original circuit. Let 𝐶𝐹 be an instance of Flip.
Denote by 𝑝 = poly(|𝐶𝐹 |) the length of the feasible solutions of 𝐶𝐹 . The map of instances 𝑓 now takes 𝐶𝐹 to an instance 𝐶𝐾 of the
Kneser-problem whose feasible solutions are 𝐹𝐾 = {𝑥 ∈ {0,1}2𝑝+1 ∶ ||𝑥||1 = 𝑝}. A typical feasible solution will be written as 𝑠 = 𝑢𝑣𝑏

where 𝑢, 𝑣 ∈ {0,1}𝑝 and 𝑏∈ {0,1}. We will use the notation 𝑢 to denote the bitwise negation of 𝑢 ∈ {0,1}𝑝. The circuit 𝐶𝐾 is defined
as follows:

1. 𝐶𝐾 (𝑢𝑢0) = 2 ⋅𝐶𝐹 (𝑢),
2. 𝐶𝐾 (𝑢𝑣1) = 2 ⋅min(𝐶𝐹 (𝑢),𝐶𝐹 (𝑣)) + 1 if Δ(𝑢, 𝑣) = 1,

3. 𝐶𝐾 (𝑢𝑣𝑏) =𝑀 +Δ(𝑢, 𝑣) otherwise.

Here 𝑀 denotes a number chosen to be sufficiently large so that it dominates any cost 2 ⋅ 𝐶𝐹 (𝑤). Note that the circuit 𝐶𝐾 is well

defined and that it can be constructed in polynomial time given the circuit 𝐶𝐹 . At a high level, the definition of the cost of a vertex
of the third type is meant to ensure that for any such vertex 𝑢𝑣𝑏, there is a sequence of neighbors with decreasing costs that ends in a
vertex of the form 𝑢𝑢0. The costs of the first and second vertex types are then meant to ensure that for a vertex 𝑢𝑢0, there is a sequence
of neighbors with decreasing costs that ends in a vertex 𝑤𝑤0 where 𝑤 is an improving neighbor of 𝑢 in the original Flip-instance.

Below we show that the only local minima of 𝐶𝐾 are of the form 𝑢𝑢0 where 𝑢 is a local minimum for 𝐶𝐹 . Therefore, upon defining
the solution-mapping by 𝑔(𝑢𝑣𝑏) = 𝑢 we have that (𝑓, 𝑔) is a reduction from Flip to Kneser.

No optimal solutions of type (3). If a feasible solution 𝑠 = 𝑢𝑣𝑏 is of type (3), then we claim that it must have a neighbor of lower
cost. First of all, note that since 𝑠 is not of type (1) or (2), and since ||𝑠||1 = 𝑝, it follows that Δ(𝑢, 𝑣) ≥ 2. Now, because Δ(𝑢, 𝑣) ≥ 2 > 0
and ||𝑢𝑣||1 ≤ 𝑝, there must exist an 𝑖 such that 𝑢𝑖 = 𝑣𝑖 = 0. Otherwise one would find that ||𝑢𝑣||1 > 𝑝, which contradicts 𝑠 being a
feasible solution. Now, let 𝑠′ = 𝑢′𝑣′𝑏′, where 𝑢′ = 𝑢, 𝑏′ = 𝑏, and 𝑣′

𝑗
= 𝑣𝑗 for all 𝑗 ≠ 𝑖, but 𝑣′

𝑖
= 𝑣𝑖 = 0. We note that ||𝑠′||1 = ||𝑠||1 − 1 =

(𝑝+ 1) − 1 = 𝑝, so 𝑠′ is a valid vertex in the Kneser graph. Further, we see that 𝑠′ is a neighbor of 𝑠, because 𝑠′
𝑗
𝑠𝑗 = 0 for all 𝑗. If 𝑠′ is

not of type (3), then it has lower cost than 𝑠 by construction of 𝐶𝐾 and choice of 𝑀 . Finally, if 𝑠′ is of type (3), then the observation
that Δ(𝑢′, 𝑣′) <Δ(𝑢, 𝑣) again yields that 𝑠′ has lower cost than 𝑠.

No optimal solutions of type (2). Suppose 𝑠 = 𝑢𝑣1 is of type (2). As ||𝑠||1 = 𝑝 and Δ(𝑢, 𝑣) = 1, there is some 𝑖 with 𝑣𝑖 = 0 and
𝑢𝑖 = 1, and 𝑣𝑗 = 𝑢𝑗 for 𝑗 ≠ 𝑖. This implies that

∑
𝑖 𝑢𝑖𝑣𝑖 = 0, and so both 𝑠′ = 𝑢𝑢0 and 𝑠′′ = 𝑣𝑣0 are neighbors of 𝑠. Furthermore, by

construction of 𝐶𝐾 , the cost of 𝑠′ or of 𝑠′′ is strictly less than the cost of 𝑠.
Optimal solutions. Consider a feasible solution of the form 𝑢𝑢0. If 𝑢 is not a local minimum for 𝐶𝐹 , then let 𝑤 be an improving

neighbor of 𝑢. As Δ(𝑢,𝑤) = 1, there are now two cases to consider. If 𝑢𝑖 = 0 and 𝑤𝑖 = 1 for some 𝑖, then 𝑠′ =𝑤𝑢1 is a type (2) neighbor
of lower cost. If 𝑢𝑖 = 1 and 𝑤𝑖 = 0 for some 𝑖, then 𝑠′ = 𝑢𝑤1 is a type (2) neighbor of lower cost. Therefore, if 𝑢𝑢0 is a local minimum
for 𝐶𝐾 , then 𝑢 is a local minimum for 𝐶𝐹 . □

Corollary 3. Let 𝑛 ≥ 2 be an integer. Computing an EFX allocation for 𝑛 identical agents with a submodular valuation function is PLS-hard.

Proof. By Theorem 4.2 it suffices to produce a reduction from the problem of computing an EFX allocation for two identical agents
to the problem of computing an EFX allocation for 𝑛 identical agents. We sketch this reduction. Let 𝑢 ∶ 2𝑀 →ℝ denote the common
submodular valuation function of the two agents. Construct an EFX-instance with 𝑛 agents by adding 𝑛 − 2 agents and 𝑛 − 2 goods,
𝑀 ′ =𝑀 ∪ {𝑔1,… , 𝑔𝑛−2}. Define the valuation function of the 𝑛 agents to be 𝑢′ = 𝑢+ 𝑣 where 𝑢∶ 2𝑀 ′

→ℝ is the extension of 𝑢 given
by 𝑢(𝑆) = 𝑢(𝑆 ∩𝑀) and where 𝑣 ∶ 2𝑀 ′

→ℝ is additive given by 𝑣({𝑔𝑖}) = 𝑢(𝑀) + 1 for 𝑖 = 1,… , 𝑛−2 and 𝑣({𝑔}) = 0 for 𝑔 ∈𝑀 . One
may verify that 𝑢 is submodular, and so that 𝑢′ is the sum of two submodular valuations and therefore itself submodular.

Let (𝑋1,… ,𝑋𝑛) denote an EFX allocation of this instance. We claim that after permuting the bundles, we may assume that
𝑋𝑖+2 = {𝑔𝑖} for 𝑖 = 1,… , 𝑛− 2 and 𝑋1 ∪𝑋2 =𝑀 . At least one bundle, say 𝑋1, receives no good from {𝑔1,… , 𝑔𝑛−2}, and so 𝑢′(𝑋1) =
𝑢(𝑋1) ≤ 𝑢(𝑀). Now suppose some other bundle 𝑋𝑖 contains some good 𝑔𝑗 . If 𝑋𝑖 contained another good 𝑔, then

Theoretical Computer Science 1052 (2025) 115367

11

P.W. Goldberg, K. Høgh and A. Hollender

𝑢′(𝑋𝑖 ⧵ {𝑔}) ≥ 𝑢′({𝑔𝑗}) = 𝑢(𝑀) + 1 > 𝑢′(𝑋1),

contradicting (𝑋1,… ,𝑋𝑛) being EFX. Hence, 𝑋𝑖 = {𝑔𝑗}, and the claim follows. Now, one sees that (𝑋1,𝑋2) is an EFX allocation of
the original two-agent instance. □

CRediT authorship contribution statement

Paul W. Goldberg: Conceptualization, Writing -- original draft, Writing -- review & editing. Kasper Høgh: Conceptualization,
Writing -- original draft, Writing -- review & editing. Alexandros Hollender: Conceptualization, Writing -- original draft, Writing --
review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We thank all the reviewers of SAGT 2023 for their comments and suggestions that improved the presentation of the paper. In
particular, we thank one reviewer for pointing out that weakly well-layered valuations also generalize cancelable valuations.

P. W. Goldberg was supported by a JP Morgan faculty award. K. Høgh was supported by the Independent Research Fund Denmark
under grant no. 9040-00433B. Most of this work was done while he was visiting Oxford thanks to a STIBO IT Travel Grant. A. Hollender
was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number MB22.00026.

References

[1] Hannaneh Akrami, Noga Alon, Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, EFX: a simpler approach and an (almost) optimal guarantee
via rainbow cycle number, in: Proceedings of the 24th ACM Conference on Economics and Computation (EC), 2023, p. 61.

[2] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hollender, Alexandros A. Voudouris, Maximum Nash welfare and other stories about
EFX, Theor. Comput. Sci. 863 (2021) 69--85, https://doi.org/10.1016/j.tcs.2021.02.020.

[3] Georgios Amanatidis, Haris Aziz, Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé Moulin, Alexandros A. Voudouris, Xiaowei Wu, Fair division of indivisible
goods: recent progress and open questions, Artif. Intell. 322 (2023), https://doi.org/10.1016/j.artint.2023.103965.

[4] Georgios Amanatidis, Georgios Birmpas, Philip Lazos, Stefano Leonardi, Rebecca Reiffenhäuser, Round-Robin beyond additive agents: existence and fairness of
approximate equilibria, in: Proceedings of the 24th ACM Conference on Economics and Computation (EC), 2023, pp. 67--87.

[5] Haris Aziz, Simon Mackenzie, A discrete and bounded envy-free cake cutting protocol for any number of agents, in: Proceedings of the 57th IEEE Symposium on
Foundations of Computer Science (FOCS), 2016, pp. 416--427.

[6] Moshe Babaioff, Tomer Ezra, Uriel Feige, Fair and truthful mechanisms for dichotomous valuations, in: Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), 2021, pp. 5119--5126, https://ojs.aaai.org/index.php/AAAI/article/view/16647.

[7] Siddharth Barman, Sanath Kumar Krishnamurthy, Rohit Vaish, Finding fair and efficient allocations, in: Proceedings of the 19th ACM Conference on Economics
and Computation (EC), 2018, pp. 557--574.

[8] Ben Berger, Avi Cohen, Michal Feldman, Amos Fiat, Almost full EFX exists for four agents, in: Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI), 2022, pp. 4826--4833.

[9] Eric Budish, The combinatorial assignment problem: approximate competitive equilibrium from equal incomes, J. Polit. Econ. 119 (6) (2011) 1061--1103, https://

doi.org/10.1086/664613.

[10] Ioannis Caragiannis, Nick Gravin, Xin Huang, Envy-freeness up to any item with high Nash welfare: the virtue of donating items, in: Proceedings of the 20th
ACM Conference on Economics and Computation (EC), 2019, pp. 527--545.

[11] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, Junxing Wang, The unreasonable fairness of maximum Nash welfare, ACM
Trans. Econ. Comput. 7 (3) (2019) 12:1--12:32, https://doi.org/10.1145/3355902.

[12] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, EFX exists for three agents, in: Proceedings of the 21st ACM Conference on Economics and Computation
(EC), 2020, pp. 1--19.

[13] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra, Improving EFX guarantees through rainbow cycle number, in: Proceedings
of the 22nd ACM Conference on Economics and Computation (EC), 2021, pp. 310--311.

[14] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, Alkmini Sgouritsa, A little charity guarantees almost envy-freeness, SIAM J. Comput. 50 (4) (2021)
1336--1358, https://doi.org/10.1137/20m1359134.

[15] Jack Edmonds, Matroids and the greedy algorithm, Math. Program. 1 (1) (1971) 127--136, https://doi.org/10.1007/bf01584082.

[16] Duncan K. Foley, Resource Allocation and the Public Sector, PhD thesis, Yale University, 1966.

[17] David Gale, Optimal assignments in an ordered set: an application of matroid theory, J. Comb. Theory 4 (2) (1968) 176--180, https://doi.org/10.1016/s0021-

9800(68)80039-0.

[18] George Gamow, Marvin Stern, Puzzle-Math, Viking Press, 1958.

[19] Laurent Gourvès, Jérôme Monnot, Lydia Tlilane, Near fairness in matroids, in: Proceedings of the 21st European Conference on Artificial Intelligence (ECAI),
2014, pp. 393--398.

[20] Faruk Gul, Ennio Stacchetti, Walrasian equilibrium with Gross substitutes, J. Econ. Theory 87 (1) (1999) 95--124, https://EconPapers.repec.org/RePEc:eee:

jetheo:v:87:y:1999:i:1:p:95-124.

[21] David S. Johnson, Christos H. Papadimitriou, Mihalis Yannakakis, How easy is local search?, J. Comput. Syst. Sci. 37 (1) (1988) 79--100, https://doi.org/10.

1016/0022-0000(88)90046-3.

[22] Benny Lehmann, Daniel Lehmann, Noam Nisan, Combinatorial auctions with decreasing marginal utilities, Games Econ. Behav. 55 (2) (2006) 270--296, https://

doi.org/10.1016/j.geb.2005.02.006.

[23] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, Amin Saberi, On approximately fair allocations of indivisible goods, in: Proceedings of the 5th ACM
Conference on Electronic Commerce (EC), 2004, pp. 125--131.

http://refhub.elsevier.com/S0304-3975(25)00305-6/bib02B6E61ACF722E7CF657BE97CBE8B447s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib02B6E61ACF722E7CF657BE97CBE8B447s1
https://doi.org/10.1016/j.tcs.2021.02.020
https://doi.org/10.1016/j.artint.2023.103965
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib553827056EDEA7FC2C541844D5CA4373s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib553827056EDEA7FC2C541844D5CA4373s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib720A4E0C3DDABE30282DC4E0CFC3A0BFs1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib720A4E0C3DDABE30282DC4E0CFC3A0BFs1
https://ojs.aaai.org/index.php/AAAI/article/view/16647
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib2C58E649446982AC12D7181C2589C832s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib2C58E649446982AC12D7181C2589C832s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bibDC4C74460D92824BD9815C8B85614DF4s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bibDC4C74460D92824BD9815C8B85614DF4s1
https://doi.org/10.1086/664613
https://doi.org/10.1086/664613
http://refhub.elsevier.com/S0304-3975(25)00305-6/bibC15303B3FA1C0678CB31E7562007BDADs1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bibC15303B3FA1C0678CB31E7562007BDADs1
https://doi.org/10.1145/3355902
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib91A83E5216846BF721534D52D7E3B604s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib91A83E5216846BF721534D52D7E3B604s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib06BA2C1699DE293A698F180B23B86723s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib06BA2C1699DE293A698F180B23B86723s1
https://doi.org/10.1137/20m1359134
https://doi.org/10.1007/bf01584082
http://refhub.elsevier.com/S0304-3975(25)00305-6/bibEF417EF712DE65B4086D8AAAF6AEAC3As1
https://doi.org/10.1016/s0021-9800(68)80039-0
https://doi.org/10.1016/s0021-9800(68)80039-0
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib8B105D9B471255DC1AA58201839BD7DBs1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib633F30F97EE7B9A359A587937F638131s1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib633F30F97EE7B9A359A587937F638131s1
https://EconPapers.repec.org/RePEc:eee:jetheo:v:87:y:1999:i:1:p:95-124
https://EconPapers.repec.org/RePEc:eee:jetheo:v:87:y:1999:i:1:p:95-124
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/j.geb.2005.02.006
https://doi.org/10.1016/j.geb.2005.02.006
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib0DF3B5E570CC61147F7B57722C14CF2As1
http://refhub.elsevier.com/S0304-3975(25)00305-6/bib0DF3B5E570CC61147F7B57722C14CF2As1

Theoretical Computer Science 1052 (2025) 115367

12

P.W. Goldberg, K. Høgh and A. Hollender

[24] Pasin Manurangsi, Warut Suksompong, Closing gaps in asymptotic fair division, SIAM J. Discrete Math. 35 (2) (2021) 668--706, https://doi.org/10.1137/

20m1353381.

[25] Nimrod Megiddo, Christos H. Papadimitriou, On total functions, existence theorems and computational complexity, Theor. Comput. Sci. 81 (2) (1991) 317--324,
https://doi.org/10.1016/0304-3975(91)90200-L.

[26] Renato Paes Leme, Gross substitutability: an algorithmic survey, Games Econ. Behav. 106 (2017) 294--316, https://doi.org/10.1016/j.geb.2017.10.016.

[27] Benjamin Plaut, Tim Roughgarden, Almost envy-freeness with general valuations, SIAM J. Discrete Math. 34 (2) (2020) 1039--1068, https://doi.org/10.1137/

19m124397x.

[28] Richard Rado, Note on independence functions, Proc. Lond. Math. Soc. s3--7 (1) (1957) 300--320, https://doi.org/10.1112/plms/s3-7.1.300.

[29] Hugo Steinhaus, The problem of fair division, Econometrica 16 (1) (1948) 101--104, https://www.jstor.org/stable/1914289.

[30] Hugo Steinhaus, Sur la division pragmatique, Econometrica 17 (Suppl.) (1949) 315--319, https://doi.org/10.2307/1907319.

[31] Walter Stromquist, How to cut a cake fairly, Am. Math. Mon. 87 (8) (1980) 640--644, https://doi.org/10.1080/00029890.1980.11995109.

[32] Francis Edward Su, Rental harmony: Sperner’s lemma in fair division, Am. Math. Mon. 106 (10) (1999) 930--942, https://doi.org/10.1080/00029890.1999.

12005142.

[33] Hal R. Varian, Equity, envy, and efficiency, J. Econ. Theory 9 (1) (1974) 63--91, https://doi.org/10.1016/0022-0531(74)90075-1.

[34] Douglas R. Woodall, Dividing a cake fairly, J. Math. Anal. Appl. 78 (1) (1980) 233--247, https://doi.org/10.1016/0022-247x(80)90225-5.

https://doi.org/10.1137/20m1353381
https://doi.org/10.1137/20m1353381
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/j.geb.2017.10.016
https://doi.org/10.1137/19m124397x
https://doi.org/10.1137/19m124397x
https://doi.org/10.1112/plms/s3-7.1.300
https://www.jstor.org/stable/1914289
https://doi.org/10.2307/1907319
https://doi.org/10.1080/00029890.1980.11995109
https://doi.org/10.1080/00029890.1999.12005142
https://doi.org/10.1080/00029890.1999.12005142
https://doi.org/10.1016/0022-0531(74)90075-1
https://doi.org/10.1016/0022-247x(80)90225-5

	The frontier of intractability for EFX with two agents
	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm for weakly well-layered valuations
	3.1 Weakly well-layered valuations
	3.2 Relationship to other valuation classes
	3.3 The greedy EFX algorithm

	4 PLS-completeness for submodular valuations
	4.1 PLS-membership
	4.2 PLS-hardness
	4.2.1 \textup {\textsc {Kneser}} < \textup {\textsc {Identical-EFX}}
	4.2.2 \textup {\textsc {Flip}} < \textup {\textsc {Kneser}}

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

