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Abstract. We study the computation of equilibria of two-strategy
anonymous games, via algorithms that may proceed via a sequence of
adaptive queries to the game’s payoff function, assumed to be unknown
initially. The general topic we consider is query complexity, that is, how
many queries are necessary or sufficient to compute an exact or approx-
imate Nash equilibrium.

We show that exact equilibria cannot be found via query-efficient
algorithms. We also give an example of a 2-strategy, 3-player anonymous
game that does not have any exact Nash equilibrium in rational numbers.
Our main result is a new randomized query-efficient algorithm that finds
a O(n71/4)-approximate Nash equilibrium querying O(n3/2) payoffs and
runs in time O(n3/2). This improves on the running time of pre-existing
algorithms for approximate equilibria of anonymous games, and is the
first one to obtain an inverse polynomial approximation in poly-time. We
also show how this can be used to get an efficient PTAS. Furthermore,
we prove that £2(nlogn) payoffs must be queried in order to find any
e-well-supported Nash equilibrium, even by randomized algorithms.

1 Preliminaries

This paper studies two-strategy anonymous games, in which a large number
of players n share two pure strategies, and the payoff to a player depends on
the number of players who use each strategy, but not their identities. Due to the
this property, these games have a polynomial-size representation. Daskalakis and
Papadimitriou [13] consider anonymous games and graphical games to be the
two most important classes of concisely-represented multi-player games. Anony-
mous games appear frequently in practice, for example in voting systems, traffic
routing, or auction settings. Although they have polynomial-sized representa-
tions, the representation may still be inconveniently large, making it desirable
to work with algorithms that do not require all the data on a particular game
of interest.

Query complexity is motivated in part by the observation that a game’s entire
payoff function may be syntactically cumbersome. It also leads to new results
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that distinguish the difficulty of alternative solution concepts. We assume that
an algorithm has black-box access to the payoff function, via queries that specify
an anonymized profile and return one or more of the players’ payoffs.

1.1 Definitions and Notation

Anonymous Games. A k-strategy anonymous game is a tuple (n,k,
{u?}ie[n],je[k]) that consists of n players, k pure strategies per player, and a
utility function uf : {0,...,n — 1} — [0,1] for each player i € [n] (where we
use [n] to denote the set {1,...,n}) and every strategy j € [k], whose input
is the number of other players who play strategy one if k¥ = 2. The number of
payoffs stored by a 2-strategy game is 2n? (generally, O(n*)). As indicated by
u;’s codomain, we make a standard assumption that all payoffs are normalized
into the interval [0, 1].

For all i € [n], let X; be a random indicator variable being equal to one if and
only if player ¢ plays strategy one. For 2-strategy games, a mixed strategy for
i is represented by the probability p; := E[X;] that player i plays strategy one.
Let X_; := Zle[n]\{i} X, be the sum of all the random variables but X;. The
expected utility obtained by player i € [n] for playing pure strategy j € {1, 2}
against X_; is

E[uz(X_l)] = 2 u;(x) -PriX_;, = x].
=0

If ¢ is playing a mixed strategy (i.e., p; € (0,1)) her expected payoff sim-
ply consists of a weighted average, i.e., E[u!(X)] := p; - E[u} (X_;)] + (1 — p;) -
Elub(X_;)], where X := (Xj, X ;). Tt is known that E[u}(X _;)], which involves
computing the p.m.f. of X_; — a Poisson Binomial Distribution — can be com-
puted in polynomial time (see e.g., [13]).

Exact and Approximate Nash Equilibria. With the above notation, we say
that X; is a best-response if and only if E[u’(X)] > E[u}(X ;)] for all j € {1,2}.
A Nash equilibrium (NE) requires the players to be best-responding to each
other; therefore, the above best-response condition must hold for every i € [n].
This can be also viewed as no player having an incentive to deviate from her
strategy. We consider a relaxation of NE, the notion of an e-approzimate Nash
equilibrium (e-NE), where every player’s incentive to deviate is at most € > 0.
We say that (X;);e[n], which represents a mixed-strategy profile, constitutes an
e-NE if for all ¢ € [n] and all j € {1, 2},

Efuf(X)] + ¢ > Elu}(X_,)]

This definition, however, does not prohibit allocating a small amount of proba-
bility to arbitrarily bad strategies. An e-approximate well-supported Nash equi-
librium (e-WSNE) addresses this issue by forcing every player to place a positive
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amount of probability solely on e-approximate best-responses, i.e., (X;);e[n) con-
stitutes an e-WSNE if for all ¢ € [n],

Efu; (X—)] + € < E[uj(X ;)] = pi = 0, and
Elub(X_ )]+ e <Eui(X_;)] = pi = 1.

Although an eWSNE is also an e-NE, the converse need not be true.

Query-Efficiency and Payoff Query Models. Our general interest is in
polynomial-time algorithms that find solutions of anonymous games, while check-
ing just a small fraction of the 2n? payoffs of an n-player, 2-strategy game. The
basic kind of query is a single-payoff query which receives as input a player
i € [n], a strategy j € {1,2}, and the number z € {0,...,n — 1} of players
playing strategy one, and it returns the corresponding payoff uz(x) The query
complezity of an algorithm is the expected number of single-payoff queries that
it needs in the worst case. Hence, an algorithm is query-efficient if its query
complexity is o(n?).

A profile query (used in [15]) consists of an action profile (ay,...,a,) €
{1,2}™ as input and outputs the payoffs that every player i obtains according
to that profile. Clearly, a profile query can be simulated using n single-payoff
queries. Finally, an all-players query consists of a pair (, j) for x € {0,...,n—1},
j € {1,2}, and the response to (z, j) consists of the values u () for all i € [n]. We
will consider the cost of a query to be equal to the number of payoffs it returns;
hence, a profile or an all-players query costs n single-payoff queries. We find that
an algorithm being constrained to utilize profile queries may incur a linear loss
in query-efficiency'. Therefore, we focus on single-payoff and all-players queries,
which better exploit the symmetries of anonymous games.

1.2 Related Work

In the last decade, there has been interest in the complexity of computing approx-
imate Nash equilibria. A main reason is the PPAD-completeness results for
computing an exact NE, for normal-form games [5,8] (the latter paper extends
the hardness also to an FPTAS), and recently also for anonymous games with 7
strategies [6]. The FIXP-completeness results of [14] for multiplayer games show
an algebraic obstacle to the task of writing down a useful description of an exact
equilibrium. On the other hand, there exists a subexponential-time algorithm
to find an eNE in normal-form games [20], and one important open question
regards the existence of a PTAS for bimatrix games.

Daskalakis and Papadimitriou proved that anonymous games admit a PTAS
and provided several improvements of its running time over the past few years.
Their first algorithm [9] concerns two-strategy games and is based upon the
quantization of the strategy space into nearby multiples of €. This result was also

! Due to space constraints, we defer this discussion to the full version of the paper
(http://arxiv.org/abs/1412.6455).
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extended to the multi-strategy case [10]. Daskalakis [7] subsequently gave an effi-
cient PTAS whose running time is poly(n) - (1/6)0(1/62), which relies on a better
understanding of the structure of e-equilibria in two-strategy anonymous games:
There exists an e-WSNE where either a small number of the players — at most
O(1/€3) — randomize and the others play pure strategies, or whoever randomizes
plays the same mixed strategy. Furthermore, Daskalakis and Papadimitriou [11]
proved a lower bound on the running time needed by any oblivious algorithm,
which lets the latter algorithm be essentially optimal. In the same article, they
show that the lower bound can be broken by utilizing a non-oblivious algorithm,
which has the currently best-known running time for finding an e-equilibrium
in two-strategy anonymous games of O(poly(n) - (1/€)°00s"(1/9))) A complete
proof is in [12].

In Sect. 3 we present a bound for A-Lipschitz games, in which A is a parameter
limiting the rate at which u; () changes as x changes. Any A-Lipschitz k-strategy
anonymous game is guaranteed to have an e-approximate pure Nash equilibrium,
with e = O(Ak) [1,13]. The convergence rate to a Nash equilibrium of best-reply
dynamics in the context of two-strategy Lipschitz anonymous games is studied
by [2,19]. Moreover, Brandt et al. [4] showed that finding a pure equilibrium
in anonymous games is easy if the number of strategies is constant w.r.t. the
number of players n, and hard as soon as there is a linear dependence.

In the last two years, several researchers obtained bounds for the query com-
plexity for approximate equilibria in different game settings, which we briefly
survey. Fearnley et al. [15] presented the first series of results: they studied
bimatrix games, graphical games, and congestion games on graphs. Similar to
our negative result for exact equilibria of anonymous games, it was shown that
a Nash equilibrium in a bimatrix game with k strategies per player requires k2
queries, even in zero-sum games. However, more positive results arise if we move
to e-approximate Nash equilibria. Approximate equilibria of bimatrix games were
studied in more detail in [16].

The query complexity of equilibria of n-player games — a setting where payoff
functions are exponentially-large — was analyzed in [3,17,18]. Hart and Nisan [18]
showed that exponentially many deterministic queries are required to find a %—
approximate correlated equilibrium (CE) and that any randomized algorithm
that finds an exact CE needs 22" expected cost. Notice that lower bounds
on correlated equilibria automatically apply to Nash equilibria. Goldberg and
Roth [17] investigated in more detail the randomized query complexity of e-
CE and of the more demanding e-well-supported CE. Babichenko [3] proved an
exponential-in-n randomized lower bound for finding an eWSNE in n-player,
k-strategy games, for constant & = 10* and € = 10~%. These exponential lower
bounds do not hold in anonymous games, which can be fully revealed with a
polynomial number of queries.

1.3 Our Results and Their Significance

Query-efficiency seems to serve as a criterion for distinguishing exact from
approximate equilibrium computation. It applies to games having exponentially-
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large representations [18], also for games having poly-sized representations (e.g.
bimatrix games [15]). Here we extend this finding to the important class of
anonymous games. We prove that even in two-strategy anonymous games, an
exact Nash equilibrium demands querying the payoff function exhaustively, even
with the most powerful query model (Theorem 1). Alongside this, we provide
an example of a three-player, two-strategy anonymous game whose unique Nash
equilibrium needs all players to randomize with an irrational amount of proba-
bility (Theorem 2), answering a question posed in [13]. These results motivate
our subsequent focus on approximate equilibria.

We exhibit a simple query-efficient algorithm that finds an approximate pure
Nash equilibrium in Lipschitz games (Algorithm 1; Theorem 3), which will be
used by our main algorithm for anonymous games.

Our main result (Theorem 4) is a new randomized approximation scheme
for anonymous games that differs conceptually from previous ones and offers
new performance guarantees. It is query-efficient (using o(n?) queries) and has
improved computational efficiency. It is the first PTAS for anonymous games that
is polynomial in a setting where n and 1/e are polynomially related. In particular,
its runtime is polynomial in n in a setting where 1/¢ may grow in proportion to
n'/* and also has an improved polynomial dependence on n for all € > n~1/4. In
more detail, for any € > n~'/4, the algorithm adaptively finds a O (¢)-NE with
O (v/n) (where we use O(-) to hide polylogarithmic factors of the argument)
all-players queries (i.e., o] (n3/ 2) single payoffs) and runs in time 0] (ng/ 2). The
best-known algorithm of [13] runs in time O(poly(n) - (l/e)o(lf’gz(l/e)))7 where
poly(n) > O(n").

In addition to this, we derive a randomized logarithmic lower bound on the
number of all-players queries needed to find any non-trivial eeWSNE in two-
strategy anonymous games (Theorem 5).

2

2 Exact Nash Equilibria

We lower-bound the number of single-payoff queries (the least constrained query
model) needed to find an exact NE in an anonymous game. We exhibit games in
which any algorithm must query most of the payoffs in order to determine what
strategies form a NE. Difficult games are ones that only possess NE where 2(n)
players must randomize.

Ezample 1. Let G be the following two-strategy, n-player anonymous game. Let
n be even, and let § = 1/n?. Half of the players have a utility function as shown
by the top side (a) of Fig. 1, and the remaining half as at (b).

Theorem 1. A deterministic single-payoff query-algorithm may need to query
2(n?) payoffs in order to find an exact Nash equilibrium of an n-player, two-
strateqy anonymous game.

2 To make Theorem 4 easier to read, we state it only for the best attainable approxima-
tion (i.e., n71/4); however, it is possible to set parameters to get any approximation
e > n~ /4. For details, see the proof of Theorem 4.
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(b) Payoff table for “minority-seeking” player ¢

n

Fig. 1. Majority-minority game G’s payoffs. There are § majority-seeking players and

5 minority-seeking players.  denotes the number of players other than ¢ who play 1.

The proof of Theorem 1 (in the full version of the paper) shows that in
any NE of G, at least n/2 players must use mixed strategies. Consequently the
distribution of the number of players using either strategy has support > n/2,
so for a typical player it is necessary to check n/2 of his payoffs.

2.1 A Game Whose Solution Must Have Irrational Numbers

Daskalakis and Papadimitriou [13] note as an open problem, the question of
whether there is a 2-strategy anonymous game whose Nash equilibria require
players to mix with irrational probabilities. The following example shows that
such a game does indeed exist, even with just 3 players. In the context of this
paper, it is a further motivation for our focus on approximate rather than exact
Nash equilibria.

Ezxample 2. Consider the following anonymous game represented in normal-form
in Fig.2. It can be checked that the game satisfies the anonymity condition.
In the unique equilibrium, the row, the column, and the matrix players must
randomize respectively with probabilities

1 1 1
pr=-—=(vV241 = 7), pc = —= (V241 = 7), pm = —(23 — V241).
12 16 36
1 2 1 2
1 17071 (17%70) 1 (17070) (07i7%)
2 1(0,0,0) | (5.1,0) 2 | (31,3 (1,0,1)

Fig. 2. The three-player two-strategy anonymous game in normal form. A payoff tuple
(a, b, c) represents the row, the column, and the matrix players’ payoff, respectively.
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Theorem 2. There exists a three-player, two-strategy anonymous game that has
a unique Nash equilibrium where all the players must randomize with irrational
probabilities.

We show in the full version of the paper that Example 2 is a game that does
indeed satisfy the conditions of Theorem 2.

3 Lipschitz Games

Lipschitz games are anonymous games where every player’s utility function is
Lipschitz-continuous, in the sense that for all ¢ € [n], all j € {1,2}, and all
z,y € {0,...,n — 1}, |u;(a:) - u;(y)| < M|z —y|, where A > 0 is the Lipschitz
constant. For games satisfying a Lipschitz condition with a small value of A\, we
obtain a positive result (that we apply in the next section) for approximation

and query complexity.

Definition 1. Let (z € {0,...,n — 1},5 € {1,2}) be the input for an all-
players query. For 6 > 0, a d-accurate all-players query returns a tuple of values
(fj(x),..., fi*(x)) such that for all i € [n], [u}(x) — f}(z)] <4, i.e., they are

within an additive § of the correct payoffs (u(x),...,u}(z)).

Theorem 3. Let G be an n-player, two-strategy A\-Lipschitz anonymous game.
Algorithm 1 finds a pure-strategy 3(A + §)-WSNE with 4logn é-accurate all-
players payoff queries.

The proof (in the full version of the paper) shows how a solution can be found
via a binary search on {0,...,n — 1}. Existence of pure approximate equilibria
is known already by [13] in the context of k-strategy games. Their proof reduces
the problem to finding a Brouwer fixed point. Theorem 3 is used in the next
section as part of an algorithm for general anonymous games.

4 General Two-Strategy Anonymous Games

First, we present our main result (Theorem 4). Next, we prove a lower bound
on the number of queries that any randomized algorithm needs to make to find
any e-WSNE.

4.1 Upper Bound

Before going into technical lemmas, we provide an informal overview of the
algorithmic approach. Suppose we are to solve an n-player game G. The first
idea is to smooth every player’s utility function, so that it becomes A-Lipschitz
continuous for some A\. We smooth a utility function by requiring every player
to use some amount of randomness. Specifically, for some small { we make every
player place probability either ¢ or 1 — ¢ onto strategy one. Consequently, the
expected payoff for player 7 is obtained by averaging her payoff values w.r.t. a sum
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of two binomial distributions, consisting of a discrete bell-shaped distribution
whose standard deviation is at least ¢/n.

We construct the smooth game G in the following manner. The payoff
received in G by player i when z other players are playing strategy one is given
by the expected payoff received in G by player i when z other players play one
with probability 1 — ¢ and n — 1 — x other players play one with probability (.
This creates a A-Lipschitz game G with A = O (1/¢/n).

Due to dealing with a two-strategy Lipschitz game, we can use the bisection
method of Algorithm 1. If we were allowed to query G directly, a logarithmic
number of all-players queries would suffice. Unfortunately, this is not the case;
thus, we need to simulate a query to G with a small number of queries to the
original game G. Those queries are randomly sampled from the mixed anonymous
profile above, and we take enough samples to ensure we get good estimates of
the payoffs in G with sufficiently high probability.

Thus, we are able to find an approximate pure Nash equilibrium of G with
O(\/ﬁ) all-players queries. This equilibrium is mapped back to G by letting the
players who play strategy one in G, play it with probability 1 — ¢ in G, and the
ones who play strategy two in G place probability ¢ on strategy one in G. The
quality of the approximation is proportional to (C + (C\/ﬁ)’l).

Before presenting our main algorithm (Algorithm 2) and proving its efficiency,
we state the following lemmas (proven in the full version and used in the proof
of Theorem 4).

Lemma 1 [13]. Let X,Y be two random variables over {0,...,n} such that
| X = Y|y <0 (where || X — Y| denotes the total variation distance between
X and Y, ie, 1/2-30_ |Pr[X = 2] — Pr[Y = z]|). Let f:{0,...,n} — [0,1].
Then,

> f(x) - (Pr[X = z] — Pr[Y = z]) < 20.
x=0

Lemma 2 (Simulation of a query to G (Algorithm 2)). Let §,7 > 0.
Let X be the sum of n — 1 Bernoulli random variables representing a mixed
anonymous profile of an n-player game G. Suppose we want to estimate, with
additive error §, the expected payoffs E[u} (X)] for all i € [n],j € {1,2}. This
can be done with probability > 1—7 using (1/26%)-log (4n/7) all-players queries.

Lemma 3. Let XU := Zie[n] X; denote the sum of n independent 0-1 ran-

dom wvariables such that E[X;] = 1 — ¢ for all i € [j], and E[X;] = ¢ for all
i € [n]\ [j]. Then, for all j € [n], we have that

1
< — .
=0 ()
Definition 2. Let G = (n,2,{u§.}i€[n]7j€{1’2}) be an anonymous game. For
¢ > 0, the ¢-smoothed version of G is a game G = (n, 2, {ﬂ;}ie[n]7j€{172}) defined

)

HX(J’—Ln) _ xGm

as follows. Let X (f;) 1= ;4 Xi denote the sum of n — 1 Bernoulli random vari-
ables where z of them have expectation equal to 1 — ¢, and the remaining ones
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have expectation equal to (. The payoff a; () obtained by every player i € [n]
for playing strategy j € {1,2} against z € {0,...,n — 1} is

n—1

ay(w) = Y ui(y) - Pr (XY =] =B [u (x)].
y=0

Theorem 4. Let G = (n,2,{u}}ien) jef1,2}) be an anonymous game. For €
satisfying 1/e = O(n'/*), Algorithm 2 can be used to find (with probability > 3)
an e-NE of G, using O(y/n - log>n) all-players queries (hence, O(n3/? - log®n)
single-payoff queries) in time O(n®/? - log® n).

Algorithm 1. Approximate NE Lipschitz

Data: d-accurate query access to utility function @ of n-player A-Lipschitz game
G.

Result: pure-strategy 3(5 + A\)-NE of G.

begin

Let BR1(i) be the number of players whose best response (as derived from

the d-accurate queries) is 1 when 7 of the other players play 1 and n — 1 —4

of the other players play 2.

Define ¢(i) = BRy (i) — i. // by construction, ¢(0) >0
// and ¢(n—1) <0

If BR1(0) =0, return all-1’s profile.

If BRi(n — 1) = n, return all-2’s profile.

Otherwise, // In this case, ¢(0) >0 and ¢(n—1) <0

Find, via binary search, x such that ¢(z) > 0 and ¢(z+ 1) < 0.

Construct pure profile p as follows:

For each player 4, if @} (x) — @%(x) > 26, let i play 1, and if

uy(z) — uf(x) > 26, let i play 2. (The @}’s are -accurate.) Remaining

players are allocated either 1 or 2, subject to the constraint that = or z + 1

players in total play 1.

return p.

end

Proof. Set ¢ equal to € and let G be the (-smoothed version of G. We claim that
G is a A-Lipschitz game for A = O ((¢y/n)™'). Let X(fi) be as in Definition 2. By

(z—1) _ (=) 1 _
Lemma 3, || X XY . <0 ((\/ﬁ) for all z € [n—1]. Then by Lemma 1,

T
we have

|l (x — 1) — ul(x)| <O ((\1/5) :

Theorem 3 shows that Algorithm 1 finds a pure-strategy 3(A + 6)-WSNE
of G, using O(logn) d-accurate all-players queries. Thus, Algorithm 1 finds a

O( Cxl/ﬁ + 8§)-WSNE of G, where § is the additive accuracy of queries.
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Algorithm 2. Approximate NE general

Data: €; query access to utility function u of n-player anonymous game G;
parameters 7 (failure probability), 6 (accuracy of queries).
Result: O (¢)-NE of G.
begin
Set ¢ = €. Let G be the (-smoothed version of G, as in Definition 2.
// By Lemma 1 and Lemma 3 it follows that
// G is A-Lipschitz for A= O(1/¢{/n).
Apply Algorithm 1 to G, simulating each all-players §-accurate query to G
using multiple queries according to Lemma 2.
Let § be the obtained pure profile solution to G.
Construct p by replacing probabilities of 0 in p with ¢ and probabilities of 1
with 1 — (.
return p.
end

Despite not being allowed to query G directly, we can simulate any J-accurate
query to G with a set of randomized all-players queries to G. This is done in
the body of Algorithm 2. By Lemma 2, for 7 > 0, (1/26%) log(4n/7) randomized
queries to G correctly simulate a d-accurate query to G with probability > 1 —7.

In total, the algorithm makes O (logno (1/6%) ~1og(n/7)) all-players payoff
queries to G. With a union bound over the 4logn simulated queries to G, this
works with probability 1 — 47 logn.

Once we find this pure-strategy O (C\% + 6) -WSNE of G, the last part of

Algorithm 2 maps the pure output profile to a mixed one where whoever plays 1
in G places probability (1 —¢) on 1, and whoever plays 2 in G places probability
¢ on 1. It is easy to verify that the regret experienced by player ¢ (that is, the
difference in payoff between i’s payoff and i’s best-response payoff) in G is at
most ¢ more than the one she experiences in G.

The extra additive ¢ to the regret of players means that we have an e-NE of G
with e = O((+d0+ ﬁ) The query complexity thus is O(logn-(1/62) log(n/T)).

Setting 6 = 1/¥/n, ¢ = 1/¥n, 7 = 1/16logn, we find an O(1/+/n)-Nash
equilibrium using O(y/n - log? n) all-players queries with probability at least
3/4. We remark that the above parameters can be chosen to satisfy any given
approximation guarantee ¢ > n~/4, i.e., simply find solutions to the equation
€ =(+0+({y/n)"L. This allows for a family of algorithms parameterized by e,
for € € [n_l/ 4.1), thus an approximation scheme.

The runtime is equal to the number of single-payoff queries and can be calcu-
lated as follows. Calculating the value of ¢(i) in Algorithm 1 takes O(n+/nlogn).
We make O(y/nlogn) queries to G to simulate one in G, and once we gather
all the information, we need an additional linear time to count the number of
players whose best response is 1. The fact that the above part is performed at
every step of the binary search implies a total running time of O(n?®/? - log? n)
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for Algorithm 1. Algorithm 2 simply invokes Algorithm 1 and only needs linear
time to construct the profile p; thus, it runs in the same time. a

4.2 Lower Bound

We use the minimax principle and thus define a distribution over instances that
will lead to the lower bound on query complexity, for any deterministic algo-
rithm. We specify a distribution over certain games that possess a unique pure
Nash equilibrium. The n players that participate in any of these games are
partitioned into logn groups, which are numbered from 1 to logn. Group i’s
equilibrium strategy depends on what all the previous groups {1,...,i—1} play
at equilibrium. Hence, finding out what the last group should play leads to a
lower bound of §2(logn) all-players queries.

Lemma 4. Let G, be the class of n-player two-strategy anonymous games such
that vl (z) = 1 — ub(x) and ui(x) € {0,1}, for alli € [n],z € {0,...,n — 1}.
Then, there ezists a distribution D,, over G, such that every G drawn from D,
has a unique (pure-strategy) e- WSNE.

Theorem 5. Let G, be defined as in Lemma 4. Then, for any € € [0,1), any
randomized all-players query algorithm must make 2(logn) queries to find an
e-WSNE of G,, in the worst case.

5 Conclusions and Further Work

Our interest in the query complexity of anonymous games has resulted in an
algorithm that has an improved runtime-efficiency guarantee, although limited
to when the number of strategies k is equal to 2. Algorithm 2 (Theorem 4)
finds an e-NE faster than the PTAS of [13], for any € > 1/¥/n. In particular,
for e = 1//n, their algorithm runs in subexponential time, while ours is just
O(n?/?); however, our e-NE is not well-supported.

An immediate question is whether we can obtain sharper bounds on the query
complexity of two-strategy games. There are ways to potentially strengthen the
results. First, our lower bound holds for well-supported equilibria; it would be
interesting to know whether a logarithmic number of queries is also needed to
find an e-NE for ¢ < % We believe this is the case at least for small values
of €. Second, the e-NE found by our algorithm are not well-supported since all
players are forced to randomize. Is there a query-efficient algorithm that finds an
e-WSNE? Third, we may think of generalizing the algorithm to the (constant)
k-strategy case by letting every player be obliged to place probability either %
or1l— %C and obtain a similar smooth utility function. However, in this case
we cannot use a bisection algorithm to find a fixed point of the smooth game.
As a consequence, the query complexity might be strictly larger.



368

P.W. Goldberg and S. Turchetta

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Azrieli, Y., Shmaya, E.: Lipschitz games. Math. Oper. Res. 38(2), 350-357 (2013)

. Babichenko, Y.: Best-reply dynamics in large binary-choice anonymous games.

Games Econ. Behav. 81(1), 130-144 (2013)

Babichenko, Y.: Query complexity of approximate Nash equilibria. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing. pp. 535-544. STOC
2014. ACM, USA (2014)

. Brandt, F., Fischer, F., Holzer, M.: Symmetries and the complexity of pure Nash

equilibrium. J. Comput. Syst. Sci. 75, 163-177 (2009)

Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 1-57 (2009)

Chen, X., Durfee, D., Orfanou, A.: On the complexity of Nash equilibria in anony-
mous games. In: Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, ACM, pp. 381-390 (2015)

Daskalakis, C.: An efficient PTAS for two-strategy anonymous games. In:
Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 186-197.
Springer, Heidelberg (2008)

Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195-259 (2009)

Daskalakis, C., Papadimitriou, C.H.: Computing equilibria in anonymous games.
In: Proceedings of the 48th Symposium on Foundations of Computer Science
(FOCS), pp. 83-93 (2007)

Daskalakis, C., Papadimitriou, C.H.: Discretized multinomial distributions and
Nash equilibria in anonymous games. In: Proceedings of the 49th Symposium on
Foundations of Computer Science (FOCS), pp. 25-34 (2008)

Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium.
In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pp. 75-84. ACM, USA (2009)

Daskalakis, C., Papadimitriou, C.H.: Sparse covers for sums of indicators (2013).
CoRR abs/1306.1265

Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous
games. J. Econ. Theory 156, 207—245 (2015)

Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput. 39(6), 2531-2597 (2010)

Fearnley, J., Gairing, M., Goldberg, P.W., Savani, R.: Learning equilibria of games
via payoff queries. In: Proceedings of the 14th ACM Conference on Electronic
Commerce, EC 2013, pp. 397-414. ACM, USA (2013)

Fearnley, J., Savani, R.: Finding approximate Nash equilibria of bimatrix games
via payoff queries. In: Proceedings of the Fifteenth ACM Conference on Economics
and Computation, EC 2014, pp. 657-674. ACM, USA (2014)

Goldberg, P.W., Roth, A.: Bounds for the query complexity of approximate equi-
libria. In: Proceedings of the Fifteenth ACM Conference on Economics and Com-
putation, EC 2014, pp. 639-656. ACM, USA (2014)

Hart, S., Nisan, N.: The query complexity of correlated equilibria. In: Véckling, B.
(ed.) SAGT 2013. LNCS, vol. 8146, p. 268. Springer, Heidelberg (2013)


http://arxiv.org/abs/1306.1265

19.

20.

Query Complexity of Approximate Equilibria in Anonymous Games 369

Kash, I.A., Friedman, E.J., Halpern, J.Y.: Multiagent learning in large anonymous
games. In: Eighth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 765-772 (2009)

Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: Proceedings of the 4th ACM Conference on Electronic Commerce, EC 2003,
pp. 36-41. ACM, USA (2003)



	Query Complexity of Approximate Equilibria in Anonymous Games
	1 Preliminaries
	1.1 Definitions and Notation
	1.2 Related Work
	1.3 Our Results and Their Significance

	2 Exact Nash Equilibria
	2.1 A Game Whose Solution Must Have Irrational Numbers

	3 Lipschitz Games
	4 General Two-Strategy Anonymous Games
	4.1 Upper Bound
	4.2 Lower Bound

	5 Conclusions and Further Work
	References


